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SUMMARY

Defining the metabolic programs that underlie stem
cell maintenance will be essential for developing
strategies tomanipulate stem cell capacity. Mamma-
lian hematopoietic stem cells (HSCs) maintain cell
cycle quiescence in a hypoxic microenvironment. It
has been proposed that HSCs exhibit a distinct
metabolic phenotype under these conditions. Here
we directly investigated this idea using metabolomic
analysis and found that HSCs generate adenosine-
50-triphosphate by anaerobic glycolysis through a
pyruvate dehydrogenase kinase (Pdk)-dependent
mechanism. Elevated Pdk expression leads to active
suppression of the influx of glycolytic metabolites
into mitochondria. Pdk overexpression in glycol-
ysis-defective HSCs restored glycolysis, cell cycle
quiescence, and stem cell capacity, while loss of
both Pdk2 and Pdk4 attenuated HSC quiescence,
glycolysis, and transplantation capacity. Moreover,
treatment of HSCs with a Pdk mimetic promoted
their survival and transplantation capacity. Thus,
glycolytic metabolic status governed by Pdk acts
as a cell cycle checkpoint that modulates HSC quies-
cence and function.

INTRODUCTION

Stem cells are tissue-sustaining cells that generate differentiated

progeny and are resistant to external stresses (Zon, 2008; Seita

and Weissman, 2010). Although stem cells probably exhibit
metabolic characteristics allowing them to meet diverse energy

demands, it is not known whether their metabolic phenotype

differs from that of transiently amplifying progenitors and

terminally differentiated cells and, if so, how metabolic pheno-

types directly define stem cell identity (Suda et al., 2011). Cells

generate adenosine-50-triphosphate (ATP), the major currency

for energy-consuming reactions, through central carbon

metabolism, including glycolysis and mitochondrial oxidative

phosphorylation (OXPHOS). The mammalian HSC system is

maintained by self-renewal of quiescent long-term (LT)-HSCs

and subsequent generation of short-term (ST)-HSCs, multipo-

tent progenitors (MPPs), and various lineage-restricted proge-

nies (Zon, 2008; Seita and Weissman, 2010). Adult LT-HSCs

are maintained in a hypoxic state in the bone marrow (BM) niche

(Parmar et al., 2007; Takubo et al., 2010). LT-HSCs maintain cell

cycle quiescence through precise regulation of levels of hypoxia-

inducible factor-1a (HIF-1a), a transcription factor responsive to

cellular and systemic hypoxia (Takubo et al., 2010).

LT-HSCs, which exhibit fewer mitochondria than progenitors

(Kim et al., 1998; Simsek et al., 2010; Norddahl et al., 2011),

are hypothesized to utilize anaerobic metabolism in the hypoxic

endosteal zone. Although the ratio of ATP generation to glucose

consumption under anaerobic glycolysis is inefficient compared

with that supported by OXPHOS, the rate of ATP production

under hypoxia potentially increases 100-fold compared to that

supported by mitochondrial energy production under normoxia

(Voet and Voet, 2010). HSCs are particularly sensitive to oxida-

tive stress and show low endogenous ROS levels. Aberrant

ROS generation could abrogate various stem cell properties

including cell cycle quiescence, self-renewal, survival, andmulti-

lineage differentiation capacity in HSCs (Miyamoto et al., 2007;

Kobayashi and Suda, 2012). Because various mutant mice

defective in LT-HSCmaintenance display a wide range of bioen-

ergetic defects in vivo, achieving a stable metabolic state in
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LT-HSCs is probably important for their maintenance (Liu et al.,

2009; Nakada et al., 2010; Gurumurthy et al., 2010; Gan et al.,

2010; Sahin et al., 2011). Recently, Simsek et al. reported that

LT-HSCs show higher glycolytic capacity than do cells in whole

BM, which consists primarily of lineage marker+-differentiated

cells (Lin+ cells) (Simsek et al., 2010). This activity is regulated

by Cripto-GRP78 signaling activated by HIF-1a (Miharada

et al., 2011). However, it remains unclear whether these meta-

bolic characteristics are common in primitive hematopoietic

cells such as LT-HSCs and progenitors and required for their

maintenance.

In this study, we addressed the proposed ‘‘metabolic stem-

ness’’ of HSCs, namely glycolytic activation, using metabolo-

mics and genetics. During glycolysis, glucose is converted to

pyruvate and then anaerobically to lactate or aerobically to

acetyl-CoA for use in mitochondrial metabolism. The conversion

of pyruvate to acetyl-CoA is catalyzed by pyruvate dehydroge-

nase (PDH), whose activity is suppressed by phosphorylation

by PDH kinases (Pdks) (Harris et al., 2002). We observed that

LT-HSCs show HIF-1a-mediated Pdk activation, resulting in

maintenance of glycolytic flow and suppression of the influx of

glycolytic metabolites into mitochondria. Also, a glycolytic

metabolic state was shown to promote LT-HSC cell cycle quies-

cence, an activity that could potentially be exploited to regulate

the cell cycle in those cells in vitro and in vivo. In mice, loss of

Pdk2 and Pdk4 resulted in defective maintenance of cell cycle

quiescence and transplantation capacity and altered glycolytic

metabolic properties in LT-HSCs. Treatment of LT-HSCs with

a competitive inhibitor of PDH promoted maintenance of trans-

plantation capacity in vitro. These observations suggest that

Pdk-mediated antagonism of mitochondrial metabolism com-

prises a checkpoint required to establish a metabolic state

favoring cell cycle quiescence of LT-HSCs.

RESULTS

Metabolomic Profiling of Central Carbon Metabolism
in LT-HSCs and Their Progeny
To define specific metabolic characteristics of hypoxic LT-

HSCs, we performed metabolome analyses with capillary

electrophoresis time-of-flight mass spectrometry (CE-TOFMS)

(Soga et al., 2003, 2006; Shintani et al., 2009) using at least

1 3 106 murine BM LT-HSCs (CD34�Flt3� Lineage marker�

Sca-1+ c-Kit+; CD34�Flt3� LSK cells) and their progeny,

including ST-HSCs (CD34+Flt3� LSK cells), MPPs (CD34+Flt3+

LSK cells), myeloid progenitors (MPs; Lin� c-Kit+ Sca-1� cells),

and differentiated hematopoietic cells (Gr-1/Mac-1+ myeloid

cells, CD4/CD8+ T cells, and B220+ B cells) to assess levels of

intracellular metabolites functioning in central carbon metabo-

lism. We replicated the analysis and show one representative

result in Figure 1A and Figure S1A available online (Figure 1A is

an extract of Figure S1A). Notably, fructose 1,6-bisphosphate

(F1,6BP), a product of the rate-limiting step of glycolysis cata-

lyzed by phosphofructokinase-1 (Pfk-1), was observed only in

LT-HSCs and ST-HSCs (Figures 1A and S1A). Because F1,6BP

is a strong allosteric activator of pyruvate kinase (PK) (Voet and

Voet, 2010), LT-HSCs probably support glycolytic metabolism

required to produce PK-dependent ATP. Because low levels of

the Pfk-1 substrate fructose-6-phosphate were also observed
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in LT-HSCs, the rate-limiting Pfk-1 reaction is probably activated

in LT-HSCs (Figures 1A and S1A). In addition, pyruvate, a by-

product of PK-dependent ATP generation, accumulated to

high levels in LT-HSCs (Figures 1A and S1A), while levels of

phosphoenolpyruvate, a PK substrate, remained low (Figures 1A

and S1A). Mitochondrial OXPHOS is fueled by the tricarboxylic

acid (TCA) cycle. Among TCA cycle-related metabolites, 2-oxo-

glutarate (2-OG) and both acetyl-CoA and succinyl-CoA were

not detected in any hematopoietic fraction (Figure S1A). In

support of metabolomics profiling data shown in Figures 1A

and S1A, we found that various glycolytic enzymes were more

highly expressed in LT-HSCs than in progenitors or terminally

differentiated cells (Figure S1B), suggesting that LT-HSCs utilize

glycolysis for energy generation (Voet and Voet, 2010).

Interestingly, LT-HSC ATP levels were lowest among various

primitive hematopoietic cell fractions in the BM (Figure 1B).

The Side Population (SP) phenotype of LT-HSCs is marked by

expression of the ATP-dependent transporter Bcrp1 (Goodell

et al., 1996, 1997; Zhou et al., 2001) and maintained by intracel-

lular ATP production. The SP phenotype of normal LT-HSCs was

sensitive to treatment with the glycolytic inhibitor 2-deoxy-D-

glucose (2-DG) (Figure 1C). Treatment of BM mononuclear cells

(MNCs) with the respiration inhibitor sodium azide (NaN3), even

at concentrations (20 mM) sufficient to inhibit OXPHOS, moder-

ately reduced SP phenotypes in LT-HSCs (Figure 1C). Glucose

uptake by cells from primitive fractions including LT- or ST-

HSCs or MPPs was higher than that seen in myeloid progenitor

or lineage marker+ fractions (Figure 1D). The activity of pyruvate

kinase, which catalyzes an ATP-generating step in glycolysis,

was highest in LT-HSCs among various BM fractions (Figure 1E).

Overall, these observations suggest that only LT-HSCs, rather

than transiently amplifying progenitors or terminally differenti-

ated cells, can survive independent of mitochondrial energy

generation, possibly through suppression of the PDH-E1a

subunit by Pdk-dependent phosphorylation (depicted schemat-

ically in Figure 2A). Expression of all murine Pdk family members

(Pdk1–Pdk4) (Harris et al., 2002)was high in LT-HSCs (Figure 2B),

and PDH-E1awas more highly phosphorylated in LT-HSCs than

in their differentiated progeny (Figures 2C and 2D). The oxygen

consumption rate (OCR) was lowest in LT-HSCs, dynamically

upregulated after their differentiation into ST-HSCs, and slightly

decreased in MPPs or MPs (Figure 2E). The higher OCR seen in

fractions other than LT-HSCs was probably maintained by mito-

chondrial oxygen consumption, as treatment with oligomycin,

which inhibits mitochondrial ATP synthase, clearly suppressed

the OCR in these cells (Figure 2E). These findings are in accord

with the idea that LT-HSCs survive in a hypoxic environment

and are less dependent on mitochondrial oxygen-consuming

metabolism than more differentiated cells (Figure 2E).

Loss of HIF-1a Alters Energy Metabolism in LT-HSCs
To determine whether a HIF-1a-dependent crucial checkpoint

maintains anaerobic metabolic stemness in LT-HSCs, we exam-

ined parameters relevant to metabolism in HIF-1aD/D LT-HSCs.

We found that HIF-1a deficiency was accompanied by de-

creased expression of various glycolytic enzymes in LT-HSCs

(Figure S2). Glucose uptake was identical at various differentia-

tion stages in HIF-1aD/D BM (Figure 3A), although an essential

glucose transporter, Glut1, was significantly downregulated in



Figure 1. Metabolic Profiling of Glycolytic Metabolism in HSCs and Their Progeny

(A) Quantification of metabolites in glycolytic metabolism based on CE-TOFMS analysis. Bar graphs for independent metabolites plotted in the glycolytic

metabolism map are (from left to right): long-term (LT)-hematopoietic stem cells (HSCs) (CD34�Flt3� LSK cells; blue bars), short-term (ST)-HSCs (CD34+Flt3�

LSK cells; red bars), multipotent progenitors (MPPs) (CD34+Flt3+ LSK cells; green bars), myeloid progenitors (MPs; Lin� c-Kit+ Sca-1� cells; yellow bars), Gr-1/

Mac-1+ myeloid cells (purple bars), CD4/CD8+ T cells (sky blue bars), and B220+ B lymphocytes (black bars). Data are representative of two independent

experiments.

(B) Relative intracellular ATP concentrations in LT-HSC, ST-HSC, MPP, LKS�, and Lin+ cells (mean ± SD, n = 6, *p < 0.001).

(C) Effects of NaN3 (open bars) or 2-DG (closed bars) treatment on the Side Population phenotype of the CD34� LSK fraction at indicated concentrations (mean ±

SD, n = 4, *p < 0.05, **p < 0.0002).

(D) Relative glucose uptake by LT-HSC, ST-HSC, MPP, MP, and Lin+ cells (mean ± SD, n = 5).

(E) Relative PK activity in LT-HSC, ST-HSC, MPP, MP, and Lin+ cells (mean ± SD, n = 6, *p < 0.001).

See also Figure S1.
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HIF-1aD/D LT-HSCs (Figure S2). Glycolytic LDH activity in normal

LT-HSCs was higher than that seen in CD34+ LSK progenitors

(the sum of ST-HSCs plus MPPs) and was decreased in HIF-

1aD/D LT-HSCs (Figure 3B). We found that LT-HSCs release

lactate into the culture medium only under hypoxia and those

levels decrease in the case of HIF-1a deficiency (Figure 3C).

Because intracellular levels of lactate, a product of the LDH

reaction, in LT-HSCs and their differentiated progeny were

unchanged (Figures 1A and S1A), we conclude that LT-HSCs

probably rapidly release lactate generated by glycolysis into

the extracellular space. Intracellular pyruvate levels, which are

high in LT-HSCs (Figures 1A and S1A), were decreased by
HIF-1a deficiency (Figure 3D). These data suggest that, in the

hypoxic niche, LT-HSCs suppress flux of glycolytic metabolites

into mitochondria for the TCA cycle and HIF-1aD/D LT-HSCs

show defective conversion of pyruvate to lactate, an activity

maintained through the suppression of PDH by Pdk. In support

of this, phosphorylation of the a subunit of PDH-E1 is attenuated

in HIF-1aD/D LT-HSCs (Figure 3E). Overall ATP production was

considerably decreased in HIF-1aD/D LT-HSCs compared to

HIF-1aD/D CD34+ LSK progenitors (Figure 3F), suggesting that

ATP production in the former is dependent on HIF-1a-dependent

glycolysis and that mitochondrial metabolism is suppressed by

Pdk. Overall mitochondrial mass in wild-type LT-HSCs was
Cell Stem Cell 12, 49–61, January 3, 2013 ª2013 Elsevier Inc. 51



Figure 2. Pdk-Mediated Metabolic Proper-

ties of LT-HSCs

(A) Schematic representation of the effect of Pdks

on energy metabolism.

(B) qPCR analysis of Pdk family members in

CD34� LSK, CD34+ LSK, Lin�, or Lin+ fractions

from 12-week-old mice (mean ± SD, n = 4). Each

value was normalized to b-actin expression and is

expressed as fold induction compared to levels

detected in CD34� LSK samples (*p < 0.01).

(C and D) Immunocytochemical staining for

phosphorylated S293 (C) or S300 (D) residues of

PDH-E1a (green), Mitotracker DeepRed (red), and

DAPI (blue) in wild-type LT-HSC (CD34� Flt3�

LSK), ST-HSC (CD34+ Flt3� LSK), MPP (CD34+

Flt3+ LSK), or MP (Lineage marker� c-Kit+ Sca-1�)
cells.

(E) Oxygen consumption rate in LT-HSC, ST-HSC,

MPP, and MP cells treated with or without oligo-

mycin (mean ± SD, n = 6) (*p < 0.001).

See also Figure S2.
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smaller than that seen in wild-type CD34+ LSK progenitors (Fig-

ure 3G). In HIF-1aD/D LT-HSCs, mitochondrial volume and

expression of the mitochondrial respiratory component COX4-

1 (Fukuda et al., 2007) were higher than that seen in wild-type

LT-HSCs (Figures 3G and 3H). These data suggest that HIF-

1aD/D LT-HSCs exhibit decreased dependence on anaerobic

glycolysis and activate mitochondrial aerobic metabolism due

to loss of a metabolic checkpoint regulated by PDH-E1a subunit

phosphorylation status.

To directly analyze metabolic changes in HIF-1aD/D HSCs, we

analyzed the SP phenotype. Overall, the HIF-1aD/D LSK fraction

showed significant loss of the SP phenotype after treatment with

20 mMNaN3 (Figure S3A), suggesting that, in the case of HIF-1a

deficiency, compensatory mitochondrial aerobic metabolism

supports ATP production in the primitive hematopoietic fraction.

By contrast, LSK cells deficient in VHL, an E3 ubiquitin ligase

targeting HIF-1a (Semenza, 2010), showed significantly reduced

mitochondrial volume compared to wild-type LSK cells (Fig-

ure S3B). Because normal quiescent HSCs have relatively little

cytoplasm and contain few inactive mitochondria (Kim et al.,

1998) (Figure 3G), the decreased mitochondrial mass seen in

VHLD/D LSK cells suggests that active regulatory mechanisms

function in HIF-1a dose-dependent energy production in

primitive hematopoietic cells.
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HIF-1a Maintains Pdk Expression,
Glycolysis, and Transplantation
Capacity in LT-HSCs
The decreased glycolysis and activated

mitochondrial energy metabolism seen

in HIF-1aD/D LT-HSCs (Figure 3) suggest

that HIF-1a-dependent remodeling of

metabolic pathways by Pdk-mediated

antagonism of PDH activity occurs in

LT-HSCs. Notably, among Pdk family

members, Pdk2 and Pdk4 mRNA levels

were positively correlated with HIF-1a

expression in LT-HSCs (Figure 4A). Their

mRNA levels decreased in the case of
HIF-1a deficiency and increased in the presence of VHL

deficiency (Figure 4A). Increased Pdk mRNA levels were sup-

pressed by deletion of both HIF-1a and VHL (Figure 4A).

Exposure of LT-HSCs to hypoxia increased expression of

Pdk4 but not Pdk2 (Figure S4A), suggesting oxygen-dependent

and -independent roles for HIF-1a for the expression of these

two genes. To verify that Pdks function as HIF-1a effectors in

HSC maintenance, we transduced LT-HSCs or LSK cells with

retrovirus expressing Pdk2 or Pdk4 (Figures 4B and S4B).

Pdk misexpression (at mRNA levels 100- to 1,000-fold greater

than normal) by retrovirus-restored phosphorylation of the

PDH-E1a subunit in HIF-1aD/D LT-HSCs (Figure 4C) and

glycolytic activity in HIF-1aD/D LSK cells, as measured by

LDH activity (Figure 4D), and antagonized increased mito-

chondrial ROS generation seen under HIF-1a deficiency (Ta-

kubo et al., 2010) (Figure S4D). The number of Ki67+ cycling

cells also decreased in Pdk-transduced HIF-1aD/D LSK cells

(Figure 4E). For in vitro analysis of HSCs, we utilized the

SLAM marker to detect HSCs in the LSK population because

some LT-HSCs tend to express CD34 in vitro (Noda et al.,

2008). HIF-1aD/D cells cultured in hypoxic conditions could

not sustain an LT-HSC fraction, a deficiency rescued by the

introduction of Pdk2 or Pdk4 into HIF-1aD/D LSK cells (Figures

4F and 4G).



Figure 3. Loss of HIF-1a Alters HSC Energy Metabolism

(A) Relative glucose uptake by LT-HSC, ST-HSC, MPP, and MP cells from HIF-1a+/+ or HIF-1aD/D mice (mean ± SD, n = 4).

(B) LDH activity in CD34+ or CD34� LSK cells fromHIF-1a+/+ orHIF-1aD/Dmice (mean ±SD, n = 4). Arbitrary units (a.u.) were calculated as the value relative to LDH

activity in the HIF-1a+/+ CD34� LSK fraction (set to 100; *p < 0.01).

(C) Lactate production in CD34� LSK cells under normoxic (20% O2) or hypoxic (1% O2) conditions per ten thousand cells (mean ± SD, n = 4; *p < 0.01).

(D) Relative intracellular pyruvate concentrations in LT-HSCs from HIF-1a+/+ or HIF-1aD/D mice (mean ± SD, n = 4; *p < 0.01).

(E) Immunocytochemical staining for phosphorylated S293 residues of PDH-E1a (green), mitochondrial dye Mitotracker DeepRed (red), and DAPI (blue) in

HIF-1a+/+ or HIF-1aD/D LT-HSCs.

(F) Intracellular ATP concentration in CD34+ or CD34� LSK cells from HIF-1a+/+ or HIF-1aD/D mice (mean ± SD, n = 3; *p < 0.05).

(G) Relativemitochondrial mass (mitochondrial fluorescence/nuclear fluorescence) in individualHIF-1aD/DCD34+ or CD34� LSK cells (n = 50). Data are presented

as the mean ± SD (*p < 0.001).

(H) Immunocytochemical staining of CD34� LSK cells for COX4-1 (red) and TOTO-3 (blue).

See also Figure S3.
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To test reconstitution capacity, we transplanted 3,000 GFP+-

HIF-1aD/D LSK cells into lethally irradiated Ly5.1 (CD45.1+)

congenic mice together with competitor BM (CD45.1+). Trans-

duced LSK cells in every group contained a similar number of

LT-HSCs, as assessed by flow cytometry (data not shown).

Twelve weeks after BM transplantation (BMT), HIF-1aD/D

LSK cells transduced with GFP virus showed significantly

decreased repopulation capacity, probably due to upregulation

of p16Ink4a/p19Arf in HIF-1aD/D LT-HSCs during transduction
stress, as previously reported (Takubo et al., 2010). In contrast,

HIF-1aD/D LSK cells transduced with either Pdk2 or Pdk4

virus showed substantial chimerism and multilineage reconsti-

tution capacity in peripheral blood (PB) compared to control

HIF-1aD/D cells (Figure 4H and Figure S4E). These experiments

suggest that HIF-1a maintains substantial chimerism and multi-

lineage reconstitution capacity through upregulation of Pdk2

and Pdk4 despite expression of other HIF-a family members

(Figure S4C).
Cell Stem Cell 12, 49–61, January 3, 2013 ª2013 Elsevier Inc. 53
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Figure 4. HIF-1a Maintains Pdk Expression, Glycolysis, and Transplantation Capacity in HSCs

(A) qPCR analysis of Pdk2 and Pdk4 expression in the LT-HSC fraction of 12-week-old HIF-1a+/+, HIF-1aD/D, VHLD/D BM, or HIF-1aD/D:VHLD/D BMmice (n = 4).

Values are normalized to b-actin expression and expressed as fold induction compared to levels detected in HIF-1a+/+ samples (mean ± SD, n = 4, *p < 0.01).

(B) Design of retroviral rescue of Pdk expression in HIF-1aD/D LSK cells.

(C) Immunocytochemical staining for phosphorylated S293 residues of PDH-E1a (green), Mitotracker DeepRed (red), and DAPI (blue) in HIF-1aD/D LT-HSCs

transduced with GFP, Pdk2, or Pdk4 retroviruses.

(D) Intracellular LDH activity in GFP virus-transducedHIF-1a+/+ LSK cells or inHIF-1aD/D LSK cells transduced with GFP, Pdk2, or Pdk4 retroviruses (mean ± SD,

n = 5, *p < 0.000001).

(E) Immunocytochemical assessment of Ki67+ in LSK cells transduced with Pdks for 48 hr on a HIF-1a+/+ or HIF-1aD/D background (mean ± SD, n = 5).

(F) CD150+CD41�CD48� LSK cells after transductionwith GFP, Pdk2, or Pdk4 retroviruses and then 7 days of culture under hypoxia (mean ± SD, n = 3, *p < 0.05).

(G) Quantification of total cell number of CD150+CD41�CD48� LSK cells analyzed in (F).

(H) PB chimerism ofHIF-1aD/D donor cells transduced with Pdk viruses at 1, 2, 3 and 4 months (M) after BMT (mean ± SEM, n = 5, *p < 0.05, **p < 0.02; compared

to HIF-1aD/D+GFP virus).

See also Figure S4.

Cell Stem Cell

HSC Metabolic Checkpoint by Pdk
Pdk2 and Pdk4 Are Essential for LT-HSC
Transplantation Capacity
To assess whether Pdk functions in LT-HSCmaintenance down-

stream of HIF-1a, we examined hematopoiesis of Pdk2/Pdk4

double knockout mice (Dunford et al., 2011; Jeoung et al.,

2006). Peripheral blood counts indicated that these Pdk2�/�:
Pdk4�/� mice were mildly but significantly anemic compared

to control mice (Figure 5A). Various populations of differentiated

and undifferentiated cells in the BM, spleen, and thymus
54 Cell Stem Cell 12, 49–61, January 3, 2013 ª2013 Elsevier Inc.
were unchanged in number in Pdk2�/�: Pdk4�/� mice

(Figures S5A–S5E). Progenitor capacity of Pdk2�/�: Pdk4�/�

LSK cells, as assessed by the colony-forming capacity in semi-

solid methylcellulose plus cytokines, was identical to that of

control cells (Figure 5B), suggesting that steady-state hemato-

poiesis and progenitor capacity is maintained in Pdk2�/�:
Pdk4�/� mice. To investigate self-renewal and multilineage

differentiation capacity of Pdk2�/�: Pdk4�/� LT-HSCs, we

performed BM transplantation of these cells with congenic
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Figure 5. Defective Maintenance of Pdk2–/–: Pdk4–/– HSCs after Transplantation

(A) PB counts in control and Pdk2�/�: Pdk4�/� mice (mean ± SD, n = 7).

(B) Colony-forming capacity of control (open bars) and Pdk2�/�: Pdk4�/� LSK cells (closed bars) (mean ± SD, n = 3). CFU-GEMM, CFU-E, CFU-GM, and total

colony numbers are indicated.

(C) PB chimerism in primary BMT recipients of control (open boxes) or Pdk2�/�: Pdk4�/� LT-HSC (closed boxes) cells at 1, 2, 3 and 4 months (M) after BMT

(mean ± SD, n = 10).

(D) Differentiation status (CD4/CD8+ T cells, B220+ B cells, or Mac-1/Gr-1+ myeloid cells) of donor-derived (Ly5.2+) PB cells in primary BMT recipients of control

(open bars) or Pdk2�/�: Pdk4�/� (closed bars) LT-HSCs (mean ± SD, n = 10).

(E) Donor-derived (Ly5.2+) BMMNC, Lin�, LSK, CD34�Flt3� LSK, or SLAM-LSK chimerism in primary BMT recipients of control (open bars) or Pdk2�/�: Pdk4�/�

(closed bars) LT-HSCs 4 months after primary BMT (mean ± SEM, n = 10).

(F) PB chimerism in secondary recipients of BM derived from primary recipients of control (open boxes) or Pdk2�/�: Pdk4�/� (closed boxes) MNCs, at indicated

times after BMT (mean ± SD, n = 10).

(G) Differentiation status (CD4/CD8+ T cells, B220+ B cells, or Mac-1/Gr-1+ myeloid cells) of donor-derived (Ly5.2+) PB cells in secondary BMT recipients of

control (open bars) or Pdk2�/�: Pdk4�/� (closed bars) cells (mean ± SD, n = 10).

(H) Redox-sensitive MitoTracker fluorescence in control (open bars) or Pdk2�/�: Pdk4�/� (closed bars) BM LT-HSCs (n = 3, mean ± SD).

(I) Quantitative PCR analysis of p16Ink4a expression in control (open bars) or Pdk2�/�: Pdk4�/� (closed bars) donor-derived LT-HSCs 4months after primary BMT

(n = 4). Values are normalized to b-actin expression and expressed as fold induction compared to levels detected in HIF-1a+/+ Ly5.2+ LSK samples (mean ± SD).

See also Figure S5.
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competitors into lethally irradiated recipient mice. In contrast to

the capacity of differentiated counterparts, LT-HSCs were

defective in repopulation of primary recipient peripheral blood

at 3–4 months after transplantation (Figure 5C). Four months

after BMT, Pdk2�/�: Pdk4�/� donor-derived cells retained

differentiation capacity of T, B, and myeloid cells comparable

with control donor-derived cells (Figure 5D). At that time,
recipients of Pdk2�/�: Pdk4�/� donor cells exhibited less

chimerism than did recipients of control donor cells in the

LSK-gated, CD34�Flt3� LSK-gated, or SLAM-LSK-gated frac-

tion of BM (Figure 5E), indicating that HSC levels decreased.

We then isolated and transplanted 1 3 106 primary donor-

derived MNCs into secondary recipients. We observed a clear

defect in long-term reconstitution ability of Pdk2�/�: Pdk4�/�
Cell Stem Cell 12, 49–61, January 3, 2013 ª2013 Elsevier Inc. 55



Figure 6. Loss of Cell Cycle Quiescence and Glycolytic Capacity in Pdk2–/–: Pdk4–/– HSCs

(A) Representative flow cytometric plot of Pyronin Y analysis in the LSK-gated fraction of control or Pdk2�/�: Pdk4�/� BM MNCs.

(B) Summary of flow cytometric Pyronin Y analysis of CD34� LSK or CD34+ LSK fractions in control or Pdk2�/�: Pdk4�/� BM MNCs (mean ± SD, n = 6).

(C) Design of short-term BrdU labeling assay in control or Pdk2�/�: Pdk4�/� mice.

(D) Representative flow cytometric plot showing BrdU labeling of the LT-HSC-gated fraction from control or Pdk2�/�: Pdk4�/� BMMNCs. Numbers indicate the

frequency of the BrdU+ fraction in LT-HSCs (mean ± SD, n = 3).

(E) Immunocytochemical staining for the phosphorylated S293 residue of PDH-E1a (green), Mitotracker DeepRed (red), and DAPI (blue) in control or Pdk2�/�:
Pdk4�/� LT-HSCs.

(F) LDH activity in LT-HSCs from control orPdk2�/�: Pdk4�/�mice (mean ± SD, n = 4). Shown are arbitrary values calculated as the value relative to LDH activity in

the control LT-HSC fraction (set to 100).

(G) Intracellular pyruvate concentration in LT-HSCs from control or Pdk2�/�: Pdk4�/�mice (mean ± SD, n = 3). Shown are arbitrary values calculated as the value

relative to intracellular pyruvate levels in the control LT-HSC fraction (set to 100).

See also Figure S6.
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HSCs in the PB and BM of secondary recipients (Figures 5F

and S5F) without any differentiation defect 4 months after

secondary transplantation (Figure 5G). We isolated and trans-

planted 1 3 106 secondary donor-derived MNCs into tertiary

recipients. We observed no long-term reconstitution ability

of Pdk2�/�: Pdk4�/� HSCs in the PB of tertiary recipients

(Figure S5G). ROS reportedly induces p16Ink4a expression

(Takahashi et al., 2006), and p16Ink4a enhances HSC aging
56 Cell Stem Cell 12, 49–61, January 3, 2013 ª2013 Elsevier Inc.
(Janzen et al., 2006). We observed increased mitochondrial

ROS production in Pdk2�/�: Pdk4�/� LT-HSCs (Figure 5H).

Thus, ROS-mediated senescence of Pdk2�/�: Pdk4�/� LT-HSCs

could account for loss of stem cell properties through

p16Ink4a upregulation. In support of this idea, we detected

significantly elevated levels of p16Ink4a transcripts in Pdk2�/�:
Pdk4�/� LT-HSCs from primary and secondary BMT recipients

(Figure 5I).



Figure 7. Modulation of HSC Cell Cycle Quiescence by a PDH Inhibitor

(A) Design of LT-HSC cultures treated with or without 1-AA for 2 weeks. Light microscopic data show colony morphology.

(B) Effect of 1-AA withdrawal on LT-HSCs after 2 weeks of treatment. Light microscopic colony morphology after 4 weeks of culture.

(C) Intracellular pyruvate concentrations in LT-HSCs treated with or without 1-AA for 4 days (mean ± SD, n = 3). Shown are arbitrary values calculated as the value

relative to intracellular pyruvate in the control LT-HSC fraction (set to 100).

(D) Flow cytometric analysis of LT-HSCs treated with or without 1-AA in vitro for 4 weeks. Numbers indicate the LT-HSC fraction in LSK cells (mean ± SD, n = 4).

(E) Quantitative PCR analysis of p16Ink4a expression in control (open bars) or 1-AA-treated (closed bars) LT-HSCs 2weeks after culture with or without 1-AA (n = 4).

Values are normalized to b-actin expression and expressed as fold induction compared to levels detected in control samples (mean ± SD).

(F–H) Quantification of total cells (F), LSK cells (G), or LT-HSCs (H) from LT-HSC-derived colonies in the absence (control) or presence of 1-AA for 4 weeks in vitro

(mean ± SD, n = 4).

(I) Donor-derived (Ly5.1+) PB chimerism in BMT recipients of control LT-HSCs or LT-HSCs treated with 1-AA for 4 weeks, at indicated times after BMT (mean ±

SD, n = 4–5).

See also Figure S7.
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Pdks Are Essential for LT-HSC Cell Cycle Quiescence
and Metabolism
The pivotal role played by Pdk2 andPdk4 in LT-HSC senescence

during transplantation suggests that Pdk-mediated antagonism

of mitochondrial metabolism prevents LT-HSC senescence by

maintaining cell cycle quiescence. To test this hypothesis, we

examined cell cycle kinetics of the Pdk2�/�: Pdk4�/� LT-HSCs

by multicolor flow cytometry. Although the number of LT-HSCs,

ST-HSCs, and MPPs was unchanged in Pdk2�/�: Pdk4�/�
mice (Figures S5D and S5E), we detected specific activation of

the cell cycle, characterized by a reduction in the Pyronin Y�

G0 fraction and an increase in the Pyronin Y+ G1 fraction, in

Pdk2�/�: Pdk4�/� CD34� LSK cells (Figures 6A and 6B). Recip-

ient mice whose BM was replaced by Pdk2�/�: Pdk4�/� MNCs

(Pdk2�/�: Pdk4�/� BM mice) also showed similar loss of the G0

fraction in Pdk2�/�: Pdk4�/� CD34� LSK cells (Figures S6A and

S6B). Interestingly, CD34+ LSK cells showed an increase in the

Pyronin Y� G0 fraction in Pdk2�/�: Pdk4�/� mice (both
Cell Stem Cell 12, 49–61, January 3, 2013 ª2013 Elsevier Inc. 57
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hematopoietic cells and hematopoietic microenvironment are

Pdk2�/�: Pdk4�/�), but not in Pdk2�/�: Pdk4�/� BM mice

(Pdk2�/�: Pdk4�/� hematopoietic cells and Pdk2+/+: Pdk4+/+

hematopoietic microenvironment) (Figures 6A, 6B, S6A, and

S6B). These observations suggest thatPdk2�/�: Pdk4�/� nonhe-

matopoietic cells limit blood cell production by slowing the G0/

G1 progression of Pdk2�/�: Pdk4�/� progenitors. Also, short-

term BrdU labeling indicated high levels of cycling cells in the

Pdk2�/�: Pdk4�/� LT-HSC population (Figures 6C and 6D). In

addition to the cell cycle defect, we detected metabolic defects

in Pdk2�/�: Pdk4�/� mice. In Pdk2�/�: Pdk4�/� LT-HSCs, PDH-

E1a subunit phosphorylation status was decreased (Figures

6E, S6C, and S6D) and intracellular LDH activity and pyruvate

content were significantly attenuated (Figures 6F and 6G). These

findings indicate that Pdks are necessary to maintain cell cycle

quiescence and LT-HSC metabolic properties.

A Pdk Mimetic Modulates Cell Cycle Quiescence
in LT-HSCs
To determine whether metabolic reprogramming could be

achieved in HSCs, we artificially suppressed PDH activity using

the PDH inhibitor, 1-aminoethylphosphinic acid (1-AA). This

molecule is converted by aminotransferase to the pyruvate

analog acetylphosphinic acid, which competes with pyruvate

to suppress PDH enzymatic activity (Laber and Amrhein, 1987;

Nemeria et al., 2006). In vitro treatment of isolated LT-HSCs,

ST-HSCs, or MPPs with or without 1-AA for 2 weeks maintained

LT-HSCs and ST-HSCs (Figures 7A, S7A, and S7B). No viable

cells were detected in MPPs in the presence of 1-AA after

2 weeks of culture (Figure S7B). Colony growth of LT- or ST-

HSCs in the culture medium was suppressed by 1-AA in vitro

(Figure S7B). LT-HSCs cultured with 1-AA for 2 weeks could

proliferate again after removal of 1-AA (Figure 7B). Treatment

of LT-HSCs with 1-AA in vitro showed higher pyruvate levels

than nontreated LT-HSCs (Figure 7C). In vitro treatment of iso-

lated LT-HSCs, ST-HSCs, or MPPs with or without 1-AA for

4 weeks only maintained LT-HSCs (Figure S7C). No viable cells

were detected in ST-HSCs and MPPs in the presence of 1-AA

after 4 weeks of culture (Figures S7A and S7C). Colony growth

of LT-HSCs in the culture medium was suppressed by 1-AA

in vitro (Figure S7C). Flow cytometric analysis of LT-HSC-

derived colony after 4 weeks of culture revealed preferential

maintenance of LT-HSC frequency within LSK cells in the pres-

ence of 1-AA compared to control cells (Figure 7D). LT-HSCs

treated with 1-AA for 2 weeks lacked expression of p16Ink4a

mRNA in LT-HSCs (Figure 7E). Both the total number of cells

and that of LSK cells were suppressed by 1-AA treatment

after 4 weeks of culture (Figures 7F and 7G). In contrast, 1-AA

treatment maintained the LT-HSC fraction in vitro (Figure 7H).

Transplanted LT-HSC-derived colonies after 4 weeks of culture

retained reconstitution capacity of PB and BM during transplan-

tation (Figures 7I and S7D). These data collectively suggest that

metabolic reprogramming by Pdk induction could be a potent

tool to modulate the cell cycle of LT-HSCs.

DISCUSSION

The present study provides direct evidence for metabolic

specificity of LT-HSCs compared to progenitors or terminally
58 Cell Stem Cell 12, 49–61, January 3, 2013 ª2013 Elsevier Inc.
differentiated cells. Our observations indicate that LT-HSCs

specifically activate glycolysis and suppress influx of glycolytic

metabolites into mitochondria via Pdk activity. We also demon-

strate the importance of glycolytic ATP production promoted

by the HIF-1a/Pdk regulatory system for HSC stem cell capacity

bymaintaining cell cycle quiescence. In lower eukaryotes, quies-

cence is defined not only in terms of the cell cycle but as a meta-

bolically specific state characterized by suppressed catabolism

and resulting in a nondividing phase (Allen et al., 2006; Klosinska

et al., 2011; Laporte et al., 2011). Establishment of cell cycle

quiescence via altered metabolic activity is an effective strategy

to survive extreme conditions of starvation or hypoxia.

Our initial metabolomics analysis of purified HSCs, progeni-

tors, and terminally differentiated cells using CE-TOFMS indi-

cated that quiescent LT-HSCs exhibit specific carbon metabo-

lism phenotypes favoring glycolysis (Figures 1A and S1A). Low

ATP levels generated in LSK fraction subpopulations, which are

maintained by glycolysis, gradually increase during differentia-

tion from LT-HSCs to MPPs through ST-HSCs (Figure 1B). Like-

wise, various glycolytic regulators are highly expressed in LT-

HSCs in a HIF-1a-dependent manner. Among these regulators,

levels of Pdk2 and Pdk4 are regulated by HIF-1a levels. Pdk

actively suppresses mitochondrial metabolism and maintains

ATP generation during hypoxia through PDH-E1a phosphoryla-

tion (Harris et al., 2002). Pdk1 is reportedly a direct HIF-1a target

in murine embryonic fibroblasts and human solid tumor cell lines

(Kim et al., 2006; Papandreou et al., 2006). Our data suggest that

Pdk2 and Pdk4 are downstream effectors of HIF-1a in maintain-

ing LT-HSC cell cycle quiescence. Rescue ofHIF-1aD/DHSCs by

Pdk overexpression as well as loss-of-function experiments in

HSCs from Pdk2�/�: Pdk4�/� mice indicate an important role

for Pdks onLT-HSCcell cycle quiescence in aHIF-1a-dependent

manner. Therefore, Pdk probably functions in two ways, via

activation of glycolysis and suppression of influx of glycolytic

metabolites intomitochondria, tomaintain LT-HSCs in a hypoxic,

hypoperfused, and low-nutrient niche in the BM. Metabolic

activities demonstrated here may also protect HSCs from ROS

generation either through mitochondria or through accelerated

consumption of NADH by LDH activity, which would ameliorate

oxidative stress (Suematsu et al., 1992). In addition, products of

the TCA cycle, including citrate, could return to the cytosol to

drive lipid metabolism required for cell growth and proliferation

(Lum et al., 2007). Thus, Pdk could suppress mitochondrial

ROS generation and decrease the lipid supply to modulate

cellular proliferation. The characteristic metabolite pool in LT-

HSCs may also activate a signaling pathway favoring quies-

cence. Because the Pdk mimetic 1-AA induced increased levels

of pyruvate and enhanced LT-HSC maintenance via cell cycle

quiescence in vitro, suppression of glycolytic metabolic influx

into mitochondria and activation of glycolysis via the HIF-1a/

Pdk system could be the primary event in generating HSC quies-

cence. Activation of a Pdk/PDH checkpoint results in a decou-

pling of glycolysis and the mitochondrial TCA cycle and might

confer a metabolic robustness through two independent energy

factories—glycolysis and TCA cycle—in LT-HSCs. Although 1-

AA induced ST-HSC cell cycle suppression and maintained cells

for 2 weeks, they died in vitro after 4 weeks in culture. Therefore,

cell cycle suppression via the PDH may function not only in LT-

HSCs but also in differentiated ST-HSCs, although additional
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metabolic programs may also maintain ST-HSCs. In addition,

1-AA treatment not only supported the cell number of LT-HSCs

but also had a qualitative effect on transplantation capacity of

LT-HSCs, as shown in Figures 7I and S7D. Overall, suppression

of mitochondrial metabolite flux by Pdks is an efficient strategy

for stem cell maintenance. This observation is in contrast to the

activity of cancer cells, which utilize aerobic glycolysis and

suppress mitochondrial metabolism to promote proliferation

rather than quiescence (DeBerardinis et al., 2008; Jones and

Thompson, 2009). Thus, the existence of differing molecular

mechanisms underlying identical metabolic phenotypes may

suggest strategies for novel tumor-specific therapy.

Although we could rule out the importance of other Pdks,

including Pdk1 and Pdk3, on HIF-1aD/D HSCs, it is noteworthy

thatHIF-1aD/D LT-HSCs, which show decreased Pdk2/4 expres-

sion, exhibit decreased phosphorylation of PDH-E1a and

increased mitochondrial size. These size changes may be due

to HIF-1a-regulated increases in mitochondrial biogenesis

(Zhang et al., 2007) or reduced mitochondrial autophagy (Zhang

et al., 2008). However, reduced ATP content resulting from

attenuated glycolysis, a hallmark of senescent cells (Zwerschke

et al., 2003), seen inHIF-1aD/D LT-HSCs could not be rescued by

mitochondrial ATP generation (Figure 3F), suggesting an essen-

tial role for anaerobic glycolysis in energy production by hypoxic

HSCs. Because VHLD/D LSK cells show decreased mitochon-

drial content, mitochondrial mass is probably also regulated by

the VHL/HIF-1a regulatory system in HSCs and progenitors.

Various studies of HSCs defective in ATP generation indicate

that LT-HSCs exhibit mitochondrial defects (Liu et al., 2009; Na-

kada et al., 2010; Gurumurthy et al., 2010; Gan et al., 2010; Sahin

et al., 2011). Therefore, although influx of glycolytic metabolites

into mitochondria is suppressed by Pdks, mitochondrial meta-

bolic integrity is apparently important for LT-HSC maintenance.

The elucidation of these integrative metabolic programs in LT-

HSCs extends the concept of the stem cell niche and suggests

a strategy for maintaining and expanding HSC resources by

modulating their quiescence via Pdk/PDH modulators or

enhancement of HIF-1a signaling.

EXPERIMENTAL PROCEDURES

CE-TOFMS Analysis

For CE-TOFMS analysis, BM cells including CD34�Flt3� LSK (LT-HSCs),

CD34+Flt3� LSK (ST-HSCs), CD34+Flt3+ LSK (MPPs), Lin� c-Kit+ Sca-1�

(MPs), Gr-1/Mac-1+ (myeloid cells), CD4/CD8+ (T cells), and B220+ (B cells)

(1–2 3 106 cells) sorted from 120 C57BL/6 mice (12 weeks old) were lysed

to extract metabolites. Metabolomic profiling and data analysis were per-

formed twice essentially as described (Soga et al., 2003, 2006).

Mice

Mx1-cre:HIF-1a flox/flox,Mx1-cre:VHLflox/flox or Pdk2�/�: Pdk4�/� mice (Takubo

et al., 2010; Dunford et al., 2011; Jeoung et al., 2006) were genotyped using

PCR-based assays of tail DNA samples. To prepare HIF-1aD/D mice, we

induced Mx1-cre expression by intraperitoneal injection of 400 mg of pIpC

(Amersham or Sigma) into 4- to 8-week-old mice on 3 alternate days. Age-

matched pIpC-injected Mx1-cre:HIF-1a+/+ mice or Cre(-):HIF-1a flox/flox mice

served as controls (HIF-1a+/+ mice). C57BL/6-Ly5.1 congenic or C57BL/6-

Ly5.1/Ly5.2 F1 mice were used for competitive repopulation assays. To

preparemicewithVHLD/D,HIF-1aD/D:VHLD/D orPdk2�/�: Pdk4�/�BM (VHLD/D,

HIF-1aD/D:VHLD/D orPdk2�/�: Pdk4�/�BMmice), we transplanted 63 106–13

107 BM MNCs or CD45+ BM MNCs from Mx1-cre:VHLflox/flox or Mx1-cre:HIF-

1a flox/flox: VHLflox/flox mice into lethally irradiated C57BL/6-Ly5.1 mice. Six
weeks after BMT, we checked for peripheral blood chimerism and utilized

recipients with more than 90% donor-derived cells. Cre expression in replaced

BM was induced by intraperitoneal injection of 250 mg of pIpC (Amersham or

Sigma) on 3 alternate days. Mx1-cre:HIF-1a+/+:VHL+/+ or Pdk2+/+: Pdk4+/+

BM mice served as controls.

Antibodies

The following monoclonal antibodies (mAbs) were used in this study: rat

mAbs against c-Kit (2B8), Sca-1 (E13-161.7), CD4 (L3T4), CD8 (53-6.72),

B220 (RA3-6B2), TER-119, Gr-1 (RB6-8C5), CD34 (RAM34), Mac-1 (M1/70),

CD3 (500A2), Flt-3 (A2F10.1), CD41 (MWReg30), CD48 (HM48-1), CD150

(TC15-12F12.2), CD45.2 (104), and CD45.1 (A20). All rat mAbswere purchased

from BD, eBiosciences, or Biolegend. A mixture of mAbs against CD4, CD8,

B220, TER-119, Mac-1, and Gr-1 was used as a lineage marker (Lineage).

We also utilized anti-Ki67 (SP-6, Labvision), anti-PDH-E1a (pSer293) (Merck),

anti-PDH-E1a (pSer300) (Merck), and anti-COX4-1 (MitoSciences) antibodies

for immunocytochemical experiments.

Flow Cytometry

Analysis of various HSC fractions, detection of Side Population by Hoechst

33342, and Pyronin Y analysis were performed essentially as described (Arai

et al., 2004). For flow cytometry analysis of metabolic properties of quiescent

stem cells, we pretreated BM MNCs in vitro with 2-DG and/or NaN3 10 min

before staining with Hoechst 33342. For flow cytometric analysis of glucose

uptake, BM cells were isolated and preincubated for 30 min at 37�C
with 2-[N-(7-Nitrobenz-2-Oxa-1,3-Diazol-4-yl)Amino]-2-Deoxy-D-Glucose or

2-[N-(7-Nitrobenz-2-Oxa-1,3-Diazol-4-yl)Amino]-2-Deoxy-L-Glucose (negative

control) (Peptide Institute) before staining with surface markers. For intracel-

lular flow cytometry analysis of phosphorylated PDH-E1aS293, cells were fixed

and permeabilized as previously described (Takubo et al., 2010) and stained

with anti-phosphorylated pPDH-E1aS293 antibody and a fluorophore-labeled

secondary antibody.

Immunocytochemistry

Immunocytochemistry of isolated cells was performed as described (Takubo

et al., 2008). In brief, cells were attached to glass slides and fixed with 4%

PFA. Slides were then blocked with a protein blocker (DAKO) to avoid nonspe-

cific staining. Specimens were reacted with primary antibodies followed by

fluorophore-labeled secondary antibodies and nuclear staining.

Cell Cycle Analysis

For immunocytochemical analysis, Ki67+ cells were detected with an anti-Ki67

antibody (SP-6) followed by incubation with a fluorophore-labeled anti-rabbit

Ig antibody (MolecularProbes). The cutoff range for fluorescence was deter-

mined by a negative control sample stained with an isotype control Ig followed

by secondary Ab treatment. The proportion of Ki67-positive cells in each frac-

tion was determined by counting. At least 500 cells per sample were examined

for each specimen. For FACS analysis of the cell cycle, cells were first stained

with antibodies for surfacemarkers and then fixed and permeabilized to detect

the intracellular BrdU with BrdU Flow Kit (Beckman Coulter).

Analysis of Mitochondrial Mass and ROS Production

For confocal microscopy of mitochondria, sorted cells were stained with anti-

COX4-1 antibody or incubated for 30 min at 37�C with 100 nM mitotracker

Deep Red (MolecularProbes), which binds to mitochondrial membranes inde-

pendent of membrane potential. Stained cells were attached to glass slides

and counterstained with TOTO-3 or DAPI (MolecularProbes) for 30 min.

Samples were then three-dimensionally analyzed by laser confocal micros-

copy for the relative mitochondrial volume of individual cells under identical

acquisition settings in the linear range of the acquired fluorescence. We

randomly chose cells in multiple fields (more than five fields per sample). Mito-

chondrial fluorescence was normalized to nuclear DNA fluorescence. To

detect mitochondrial ROS production, we stained sorted cells with 100 nM

Mitotracker Orange CMH2TMROS (MolecularProbes) for 30 min at 37�C and

analyzed them by FACS.

Quantitative RT-PCR

Quantitative PCR was performed as described previously (Takubo et al.,

2008). The cDNA equivalent of 500 cells per reaction was used as a template
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for one PCR reaction. PCR primers for each gene were purchased from Ta-

KaRa Bio.

Virus Transduction

For retrovirus transduction, murine Pdk2 and Pdk4 cDNAs were subcloned

upstream of IRES-EGFP in pMY-IRES-EGFP (Nosaka et al., 1999). To produce

recombinant retrovirus, we transfected plasmid DNA into Plat-E cells by

FuGENE (Roche). Supernatants of transfected cells were used to transduce

LSK cells or LT-HSCs precultured with SCF and thrombopoietin (TPO) for

16 hr. At 48 hr posttransduction, GFP+ cells were sorted by FACS and

analyzed, transplanted, or cultured for assays.

Serum-free HSC Culture

Sorted cells were cultured on U-bottomed fibronectin-coated plates.

Cultures were maintained in SF-O3 medium (Sanko Junyaku) containing

1.0% BSA, 100 ng/ml SCF, 100 ng/ml TPO with or without 1-AA. After 14 or

28 days of cultivation, cells were collected, stained with fluorophore-labeled

mAb, and analyzed by FACS or used for immunocytochemical and metabolic

analysis.

Bone Marrow Transplant

For Pdk rescue experiments, transduced GFP+ LSK cells from HIF-1a+/+

or HIF-1aD/D mice (Ly5.2), together with 4 3 105 BM MNCs from C57BL/

6-Ly5.1 mice, were transplanted into lethally irradiated C57BL/6-Ly5.1 con-

genic mice. For Pdk2�/�: Pdk4�/� mice, 500 CD34�Flt3� LSK cells from

Pdk2+/+: Pdk4+/+ or Pdk2�/�: Pdk4�/� mice (Ly5.2), together with 4 3 105

BM MNCs from C57BL/6-Ly5.1 mice, were transplanted into lethally

irradiated C57BL/6-Ly5.1 congenic mice. For 1-AA treatment, 830 CD34�

Flt3� LSK cells from C57BL/6-Ly5.1 mice were cultured in SF-O3 medium

containing 1.0% BSA, 100 ng/ml SCF, 100 ng/ml TPO with or without 1-AA

and the colony derived from 830 CD34�Flt3� LSK cells at day 28 was

harvested and transplanted into lethally irradiated C57BL/6 mice (Ly5.2)

with 4 3 105 BM MNCs from C57BL/6 mice. One, two, three, and four

months after BMT, peripheral blood was collected and examined to

determine the percentage of donor-derived cells and the differentiation status

of donor-derived cells by FACS. Four months after BMT, BM MNCs were

collected and examined to determine the percentage of donor-derived cells

by FACS.

Determination of Intracellular ATP, LDH Activity, Pyruvate Content,

and PK Activity

Sorted cells (1–5 3 104) were lysed, and intracellular ATP, LDH activity, pyru-

vate content, or PK activity was measured using the Luciferase ATP Determi-

nation Kit (Sigma), the LDH Cytotoxicity Detection Kit (TaKaRa), the Pyruvate

Assay Kit (BioVision), or the Pyruvate Kinase Activity Assay Kit (BioVision),

respectively, following the manufacturers’ instructions.

OCR Determination

Sorted cells (5 3 104) were attached to the bottom of a XF96 Tissue Culture

Plate (Seahorse Bioscience) coated with BD Cell-Tak Cell Adhesive. Then,

cells were incubated in the presence of SCF and TPO with or without oligomy-

cin and OCR was measured by XF96 Extracellular Flux Analyzer (Seahorse

Bioscience).

Analysis of HSC Lactate Production

Sorted cells (1–5 3 104) were cultured under normoxic or hypoxic conditions

for 26 hr. Culture supernatants were then analyzed using the Lactate Assay

Kit (BioVision) following the manufacturer’s instructions.

Statistical Analysis

Data are presented as means ± SD unless stated otherwise. Statistical signif-

icancewas determined by Tukey’s multiple comparison test. To compare two-

group experiments, we used the two-tailed Student’s t test.
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