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This note is devoted to the study of the somewhat mysterious-looking sequence
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of rational numbers. I first encountered this sequence in ongoing joint work with van den Dries and
van der Hoeven on asymptotic differential algebra [4]. It also appears in a conjecture made in a paper
by Shadrin and Zvonkine [31] in connection with a generating series for Hurwitz numbers (which
count the number of ramified coverings of the sphere by a surface, depending on certain parameters
like the degree of the covering and the genus of the surface). I came across [31] by entering the
numerators and denominators of the first few terms of (S) into Sloane’s On-Line Encyclopedia of Integer
Sequences [1]. (The numerator sequence is A134242, the denominator sequence is A134243.) In this
note we prove the conjecture from [31]. In the course of doing so, we identify a formula for the
sequence (S): denoting its nth term by cn (so c1 = 0, c2 = 1, c3 = − 1

2 , etc.), we have
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∑
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Here and below, we denote by
{ j

i

}
the Stirling numbers of the second kind:

{ j
i

}
is the number of

equivalence relations on a j-element set with i equivalence classes. They obey the recurrence relation{
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}
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{
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{
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(i, j > 0)

with initial conditions{
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3 (3 · 25 + 7 · 10 + 6 · 10)
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4 · 3 · 6 · 10

⎫⎪⎬⎪⎭ = −2

3
= c5.

A key concept for our study of (S) is the iteration matrix of a formal power series; these matrices
are well known in the iteration theory of analytic functions [20,21] and in combinatorics [11]. The
iteration matrix of a power series f ∈ Q[[z]] of the form f = z + z2 g (g ∈ Q[[z]]) is a certain bi-infinite
upper triangular matrix with rational entries associated to f . After stating the conjecture of Shadrin
and Zvonkine in Section 1 and making some preliminary reductions, we summarize some general
definitions and basic facts about triangular matrices in Section 2 and introduce the group of iteration
matrices in Section 3. In Section 4 we determine its Lie algebra of infinitesimal generators, by slightly
generalizing results of Schippers [30]. These results tie in with a notion from classical iteration theory:
the infinitesimal generator of the iteration matrix of a formal power series f as above is uniquely
determined by another power series itlog( f ) ∈ z2Q[[z]], introduced by Jabotinsky [21] and called the
iterative logarithm of f by Écalle [13]. Some of the properties of iterative logarithms are discussed
in Section 5, before we return to the proof of the conjecture of Shadrin–Zvonkine in Section 7. The
exponential generating function (egf) of the sequence (cn), that is, the formal power series∑

n�1

cn
zn

n! = 1

2
z2 − 1

12
z3 + 1

48
z4 − 1

180
z5 + · · · ,

turns out to be nothing else than the iterative logarithm of the power series ez − 1.
The iterative logarithm itlog( f ) of any formal power series f satisfies a certain functional equation

found by Jabotinsky [20]. In the case of f = ez − 1, this equation leads to a convolution formula for
Stirling numbers (and another formula for the terms of the sequence (cn)):

cn =
∑

1�k<n
1<n1<···<nk−1<nk=n

(−1)k+1

k

{
n2

n1

}{
n3

n2

}
· · ·

{
nk

nk−1

}

=
∑

1�k<n−1
1<n1<···<nk−1<nk=n−1

(−1)k

k + 1

{
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}
· · ·
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}
. (C)

To our knowledge, this formula does not seem to have been noticed before. (For instance, it does not
appear in Gould’s collection of combinatorial identities [17].) We give a proof of (C) in Section 7.
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Shadrin and Zvonkine write that the sequence (S) seems to be quite irregular [31, p. 224]. This im-
pression can be substantiated as follows. A formal power series f ∈ C[[z]] is said to be differentially
algebraic if it satisfies an algebraic differential equation, i.e., an equation

P
(
z, f , f ′, . . . , f (n)

) = 0

where P is a non-zero polynomial in n +2 indeterminates with constant complex coefficients. The co-
efficient sequence ( fn) of every differentially algebraic power series f = ∑

n�0 fnzn ∈ Q[[z]] is regular
in the sense that it satisfies a certain kind of (generally non-linear) recurrence relation [28, pp. 186–
194]. A class of differentially algebraic power series which is of particular importance in combinatorial
enumeration is the class of D-finite (also called holonomic) power series [32, Chapter 6]. These are the
series whose coefficient sequence satisfies a homogeneous linear recurrence relation of finite degree
with polynomial coefficients. Equivalently [32, Proposition 6.4.3] a formal power series f ∈ C[[z]] is
D-finite if and only if f satisfies a non-trivial linear differential equation

a0 f + a1 f ′ + · · · + an f (n) = 0
(
ai ∈ C[z], an �= 0

)
.

(This class includes, e.g., all hypergeometric series.) In Section 7 we will see that the egf of (cn) is not
differentially algebraic. This is a consequence of a result of Boshernitzan and Rubel, stated without
proof in [10], which characterizes when the iterative logarithm of a power series satisfies an ADE; in
Section 6 below we give a complete proof of this fact. It is also known [8,25] that the egf of (cn) has
radius of convergence 0. Indeed, a common generalization of these results holds true: the egf of (cn)

does not satisfy an algebraic differential equation over the ring of convergent power series. The proof of this
fact will be given elsewhere [3]. It seems likely (though we have not investigated this further) that
the ordinary generating function (ogf)∑

n�1

cnzn = z2 − 1

2
z3 + 1

2
z4 − 2

3
z5 + · · ·

of the sequence (S) is also differentially transcendental. (Note, however, that there are examples of se-
quences of rationals whose egf is differentially transcendental yet whose ogf is differentially algebraic;
see [26, Proposition 6.3(i)].)

Notations and conventions. We let d, m, n, k, possibly with decorations, range over N = {0,1,2, . . .}.
All rings below are assumed to have a unit 1. Given a ring R we denote by R× the group of units
of R .

1. The conjecture of Shadrin and Zvonkine

Before we can formulate this conjecture, we need to fix some notation. Let K be a commutative
ring and let R = K [[t0, t1, . . .]] be the ring of powers series in the pairwise distinct indeterminates
t0, t1, . . . , with coefficients from K . We equip R with the m-adic topology, where m is the ideal
(t0, t1, . . .) of R . In this subsection we let i, j range over the set of sequences i = (i0, i1, . . .) ∈ NN

such that in = 0 for all but finitely many n. For each i we set

t i := ti0
0 ti1

1 · · · tin
n · · · ∈ R.

Hence every element f of R can be uniquely written in the form

f =
∑

i

f it
i where f i ∈ K for all i.

We call an element of R of the form at i , where 0 �= a ∈ K , a monomial. We put

‖i‖ := 1i0 + 2i1 + 3i2 + · · · + (n + 1)in + · · · ∈ N,
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and we define a valuation v on R by setting

v( f ) := min
f i �=0

‖i‖ ∈ N for 0 �= f ∈ R, v(0) := ∞ > N.

Suppose from now on that K = Q[z] where z is a new indeterminate over Q. Shadrin and Zvonkine
first introduce rational numbers ad,d+k by the equation

d+1∑
b=1

(
d

b − 1

)
(−1)d−b+1

d! · 1

1 − bψ
=

∑
k�0

ad,d+kψ
d+k (1.1)

in the formal power series ring Q[[ψ]]:
1

1 − ψ
= 1 + ψ + ψ2 + · · · (d = 0),

− 1

1 − ψ
+ 1

1 − 2ψ
= ψ + 3ψ2 + 7ψ3 + · · · (d = 1),

1/2

1 − ψ
− 1

1 − 2ψ
+ 1/2

1 − 3ψ
= ψ2 + 6ψ3 + 25ψ4 + · · · (d = 2),

...

Using the numbers ad,d+k (which turn out to be positive integers, see Lemma 1.2 below) they then
define a sequence (Lk)k>0 of differential operators on R: abbreviating the K -derivation ∂

∂tn
of R by ∂n ,

set

Lk =
∑

0�r�k
k1+···+kr=k
k1,...,kr>0
n1,...,nr�0

1

r!an1,n1+k1 · · ·anr ,nr+kr tn1+k1 · · · tnr+kr ∂n1 · · · ∂nr (k > 0).

Note that the definition of Lk (as a K -linear map R → R) makes sense, since for every i, either

tn1+k1 · · · tnl+kr ∂n1 · · · ∂nr

(
t i)

is zero or is a monomial which has valuation ‖i‖ + k1 + · · · + kr and which is divisible by
tn1+k1 · · · tnr+kr ; moreover, given j there are only finitely many i with ‖i‖ < ‖ j‖, and only finitely
many k1, . . . ,kr > 0 and n1, . . . ,nr � 0 such that jn1+k1 , . . . , jnr+kr > 0. The first few terms of the
sequence (Lk) are

L1 =
∑
n1

an1,n1+1tn1+1∂n1 ,

L2 =
∑
n1

an1,n1+2tn1+2∂n1 + 1

2!
∑

n1,n2

an1,n1+1an2,n2+1tn1+1tn2+1∂n1∂n2 ,

L3 =
∑
n1

an1,n1+3tn1+3∂n1 + 1

2!
∑

n1,n2

an1,n1+1an2,n2+2tn1+1tn2+2∂n1∂n2

+ 1

2!
∑

n1,n2

an1,n1+2an2,n2+1tn1+2tn2+1∂n1∂n2

+ 1

3!
∑

n ,n ,n

an1,n1+1an2,n2+1an3,n3+1tn1+1tn2+1tn3+1∂n1∂n2∂n3 ,
1 2 3
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and in general we have

Lk =
∑
n1

an1,n1+ktn1+k∂n1 + higher-order operators (k > 0). (1.2)

To streamline the notation we set L0 := idR . The argument above shows that for every f ∈ R we have
v(Lk( f )) � k + v( f ), hence the sequence (zk Lk( f ))k is summable in R . Thus one may combine the Lk
to a K -linear map L : R → R with

L( f ) =
∑

k

zk Lk( f ) = f + zL1( f ) + z2L2( f ) + · · · for all f ∈ R.

The operator L is used in [31] to perform a change of variables in a certain formula for Hurwitz
numbers coming from [15]. The following proposition is established in [31, Proposition A.8]. (The
formula for lk given in [31] mistakenly omits the summation over n.)

Proposition 1.1. There are rational numbers αn,n+k such that, setting

lk =
∑

n

αn,n+ktn+k∂n (k > 0)

and

l = zl1 + z2l2 + · · · ,
we have L = exp(l), i.e.,

L( f ) =
∑

n

1

n! ln( f ) for every f ∈ R. (1.3)

(To see that the definition of lk and l makes sense argue as for Lk and L above; since v(l( f )) �
v( f ) + 1 we have v(ln( f )) � v( f ) + n for all n, hence the sum on the right-hand side of the equation
in (1.3) exists in R .)

After proving this proposition, Shadrin and Zvonkine make the following conjecture about the form
of the αn,n+k . (Again, we correct a typo in [31]: in Conjecture A.9 replace tn

∂
∂tn+k

by tn+k
∂

∂tn
.)

Conjecture. For all k > 0 and all n,

αn,n+k = ck+1

(
n + k + 1

k + 1

)
where (ck)k�1 is a sequence of rational numbers, with the first terms given by (S).

The first step in our proof of this conjecture is to realize is that the ad,d+k are essentially the
Stirling numbers of the second kind. We extend the definition of ad,d+k by setting add := 1 for every d.

Lemma 1.2. For every d and k,

ad,d+k =
{

d + k + 1

d + 1

}
.

Proof. We expand the left-hand side of (1.1) in powers of ψ :

d+1∑
b=1

(
d

b − 1

)
(−1)d−b+1

d! · 1

1 − bψ
=

∑
i�0

(
1

d!
d+1∑
b=1

(−1)d−b+1
(

d

b − 1

)
bi

)
ψ i .
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Now we focus on the coefficient of ψ i in the last sum. By the Binomial Theorem, this coefficient can
be written as

1

d!
d∑

b=0

(−1)d−b
(

d

b

)
(b + 1)i =

i∑
j=0

(
i

j

)(
1

d!
d∑

b=0

(−1)d−b
(

d

b

)
b j

)
.

It is well known that{
j

d

}
= 1

d!
d∑

b=0

(−1)d−b
(

d

b

)
b j

and

i∑
j=0

(
i

j

){
j

d

}
=

{
i + 1

d + 1

}
.

(See, e.g., identities (6.19) respectively (6.15) in [18].) The lemma follows. �
By (1.2) and the above lemma we therefore have

Lk(td) = ad,d+ktd+k =
{

d + k + 1

d + 1

}
td+k

and hence

L(td) =
∑

k

{
d + k + 1

d + 1

}
zktd+k. (1.4)

Moreover, by definition of lk we have lk(td) = αd,d+ktd+k for all d and k > 0, hence

l(td) =
∑
k>0

αd,d+k zktd+k

and thus for every n > 0:

ln(td) =
∑

k1,...,kn>0

αd,d+k1 · · ·αd+k1+···+kn−1,d+k1+···+kn zk1+···+kn td+k1+···+kn .

This yields

exp(l)(td) =
∑

k

( ∑
k1+···+kn=k

n>0,k1,...,kn>0

1

n!αd,d+k1 · · ·αd+k1+···+kn−1,d+k

)
zktd+k

and therefore, by (1.4) and Proposition 1.1:{
d + k + 1

d + 1

}
=

∑
k1+···+kn=k

n>0,k1,...,kn>0

1

n!αd,d+k1αd+k1,d+k1+k2 · · ·αd+k1+···+kn−1,d+k. (1.5)

It is suggestive to express this equation as an identity between matrices. We define
{ j

i

} := 0 for i > j,
and combine the Stirling numbers of the second kind into a bi-infinite upper triangular matrix:
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S = (Sij) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
1 1 1 1 1 · · ·

1 3 7 15 · · ·
1 6 25 · · ·

1 10 · · ·
1 · · ·

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where Sij =

{
j

i

}
. (1.6)

We also introduce the upper triangular matrix

A = (αi j) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 − 1
2

1
2 − 2

3
11
12 · · ·

0 3 −2 5
2 −4 · · ·

0 6 −5 15
2 · · ·

0 10 10 · · ·
0 −15 · · ·

0 · · ·
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where αi j := 0 for i � j.

Then (1.5) may be written as

2Si+1, j+1 =
∑

k1+···+kn= j−i
n>0,k1,...,kn>0

1

n!αi,i+k1αi+k1,i+k1+k2 · · ·αi+k1+···+kn−1, j

=
j−i∑

n=1

1

n!
(

An)
i j (i � j)

or equivalently, writing S+ := (Si+1, j+1)i, j and employing the matrix exponential:

S+ =
∑
n�0

1

n! An = exp(A).

Therefore, in order to prove the conjecture from [31], we need to be able to express the matrix
logarithm of S+ in some explicit manner. We show how this can be done (and finish the proof of the
conjecture) in Section 7 below; before that, we need to step back and first embark on a systematic
study of a class of matrices (iteration matrices) which encompasses S and many other matrices of
combinatorial significance (Sections 2 and 3), and of their matrix logarithms (Sections 4 and 5).

2. Triangular matrices

In this section we let K be a commutative ring.

2.1. The K -algebra of triangular matrices

We construe K N×N as a K -module with the componentwise addition and scalar multiplication.
The elements M = (Mij)i, j∈N of K N×N may be visualized as bi-infinite matrices with entries in K :

M =

⎛⎜⎜⎝
M00 M01 M02 · · ·
M10 M11 M12 · · ·
M20 M21 M22 · · ·

...
...

...
. . .

⎞⎟⎟⎠ .

We say that M = (Mij) ∈ K N×N is (upper) triangular if Mij = 0 for all i, j ∈ N with i > j. We usually
write a triangular matrix M in the form
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M =

⎛⎜⎜⎜⎜⎝
M00 M01 M02 M03 · · ·

M11 M12 M13 · · ·
M22 M23 · · ·

M33 · · ·
. . .

⎞⎟⎟⎟⎟⎠ .

Given triangular matrices M = (Mij) and M̃ = (M̃i j), the product

M · M̃ :=
(∑

k

Mik M̃kj

)
i, j∈N

makes sense and is again a triangular matrix. Equipped with this operation, the K -submodule of
K N×N consisting of all triangular matrices becomes an associative K -algebra trK with unit 1 given
by the identity matrix. If K is a subring of a commutative ring L, then trK is a K -subalgebra of the
K -algebra trL . We also define

[M, N] := MN − N M for M, N ∈ trK .

Then the K -module trK equipped with the binary operation [ , ] is a Lie K -algebra.
For every n we set

trn
K := {

M = (Mij) ∈ trK : Mij = 0 for all i, j ∈ N with i − j + n � 1
}
.

We call the elements of tr1
K strictly triangular. It is easy to verify that the sequence (trn

K ) of K -
submodules of trK is a filtration of the K -algebra trK , i.e.,

(1) tr0
K = trK ;

(2) trn
K ⊇ tr

n+1
K for all n;

(3) trm
K trn

K ⊆ tr
m+n
K for all m, n; and

(4)
⋂

n trn
K = {0}.

Clearly trK is complete in the topology making trK into a topological ring with fundamental system
of neighborhoods of 0 given by the trn

K .
The group tr

×
K of units of trK has the form

tr
×
K = D K �

(
1 + tr1

K

) (
internal semidirect product of subgroups of tr

×
K

)
where D K is the group of diagonal invertible matrices:

D K := {
M = (Mij) ∈ trK : Mii ∈ K × and Mij = 0 for i �= j

}
.

2.2. Diagonals

We say that a matrix M = (Mij) ∈ trK is n-diagonal if Mij = 0 for j �= i + n. We simply call M
diagonal if M is 0-diagonal. Given a sequence a = (ai)i�0 ∈ K N , we denote by diagn a the n-diagonal
matrix M = (Mij) ∈ K N×N with Mi,i+n = ai for every i. The sum of two n-diagonal matrices is n-
diagonal. As for products, we have:

Lemma 2.1. Let M = diagm a be m-diagonal and N = diagn b be n-diagonal, where a = (ai),b = (bi) ∈ K N .
Then M · N is (m + n)-diagonal, in fact

M · N = diagm+n(ai · bi+m)i�0.

Therefore [M, N] is (m + n)-diagonal, with

[M, N] = diagm+n(ai · bi+m − bi · ai+n)i�0,
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and for each k, the matrix Mk is km-diagonal, with

Mk = diagkm(ai · ai+m · · ·ai+(k−1)m)i�0.

2.3. Exponential and logarithm of triangular matrices

In this subsection we assume that K contains Q as a subring. Then for each strictly triangular
matrix M , the sequences ( Mn

n! )n�0 and ((−1)n+1 Mn

n )n�1 are summable, and the maps

tr1
K → 1 + tr1

K : M 
→ exp(M) :=
∑
n�0

Mn

n!
and

1 + tr1
K → tr1

K : M 
→ log(M) :=
∑
n�1

(−1)n+1 (M − 1)n

n

are mutual inverse; in particular, they are bijective. If M ∈ trn
K , n > 0, then exp(M) ∈ 1 + trn

K and
log(1 + M) ∈ trn

K . It is easy to see that

exp(M)exp(N) = exp(M + N) for all M, N ∈ tr1
K with MN = N M. (2.1)

In particular

exp(M)k = exp(kM) for all M ∈ tr1
K , k ∈ Z.

We also note that given a unit U of trK , we have

exp
(
U MU−1) = U exp(M)U−1 for all M ∈ tr1

K

and

log
(
U MU−1) = U log(M)U−1 for all M ∈ 1 + tr1

K . (2.2)

Given M = (Mij)i, j ∈ trK we define M+ := (Mi+1, j+1)i, j ∈ trK . It is easy to see that M 
→ M+ is a
K -algebra morphism trK → trK with M ∈ trn

K ⇒ M+ ∈ trn
K . Thus, for M ∈ tr1

K :

exp
(
M+) = exp(M)+, log

(
1 + M+) = log(1 + M)+. (2.3)

From Lemma 2.1 we immediately obtain, for all M = diag1 a where a = (ai) ∈ K N:

(exp M)i j = 1

( j − i)!ai · ai+1 · · ·a j−1 for all i, j ∈ N with i � j. (2.4)

2.4. Derivations on the K -algebra of triangular matrices

Let ∂ be a derivation of K , i.e., a map ∂ : K → K such that

∂(a + b) = ∂(a) + ∂(b), ∂(ab) = ∂(a)b + a∂(b) for all a,b ∈ K .

Given M = (Mij) ∈ trK we let

∂(M) := (
∂(Mij)

) ∈ trK .

Then M 
→ ∂(M) : trK → trK is a derivation of trK , i.e.,

∂(M + N) = ∂(M) + ∂(N), ∂(MN) = ∂(M)N + M∂(N) for all M, N ∈ trK .

Note that ∂(trn
K ) ⊆ trn

K for every n.
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We now let t be an indeterminate over K , and we work in the polynomial ring K ∗ = K [t] and
in the K ∗-algebra trK ∗ (which contains trK as a K -subalgebra). We equip K ∗ with the derivation d

dt .
The following two elementary observations are used in Section 4. Until the end of this subsection we
assume that K contains Q as a subring.

Lemma 2.2. Let M ∈ tr1
K . Then

d

dt
exp(tM) = exp(tM)M.

Proof. We have (tM)n = tn Mn for every n, hence

exp(tM) =
∑
n�0

(tM)n

n! =
∑
n�0

tn Mn

n!
and thus

d

dt
exp(tM) =

∑
n�0

d

dt

(
tn Mn

n!
)

=
∑
n>0

tn−1Mn

(n − 1)! = exp(tM)M.

(Similarly, of course, one also sees d
dt exp(tM) = M exp(tM), but we won’t need this fact.) �

The following lemma is a familiar fact about homogeneous systems of linear differential equations
with constant coefficients:

Lemma 2.3. Let M, Y0 ∈ tr1
K and Y ∈ tr1

K ∗ . Then

dY

dt
= Y M and Y |t=0 = Y0 ⇐⇒ Y = Y0 exp(tM).

Proof. Lemma 2.2 shows that if Y = Y0 exp(tM) then dY
dt = Y M , and clearly Y |t=0 = Y0 exp(0) = Y0.

Conversely, suppose dY
dt = Y M and Y |t=0 = Y0. Then Y1 := Y − Y0 exp(tM) ∈ tr1

K ∗ satisfies dY1
dt = Y1M

and Y1|t=0 = 0; hence after replacing Y by Y1 we may assume that dY
dt = Y M and Y |t=0 = 0, and need

to show that then Y = 0. For a contradiction suppose Y �= 0, and write Y = (Yij) where Yij ∈ K ∗ and
M = (Mij) where Mij ∈ K . Since Y |t=0 = 0, for each i, j such that Yij �= 0 we can write Yij = tnij Zi j

with nij ∈ N, nij > 0, and Zij ∈ K ∗ , Zij(0) �= 0. Choose i, j so that nij is minimal. Then by dY
dt = Y M

we have

nijt
ni j−1 Zij + tni j

dZi j

dt
= dYij

dt
=

∑
k

Yik Mkj =
∑

Yik �=0

tnik Zik Mkj,

thus

Zij = 1

nij

(
−t

dZij

dt
+

∑
Yik �=0

tnik−nij+1 Zik Mkj

)
and hence Zij(0) = 0, a contradiction. So Y = 0 as desired. �
3. Iteration matrices

Let K be a commutative ring containing Q as a subring. Let A = Q[y1, y2, . . .] where (yn)n�1 is a
sequence of pairwise distinct indeterminates, let z be an indeterminate distinct from each yn , and let

y =
∑
n�1

yn
zn

n! ∈ A[[z]].
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Then, with x another new indeterminate, we have in the power series ring A[[x, z]]:

exp(x · y) =
∑
n�0

(x · y)n

n! =
∑

i, j∈N

Bijx
i z j

j! (3.1)

where Bij = Bij(y1, y2, . . .) are polynomials in Q[y1, y2, . . .], known as the Bell polynomials. A gen-
eral reference for properties of the Bij is Comtet’s book [11]. (Our notation slightly differs from the
one used in [11]: Bij = B ji .) We can obtain Bij by differentiating (3.1) appropriately and setting
x = z = 0:

Bij = 1

i!
∂ i∂ j

∂xi∂z j
exp(x · y)

∣∣∣∣
x=z=0

= 1

i!
d j

dz j
yi

∣∣∣∣
z=0

,

hence

1

i! yi =
∑
j�0

Bij
z j

j! .

In particular, we immediately see that B0 j = 0 and B1 j = y j for j � 1. Since

1

i! yi = yi
1

zi

i! + terms of higher degree (in z)

we also see that Bij = 0 whenever i > j and B jj = y j
1 for all j. It may also be shown (see [11,

Section 3.3, Theorem A]) that Bij ∈ Z[y1, . . . , y j−i+1], and Bij is homogeneous of degree i and isobaric
of weight j. (Here each y j is assigned weight j.) Given a power series f ∈ zK [[z]], written in the form

f =
∑
n�1

fn
zn

n! ( fn ∈ K for each n � 1),

we now define the triangular matrix

[ f ] := ([ f ]i j
)

i, j∈N
= (

Bij( f1, f2, . . . , f j−i+1)
)

i, j∈N

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
f1 f2 f3 f4 f5 · · ·

f 2
1 3 f1 f2 4 f1 f3 + 3 f 4

2 5 f1 f4 + 10 f2 f3 · · ·
f 3

1 6 f 2
1 f2 10 f 2

1 f3 + 15 f1 f 2
2 · · ·

f 4
1 10 f 3

1 f2 · · ·
f 5

1 · · ·
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ trK .

More generally, suppose Ω = (Ωn) is a reference sequence, i.e., a sequence of non-zero rational num-
bers with Ω0 = Ω1 = 1. Then we define the Bell polynomials with respect to Ω by setting

y =
∑
n�1

ynΩnzn ∈ A[[z]]

and expanding

Ωi yi =
∑
j�0

BΩ
i j Ω j z

j (3.2)

where BΩ
i j = BΩ

i j (y1, y2, . . .) ∈ Q[y1, y2, . . .]. As above, one sees that BΩ
0 j = 0 and BΩ

1 j = y j for j � 1,

as well as BΩ
i j = 0 whenever i > j and BΩ

j j = y j
1 for all j. For
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f =
∑
n�1

fnΩnzn ∈ zK [[z]] ( fn ∈ K for each n � 1),

we define

[ f ]Ω := ([ f ]Ωi j

)
i, j∈N

∈ trK where [ f ]Ωi j := BΩ
i j ( f1, f2, . . . , f j−i+1).

Thus, denoting the reference sequence (1/n!) by Φ , we have BΦ
i j = Bij for each i, j and [ f ]Φ = [ f ]

for each f ∈ zK [[z]]. Note that by (3.2) we have, for all reference sequences Ω , Ω̃:

Ω j

Ωi
[ f ]Ωi j = Ω̃ j

Ω̃i
[ f ]Ω̃i j for all i, j, (3.3)

that is,(
DΩ

)−1[ f ]Ω DΩ = (
DΩ̃

)−1[ f ]Ω̃ DΩ̃ (3.4)

where DΩ is the diagonal matrix

DΩ =

⎛⎜⎜⎝
Ω0

Ω1
Ω2

. . .

⎞⎟⎟⎠ ∈ tr
×
Q
.

In particular, for every reference sequence Ω we have, with 1 denoting the constant sequence
(1,1,1, . . .):

[ f ]Ω = DΩ
(

DΦ
)−1[ f ]DΦ

(
DΩ

)−1 = DΩ [ f ]1(DΩ
)−1

. (3.5)

As first noticed by Jabotinsky [20,21], a crucial property of [ ]Ω is that it converts composition of
power series into matrix multiplication [11, Section 3.7, Theorem A]:

[ f ◦ g]Ω = [ f ]Ω · [g]Ω for all f , g ∈ zK [[z]]. (3.6)

To see this, repeatedly use (3.2) to obtain∑
j�0

[ f ◦ g]Ωi j Ω j z
j = Ωi( f ◦ g)i = Ωi f i ◦ g =

∑
k�0

[ f ]Ωik Ωk gk

=
∑
k�0

[ f ]Ωik
∑
j�0

[g]Ωkj Ω j z
j =

∑
j�0

(∑
k�0

[ f ]Ωik [g]Ωkj

)
Ω j z

j

and compare the coefficients of z j . The matrix [ f ]Ω is called the iteration matrix of f with respect
to Ω in [11]. (To be precise, [11] uses the transpose of our [ f ]Ω .) For [ f ], the term convolution matrix
of f is also in use (cf. [22]), and [ f ]1 is called the power matrix of f in [30].

The subset zK × + z2 K [[z]] of zK [[z]] forms a group under composition (with identity element z),
and f 
→ [ f ]Ω restricts to an embedding of this group into the group tr

×
K of units of trK . (In particular,

[z]Ω = 1 for each Ω .) As in [11], we say that f ∈ zK [[z]] is unitary if f1 = 1. The set of unitary power
series in K [[z]] is a subgroup of zK × + z2 K [[z]] under composition, whose image under f 
→ [ f ]Ω is
a subgroup of 1 + tr1

K which we denote by MΩ
K . If Ω is clear from the context, we simply write

M K = MΩ
K . By (3.5), the matrix groups MΩ

K , for varying Ω , are all conjugate to each other. We call
MΩ

K the group of iteration matrices over K with respect to Ω .
Given f ∈ K [[z]] of the form f = z + zn+1 g with n > 0 and g ∈ K [[z]] such that g(0) �= 0, we say

that the iterative valuation of f is n; in symbols: n = itval( f ). (See [13].) It is easy to see that for
f ∈ zK [[z]] and n > 0, we have f ∈ z + zn+1 K [[z]] if and only if [ f ]Ω ∈ 1 + trn

K . For each n > 0 we
define the subgroup
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MΩ,n
K := MΩ

K ∩ (
1 + trn

K

) = {[ f ]Ω : f ∈ z + zn+1 K [[z]]}
of MΩ

K . Then

MΩ
K = MΩ,1

K ⊇ MΩ,2
K ⊇ · · · ⊇ MΩ,n

K ⊇ · · · and
⋂
n>0

MΩ,n
K = {1},

and if f ∈ zK [[z]] is unitary with f �= z, then n = itval( f ) is the unique n > 0 such that [ f ]Ω ∈
MΩ,n

K \ MΩ,n+1
K .

As shown by Erdős and Jabotinsky [16], iteration matrices can be used to define “fractional” iter-
ates of formal power series. Let t be a new indeterminate and K ∗ = K [t].

Proposition 3.1 (Erdős and Jabotinsky). Suppose K is an integral domain, and let f ∈ zK [[z]] be unitary. Then
there exists a unique power series f [t] ∈ zK ∗[[z]] such that, writing f [a] := f [t]|t=a ∈ zK [[z]] for a ∈ K :

(1) f [0] = z;
(2) f [a+1] = f [a] ◦ f for all a,b ∈ K .

The power series f [t] is given by

f [t] =
∑
j�1

M1 j
z j

j! where M :=
∑
n�0

(
t

n

)([ f ] − 1
)n ∈ trK ∗ .

Here for every n as usual
(t

n

) = 1
n! t(t − 1) · · · (t − n + 1) ∈ Q[t].

Proof. Since [ f ] − 1 ∈ tr1
K , the sum defining M exists in trK ∗ , and M|t=n = [ f ]n for every n, by the

binomial formula. Let f ◦t := ∑
j�1 M1 j

z j

j! , and for an element a in a ring extension of K ∗ write

f ◦a := f ◦t |t=a . Then [ f ◦n]1 j = M1 j |t=n = ([ f ]n)1 j for every j � 1 and thus f ◦n is the nth iterate of f :
f ◦n = f ◦ f ◦ · · · ◦ f (n times). In particular f ◦1 = f and f ◦(m+n) = f ◦m ◦ f ◦n for all m, n. Hence if s is
another indeterminate, then f ◦(s+t) = f ◦s ◦ f ◦t (in K [s, t][[z]]), since the coefficients (of equal powers
of z) of both sides of this equation are polynomials in s and t with coefficients in K which agree
for all integral values of (s, t). This shows that f ◦t satisfies conditions (1) and (2) (with f ◦· replacing
f [ · ] everywhere). If f [t] ∈ K ∗[[z]] is any power series satisfying (1) and (2), then f [n] = f ◦n is the nth
iterate of f , for every n, and as before we deduce f [t] = f ◦t . �

The power series f [a] (a ∈ K ) in this proposition form a subgroup of zK [[z]] under composition
which contains f ; they may be thought of as “fractional iterates” of f . (This explains the choice of
the term “iteration matrix.”)

Some examples of iteration matrices are collected below. Many more (in the case where Ω = Φ)
are given in [22].

Example. Suppose f = z
1−z . Then

[ f ]i j =
(

j − 1

i − 1

)
j!
i! ∈ N (i > 0)

are the Lah numbers; here and below we set
( j

i

) := 0 for i > j. (See [11, Section 3.3, Theorem B].)

Thus if Ωn = 1
n for each n > 0, then by (3.3)

[ f ]Ωi j = ΩiΦ j

Ω jΦi
[ f ]i j =

(
j

i

)
for i > 0,

hence
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[ f ]Ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
1 2 3 4 5 · · ·

1 3 6 10 · · ·
1 4 10 · · ·

1 5 · · ·
1 · · ·

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ trZ (3.7)

is Pascal’s triangle of binomial coefficients (except for the first row).

Example. The Stirling numbers of the second kind have the egf

ex(ez−1) =
∑
i, j

{
j

i

}
xi z j

j! ,

cf. [11, Section 1.14, (III)] or [18, (7.54)]. Hence by (3.1) we have[
ez − 1

] = S, (3.8)

where S is as in (1.6). The matrix S is a unit in trZ , and it is well known (see [11, Section 3.6, (II)])
that the entries of its inverse

S−1 = (
S−1

i j

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
1 −1 2 −6 24 · · ·

1 −3 11 −50 · · ·
1 −6 35 · · ·

1 −10 · · ·
1 · · ·

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.9)

are the signed Stirling numbers of the first kind: S−1
i j = (−1) j−i

[ j
i

]
, where

[ j
i

]
denotes the number of

permutations of a j-element set having i disjoint cycles. Thus (3.6) and (3.8) yield [log(1 + z)] = S−1.

4. The Lie algebra of the group of iteration matrices

Throughout this section we let K be a commutative ring which contains Q as a subring. We
let Ω denote a reference sequence. We need a description of the Lie algebra of the matrix group
M K = MΩ

K , generalizing the one of the Lie algebra of M1
C

from [30]. The arguments follow [30],
except that we replace the complex-analytic ones used there by algebraic ones.

Definition 4.1. Let h = ∑
n hnzn ∈ zK [[z]]. The infinitesimal iteration matrix of h with respect to Ω is

the triangular matrix

〈h〉Ω = (〈h〉Ωi j

) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
h1

Ω1
Ω2

h2
Ω1
Ω3

h3
Ω1
Ω4

h4 · · ·
2h1

Ω2
Ω3

2h2
Ω2
Ω4

2h3 · · ·
3h1

Ω3
Ω4

3h2 · · ·
4h1 · · ·

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
∈ trK

where 〈h〉Ωi j = Ωi

Ω j
ih j−i+1.
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Note that if Ω , Ω̃ are reference sequences, then(
DΩ

)−1〈h〉Ω DΩ = (
DΩ̃

)−1〈h〉Ω̃ DΩ̃ , (4.1)

in particular

〈h〉Ω = DΩ
(

DΦ
)−1〈h〉DΦ

(
DΩ

)−1 = DΩ 〈h〉1(DΩ
)−1

.

Example 4.2. For h = ∑
n hnzn ∈ zK [[z]] we have

〈h〉 := 〈h〉Φ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 · · ·
h1

2!
1! h2

3!
1! h3

4!
1! h4 · · ·

2h1
3!
2! 2h2

4!
2! 2h3 · · ·

3h1
4!
3! 3h2 · · ·

4h1 · · ·
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where 〈h〉i j = j!

(i − 1)!h j−i+1 for i > 0.

For each n we have h ∈ zn+1 K [[z]] if and only if 〈h〉Ω ∈ trn
K . We define the K -submodule

m
Ω,n
K := {〈h〉Ω : h ∈ zn+1 K [[z]]}

of trn
K , and we set mΩ

K := m
Ω,1
K ; so

mΩ
K = m

Ω,1
K ⊇ m

Ω,2
K ⊇ · · · ⊇ m

Ω,n
K ⊇ · · · and

⋂
n>0

m
Ω,n
K = {0}.

If Ω is clear from the context, we abbreviate mK = mΩ
K and mn

K = m
Ω,n
K . We set

eΩ
n := 〈

zn+1〉Ω,

and we write en if the reference sequence Ω is clear from the context. The matrix en = eΩ
n is n-

diagonal; in fact

en = diagn

(
Ωi

Ωi+n
i

)
∈ mn

K .

Clearly the infinitesimal iteration matrix with respect to Ω of a power series from zK [[z]] can be
uniquely written as an infinite sum

h1e0 + h2e1 + · · · where hn ∈ K for every n > 0.

Using Lemma 2.1 one verifies easily that

[em, en] = (m − n)em+n for all m,n.

This implies that

mn
K = K en + K en+1 + · · · (n > 0)

is an ideal of the Lie K -algebra tr1
K . The main goal of this section is to show the following generaliza-

tion of a result of Schippers [30]:

Theorem 4.3. Let n > 0. Then exp(mn
K ) = Mn

K (and hence log(Mn
K ) = mn

K ).
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Example 4.4. Let f = z
1−z ∈ zQ[[z]], and suppose Ωn = 1

n for every n > 0. Then by (2.4) and (3.7) one
sees easily that

log[ f ]Ω = diag1(0,2,3,4, . . .) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 0 0 · · ·
0 2 0 · · ·

0 3 0 · · ·
0 4 · · ·

0 · · ·
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ = 〈
z2〉Ω ∈ m1

Q.

We give the proof of this theorem after some preparatory results. Below we let t be a new inde-
terminate and K ∗ = K [t].

Lemma 4.5. Let f ∈ zK ∗[[z]] and h ∈ zK [[z]] satisfy

∂ f

∂t
= ∂ f

∂z
h.

Then

d

dt
[ f ]Ω = [ f ]Ω 〈h〉Ω.

Proof. We need to show that for all i we have

d

dt
[ f ]Ωi j = ([ f ]Ω 〈h〉Ω)

i j for each j.

For i = 0 this is an easy computation, so suppose i > 0. We have

∂ f i

∂z
=

∑
j�1

j[ f ]Ωi j Ω j z
j−1

and hence

∂ f i

∂z
h =

∑
j�0

( j∑
k=1

k[ f ik]ΩΩkh j−k+1

)
z j .

Moreover

∂ f i

∂t
=

∑
j�0

d

dt
[ f ]Ωi j Ω j z

j .

By the hypothesis of the lemma

∂ f i

∂t
= i f i−1 ∂ f

∂t
= i f i−1 ∂ f

∂z
h = ∂ f i

∂z
h,

hence

d

dt
[ f ]Ωi j =

j∑
k=1

k[ f ik]Ω Ωk

Ω j
h j−k+1 = ([ f ]Ω 〈h〉Ω)

i j

for each j as required. �
This lemma is used in the proof of the following important proposition:
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Proposition 4.6. Let h ∈ zn+1 K [[z]], where n > 0, and set

ft :=
∑
j�1

(
exp t〈h〉Ω)

1 jΩ j z
j ∈ z + zn+1 K ∗[[z]].

Then

∂ ft

∂t
= ∂ ft

∂z
h (4.2)

and hence

[ ft]Ω = exp t〈h〉Ω. (4.3)

Proof. By Lemma 2.2 we have

d

dt
exp t〈h〉Ω = (

exp t〈h〉Ω)〈h〉Ω.

Hence

∂ ft

∂t
=

∑
j�1

(
d

dt
exp t〈h〉Ω

)
1 j

Ω j z
j

=
∑
j�1

((
exp t〈h〉Ω)〈h〉Ω)

1 jΩ j z
j

=
∑
j�1

( j∑
i=1

(
exp t〈h〉Ω)

1i〈h〉Ωi j Ω j

)
z j

=
∑
j�1

( j∑
i=1

(
exp t〈h〉Ω)

1i ih j−i+1Ωi

)
z j = ∂ ft

∂z
h.

By Lemma 4.5 this yields d
dt [ ft]Ω = [ ft]Ω 〈h〉Ω . This shows that both Y = [ ft]Ω and Y = exp t〈h〉Ω

satisfy dY
dt = Y 〈h〉Ω and Y |t=0 = 1. Hence [ ft]Ω = exp t〈h〉Ω by Lemma 2.3. �

Eq. (4.2) is called the formal Loewner partial differential equation in [30]. The following corollary,
obtained by setting t = 1 in (4.3) above, shows in particular that exp(mn

K ) ⊆ Mn
K for each n > 0:

Corollary 4.7. Let h ∈ zn+1 K [[z]], where n > 0, and set

f :=
∑
j�1

(
exp〈h〉Ω)

1 jΩ j z
j ∈ z + zn+1 K [[z]].

Then [ f ]Ω = exp〈h〉Ω .

As above we write ek = eΩ
k . Given k1, . . . ,kn and k = k1 + · · · + kn , we have

ek1 · · · ekn = diagk

(
Ωi

Ωi+k
i(i + k1)(i + k1 + k2) · · · (i + k1 + · · · + kn−1)

)
i�0

by Lemma 2.1. Now let M := 〈h〉Ω where h ∈ zK [[z]]. So

M = 〈h〉Ω = h1e0 + h2e1 + · · ·
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and hence

Mn =
∑

k1,...,kn

hk1+1 · · ·hkn+1ek1 · · · ekn ,

that is,(
Mn)

i j =
∑

k1+···+kn= j−i

hk1+1 · · ·hkn+1
Ωi

Ω j
i(i + k1) · · · (i + k1 + · · · + kn−1) (4.4)

for all i, j. This observation leads to:

Lemma 4.8. Suppose n > 0. Then(
Mn)

11 = hn
1,

(
Mn)

1 j = jn − 1

Ω j( j − 1)
hn−1

1 h j + PΩ
nj (h1, . . . ,h j−1) for j � 2,

where PΩ
nj (Y0, . . . , Y j−2) ∈ Q[Y0, . . . , Y j−2] is homogeneous of degree n and isobaric of weight j − 1, and

independent of h. (Here each Yi is assigned weight i.)

Proof. Set i = 1 in (4.4). Then the only terms involving h j in this sum are those of the form
hn−1

1 h j
1

Ω j
jn−m where m ∈ {1, . . . ,n}. This yields the lemma. �

An analogue of the preceding lemma (for K = C and Ω = 1) is Lemma 3.10 of [30]; however, the
formula given there is wrong:

Example. Suppose h = h1z + h2z2 and Ω = 1. Then

M = 〈h〉1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

h1 h2 0 0
. . .

2h1 2h2 0
. . .

3h1 3h2
. . .

4h1
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and hence

M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

h2
1 3h1h2 2h2

2 0
. . .

4h2
1 10h1h2 6h2

2

. . .

9h2
1 21h1h2

. . .

16h2
1

. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

According to [30, Lemma 3.10] we should have, for j � 2:(
M2)

1 j = 2h1h j + polynomial in h1, . . . ,h j−1.

However (M2)12 = 3h1h2 is not of this form.
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In the proof of Theorem 4.3 we are concerned with the case where h ∈ z2 K [[z]], for which we need
a refinement of Lemma 4.8:

Lemma 4.9. Suppose h ∈ z2 K [[z]] and n > 0. Then

(
Mn)

1 j =

⎧⎪⎨⎪⎩
1

Ω j
h j if n = 1,

PΩ
nj (h1, . . . ,h j−1) if 1 < n < j,

0 otherwise.

Proof. We have h1 = 0, hence if n > 1 then (Mn)1 j = PΩ
nj (h1, . . . ,h j−1) by the previous lemma. We

have M ∈ tr1
K and hence Mn ∈ trn

K , so (Mn)1 j = 0 if j − 1 < n, that is, if j � n. The lemma follows. �
Corollary 4.10. Suppose h ∈ z2 K [[z]]. Then for j � 2:

(exp M)1 j = 1

Ω j
h j + PΩ

j (h2, . . . ,h j−1)

where PΩ
j (Y1, . . . , Y j−2) ∈ Q[Y1, . . . , Y j−2] is independent of h. (In particular, (exp M)1 j is polynomial in

h2, . . . ,h j .) Moreover, PΩ
2 = 0, and for j > 2, PΩ

j has degree j − 1 and is isobaric of weight j − 1.

Proof. By the previous lemma we have

(exp M)1 j =
j−1∑
n=1

1

n!
(
Mn)

1 j = 1

Ω j
h j +

j−1∑
n=2

1

n! PΩ
nj (h1, . . . ,h j−1).

Hence

PΩ
j (Y1, . . . , Y j−2) :=

j−1∑
n=2

1

n! PΩ
nj (0, Y1, . . . , Y j−2)

has the right properties. �
Theorem 4.3 now follows immediately from Corollary 4.7 and the following:

Proposition 4.11. Let f ∈ zK [[z]] be unitary, n = itval( f ). Then log[ f ]Ω ∈ mn
K .

Proof. We define a sequence (h j) j�1 recursively as follows: set h1 := 0, and assuming inductively
that h2, . . . ,h j have been defined already, where j > 0, let h j+1 := ( f j+1 − PΩ

j+1(h2, . . . ,h j))Ω j+1. Let

h := ∑
j�1 h j z j ∈ zn+1 K [[z]] and M := 〈h〉Ω . Then by the corollary above, we have (exp M)1 j = f j for

every j. Corollary 4.7 now yields exp M = [ f ]Ω and hence log[ f ]Ω = M = 〈h〉Ω ∈ mn
K . �

Remark. The mistake in [30, Lemma 3.10] pointed out in the example following the proof of
Lemma 4.8 affects the statements of items 3.14 and 3.15 and the proofs of 3.13–3.17 in [30] (which
concern the shape of log[ f ] for non-unitary f ∈ zC[[z]]); however, based on the correct formula in
Lemma 4.8 above, it is routine to make the necessary changes. For example, the corrected version of
[30, Corollary 3.14] states that (using our notation) for h ∈ zC[[z]] and j � 2 we have

[
exp〈h〉1]

1 j = h j

j − 1

(
e jh1 − eh1

h1

)
+ Φ j(h1, . . . ,h j−1)

where Φ j is an entire function C j−1 → C.
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5. The iterative logarithm

In this section we let K be an integral domain which contains Q as a subring, and Ω be a reference
sequence. Let f ∈ zK [[z]] be unitary. By Theorem 4.3 there exists a (unique) power series h ∈ z2 K [[z]]
such that log[ f ]Ω = 〈h〉Ω . The identities (2.2), (3.4) and (4.1) show that h does not depend on Ω .
Indeed, we have

h =
∑
n�1

(−1)n−1

n
h[n]

where h[0] = z and h[n + 1] = h[n] ◦ f − h[n] ∈ zn+1 K [[z]] for every n.

As in [13], we call the power series h the iterative logarithm of f , and we denote it by h = itlog( f )
or h = f∗ . In the following we let s, t be new distinct indeterminates, and we write

f [t] =
∑
j�1

(
exp t〈 f∗〉Ω

)
1 jΩ j z

j ∈ z + zn+1 K [t][[z]], n = itval( f ).

Note that f [t] does not depend on the choice of reference sequence Ω . For an element a of a ring
extension K ∗ of K let

f [a] := f [t]∣∣
t=a ∈ z + zn+1 K ∗[[z]],

so f [0] = z and f [1] = f . The notations f [t] and f [a] do not conflict with the ones introduced in
Proposition 3.1: by (2.1) and (4.3) (in Proposition 4.6) we have[

f [s+t]]Ω = exp(s + t)〈h〉Ω = exp s〈h〉Ω · exp t〈h〉Ω = [
f [s]]Ω · [ f [t]]Ω = [

f [s] ◦ f [t]]Ω
and hence

f [s+t] = f [s] ◦ f [t] (5.1)

in K [s, t][[z]]. Eq. (4.2) also yields

itlog( f ) = ∂ f [t]

∂t

∣∣∣∣
t=0

.

If a ∈ K then ( f [a])[t] = f [at] by the uniqueness statement in Proposition 3.1 and hence

itlog
(

f [a]) = a itlog( f ) for all a ∈ K . (5.2)

Aczél [2] and Jabotinsky [20] also showed that the iterative logarithm satisfies a functional equation
(although [19] suggests that Frege had already been aware of this equation much earlier):

Proposition 5.1 (Aczél and Jabotinsky).

f∗ · ∂ f [t]

∂z
= ∂ f [t]

∂t
= f∗ ◦ f [t] (5.3)

and hence

f∗ · df

dz
= f∗ ◦ f . (5.4)

Eq. (5.4) is known as Julia’s equation in iteration theory. (See [24, Section 8.5A].) The first equation

in (5.3) is simply (4.2). To show the second equation ∂ f [t]
∂t = f∗ ◦ f [t] , simply differentiate (5.1) with
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respect to s:

∂ f [u]

∂u

∣∣∣∣
u=s+t

= ∂ f [u]

∂u

∣∣∣∣
u=s+t

· ∂(s + t)

∂s
= ∂ f [s+t]

∂s
= ∂( f [s] ◦ f [t])

∂s
= ∂ f [s]

∂s
◦ f [t].

Setting s = 0 yields the desired result.
Suppose now that K = C. Even if f is convergent, for given a ∈ C the formal power series f [a] is

not necessarily convergent. In fact, by remarkable results of Baker [7], Écalle [14] and Liverpool [27],
there are only three possibilities:

(1) f [a] has radius of convergence 0 for all a ∈ C, a �= 0;
(2) there is some non-zero a1 ∈ C such that f [a] has positive radius of convergence if and only if a

is an integer multiple of a1; or
(3) f [a] has positive radius of convergence for all a ∈ C.

If (3) holds, then one calls f embeddable (in a continuous group of analytic iterates of f ). This is a
very rare circumstance; for example, Baker [6] and Szekeres [33] showed that if f is the Taylor series
at 0 of a meromorphic function on the whole complex plane which is regular at 0, then f is not
embeddable except in the case where

f = z

1 − cz
(c ∈ C).

In this case, itlog( f ) = cz2 by Example 4.4 and (5.2). Erdős and Jabotinsky [16] showed that in general,
f is embeddable if and only if f∗ = itlog( f ) has a positive radius of convergence. (See also [23,
Theorem 9.15] or [29] for an exposition.) As a consequence, very rarely does f∗ have a positive radius
of convergence. (However, Écalle [12] has shown that f∗ is always Borel summable.) In particular, we
obtain a negative answer to the question posed in [30, Question 4.3]: if f is convergent, is f∗ convergent?
Contrary to what is conjectured in [30], the converse question (Question 4.1 in [30]), however, is seen
to have a positive answer: if f∗ is convergent, then f is convergent.

In the next section we discuss when iterative logarithms satisfy algebraic differential equations.

6. Differential transcendence of iterative logarithms

Before we state the main result of this section, we introduce basic terminology concerning differ-
ential rings and differential polynomials.

6.1. Differential rings

Let R be a differential ring, that is, a commutative ring R equipped with a derivation ∂ of R .
We also write y′ instead of ∂(y) and similarly y(n) instead of ∂n(y), where ∂n is the nth iterate
of ∂. The set C R := {y ∈ R: y′ = 0} is a subring of R , called the ring of constants of R . A subring
of R which is closed under ∂ is called a differential subring of R . If R is a differential subring
of a differential ring R̃ and y ∈ R̃ , the smallest differential subring of R̃ containing R ∪ {y} is the
subring R{y} := R[y, y′, y′′, . . .] of R̃ generated by R and all the derivatives y(n) of y. A differential
field is a differential ring whose underlying ring happens to be a field. The ring of constants of a
differential field F is a subfield of F . The derivation of a differential ring whose underlying ring is
an integral domain extends uniquely to a derivation of its fraction field, and we always consider the
derivation extended in this way. If R is a differential subring of a differential field F and y ∈ F × , then
R y := {a/yn: a ∈ R, n � 0} is a differential subring of F .

6.2. Differential polynomials

Let Y be a differential indeterminate over the differential ring R . Then R{Y } denotes the ring of
differential polynomials in Y over R . As ring, R{Y } is just the polynomial ring R[Y , Y ′, Y ′′, . . .] in the
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distinct indeterminates Y (n) over R , where as usual we write Y = Y (0) , Y ′ = Y (1) , Y ′′ = Y (2) . We con-
sider R{Y } as the differential ring whose derivation, extending the derivation of R and also denoted
by ∂, is given by ∂(Y (n)) = Y (n+1) for every n. For P (Y ) ∈ R{Y } and y an element of a differential
ring containing R as a differential subring, we let P (y) be the element of that extension obtained by
substituting y, y′, . . . for Y , Y ′, . . . in P , respectively. We call an equation of the form

P (Y ) = 0
(
where P ∈ R{Y }, P �= 0

)
an algebraic differential equation (ADE) over R , and a solution of such an ADE is an element y of
a differential ring extension of R with P (y) = 0. We say that an element y of a differential ring
extension of R is differentially algebraic over R if y is the solution of an ADE over R , and if y is not
differentially algebraic over R , then y is said to be differentially transcendental over R . Clearly to be
algebraic over R means in particular to be differentially algebraic over R .

Being differentially algebraic is transitive; this well-known fact follows from basic properties of
transcendence degree of field extensions:

Lemma 6.1. Let F be a differential field and let R be a differential subring of F . If f ∈ F is differentially algebraic
over R and g ∈ F is differentially algebraic over R{ f }, then g is differentially algebraic over R.

6.3. Differential transcendence of iterative logarithms

Let now K be an integral domain containing Q as a subring, and let z be an indeterminate over K .
We view K [[z]] as a differential ring with the derivation d

dz . The ring of constants of K [[z]] is K .
We simply say that f ∈ K [[z]] is differentially algebraic or differentially transcendental if f is dif-
ferentially algebraic respectively differentially transcendental over K [z]. If f ∈ K [[z]] is differentially
algebraic, then f is actually differentially algebraic over K , by Lemma 6.1.

As above, we let t be a new indeterminate over K , and K ∗ = K [t]. The goal of this section is to
show:

Theorem 6.2. Let f ∈ zK [[z]] be unitary. Then f∗ ∈ z2 K [[z]] is differentially algebraic if and only if f [t] ∈
zK ∗[[z]] is differentially algebraic (over K ∗[z]), if and only if f [t] is differentially algebraic over K .

Before we give the proof, we introduce some more terminology concerning differential polynomi-
als, and we make a few observations about how the derivation d

dz of K [[z]] and composition in K [[z]]
interact with each other, in particular in connection with solutions of Julia’s equation.

6.4. More terminology about differential polynomials

Let R be a differential ring and P ∈ R{Y }. The smallest r ∈ N such that P ∈ R[Y , Y ′, . . . , Y (r)] is
called the order of the differential polynomial P . Given a non-zero P ∈ R{Y } we define its rank to
be the pair (r,d) ∈ N2 where r = order(P ) and d is the degree of P in the indeterminate Y (r) . In this
context we order N2 lexicographically.

For any (r + 1)-tuple i = (i0, . . . , ir) of natural numbers and Q ∈ R{Y }, put

Q i := Q i0
(

Q ′)i1 · · · (Q (r))ir
.

In particular, Y i = Y i0 (Y ′)i1 · · · (Y (r))ir , and yi = yi0(y′)i1 · · · (y(r))ir for y ∈ R .
Let P ∈ R{Y } have order r, and let i = (i0, . . . , ir) range over N1+r . We denote by P i ∈ R the

coefficient of Y i in P ; then

P (Y ) =
∑

i

P i Y i .

We also define the support of P as

supp P := {i: P i �= 0}.
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We set

|i| := i0 + · · · + ir, ‖i‖ := i1 + 2i2 + · · · + rir .

For non-zero P ∈ R{Y } we call

deg(P ) = max
i∈supp P

|i|, wt(P ) = max
i∈supp P

‖i‖
the degree of P respectively weight of P . We say that P is homogeneous if |i| = deg(P ) for every
i ∈ supp P and isobaric if ‖i‖ = wt(P ) for every i ∈ supp P .

6.5. Transformation formulas

Let X be a differential indeterminate over K [[z]]. An easy induction on n shows that for each n > 0
there are differential polynomials Gmn ∈ Z{X} (1 � m � n) such that for all f ∈ zK [[z]] and h ∈ K [[z]]
we have(

h(n) ◦ f
) · ( f ′)2n−1 = G1n( f )(h ◦ f )′ + G2n( f )(h ◦ f )′′ + · · · + Gnn( f )(h ◦ f )(n).

Moreover, Gmn has order n − m + 1, and is homogeneous of degree n − 1 and isobaric of weight
2n − m − 1. Set Gmn := 0 if m > n or m = 0 < n, and G00 := (X ′)−1 ∈ Z{X}X ′ . Then the Gmn satisfy the
recurrence relation

Gm,n+1 = (1 − 2n)Gmn X ′′ + (
G ′

mn + Gm−1,n
)

X ′ (m > 0).

Organizing the Gmn into a triangular matrix we obtain:

G := (Gmn)m,n =

⎛⎜⎜⎜⎜⎝
(X ′)−1 0 0 0 · · ·

1 −X ′′ 3(X ′′)2 − X ′ X (3) · · ·
X ′ −3X ′ X ′′ · · ·

(X ′)2 · · ·
. . .

⎞⎟⎟⎟⎟⎠ . (6.1)

Note that Gnn = (X ′)n−1 for every n. Now set

Hkn =
n∑

m=k

(
m

k

)
X (m−k+1)Gmn ∈ Z{X} for k = 0, . . . ,n.

So if we define the triangular matrix

B := (Bkm) =

⎛⎜⎜⎜⎜⎝
X ′ X ′′ X (3) X (4) · · ·

X ′ 2X ′′ 3X (3) · · ·
X ′ 3X ′′ · · ·

X ′ · · ·
. . .

⎞⎟⎟⎟⎟⎠
where Bkm =

(
m

k

)
X (m−k+1) for m � k,

then

H := (Hkn) = B · G

=

⎛⎜⎜⎜⎜⎝
1 X ′′ X ′ X (3) − (X ′′)2 (X ′)2 X (4) − 4X ′ X ′′ X (3) + 3(X ′′)3 · · ·

X ′ X ′ X ′′ −3X ′(X ′′)2 + 2(X ′)2 X (3) · · ·
(X ′)2 0 · · ·

(X ′)3 · · ·
. . .

⎞⎟⎟⎟⎟⎠ .
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Each differential polynomial Hkn has order at most n − k + 1, and if non-zero, is homogeneous of
degree n and isobaric of weight 2n − k. Note that for n > 0, H0n has the form

H0n =
n∑

m=1

X (m+1)Gmn = (
X ′)n−1

X (n+1) + Hn where Hn ∈ Z
[

X ′, . . . , X (n)
];

in particular order(H0n) = n + 1 > order(Hkn) for k = 1, . . . ,n.
Let now f ∈ zK [[z]] and h ∈ K [[z]] satisfy Julia’s equation

h · f ′ = h ◦ f .

We assume f �= 0 (and hence f ′ �= 0). Then for every n:(
h(n) ◦ f

) · ( f ′)2n−1 = H0n( f )h + H1n( f )h′ + · · · + Hnn( f )h(n).

Let R := K {X}X ′ , and denote the R-algebra automorphism of R{Y } with

Y (n) 
→ (
X ′)1−2n(

H0nY + H1nY ′ + · · · + HnnY (n)
)

for every n

also by H . Then for every P ∈ K {Y } we have

P (h) ◦ f = H(P )|X= f ,Y =h.

Note that for every i ∈ N and n we can write(
X ′)(2n−1)i · H

((
Y (n)

)i) = (
X ′)i(n−1)

Y i(X (n+1)
)i + ai

where ai ∈ Z
[

X ′, . . . , X (n+1), Y , Y ′, . . . , Y (n)
]

with degX(n+1) ai < i.

Hence given i = (i0, . . . , ir) ∈ Nr+1, setting d = |i| and w = ‖i‖, we may write(
X ′)2w−d · H

(
Y i) = (

X ′)w−d(
X ′)i

Y d + ai

where ai ∈ Z
[

X ′, . . . , X (r+1), Y , Y ′, . . . , Y (r)] with degX(r+1) ai < ir .

Proof of Theorem 6.2. Let f ∈ zK [[z]] be unitary. Suppose first that f [t] is differentially algebraic
over K ∗ . Let P ∈ K ∗{Y } be non-zero of lowest rank such that P ( f [t]) = 0. Differentiating with respect
to t on both sides of this equation yields

P∗( f [t]) +
r∑

i=0

∂ P

∂Y (i)

(
f [t]) · ∂( f [t])(i)

∂t
= 0.

Here r = order(P ) and P∗(Y ) ∈ K ∗{Y } is the differential polynomial obtained by applying d
dt to each

coefficient of the differential polynomial P . Now by Proposition 5.1 we further have

∂( f [t])(i)

∂t
=

(
∂ f [t]

∂t

)(i)

= (
f∗ · ( f [t])′)(i) =

i∑
j=0

(
j

i

)(
f [t])(i− j+1)

f ( j)∗ .

Since ∂ P
∂Y (r) has lower rank than P , by choice of P we have ∂ P

∂Y (r) ( f [t]) �= 0. Hence f∗ satisfies a

non-trivial (inhomogeneous) linear differential equation with coefficients from K ∗{ f [t]}, and so by
Lemma 6.1, is differentially algebraic over K ∗ . Specializing t to a suitable rational number in an ADE
over K ∗ satisfied by f∗ shows that then f∗ also satisfies an ADE over K , that is, f∗ is differentially
algebraic over K .

Conversely, suppose that f∗ is differentially algebraic. Let P ∈ K {Y } be non-zero, of some order r,
such that P ( f∗) = 0. Then

H(P )
(

f [t], f∗
) = P ( f∗) ◦ f [t] = 0.
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Let d = degY (r) P . By the remarks in the previous subsection, for sufficiently large N ∈ N we have(
X ′)N

H(P ) =
∑

i:ir=d

P i
(

X ′)N−‖i‖
Y |i| + A

where A ∈ K
[

X ′, . . . , X (r+1), Y , Y ′, . . . , Y (r)] with degX(r+1) A < d.

For such N , the differential polynomial

Q (X) := (
X ′)N

H(P )
∣∣
Y = f∗ ∈ R{X}

is non-zero, where R = K { f∗}, and satisfies Q ( f [t]) = 0. Thus f [t] is differentially algebraic over R
and hence (by Lemma 6.1) over K , as required. �

Let F be a family of elements of K [[z]]. Following [10] we say that F is coherent if there is a
non-zero differential polynomial P ∈ K [z]{Y } such that P ( f ) = 0 for every f ∈ F . If F is coherent,
then P with these properties may actually be chosen to have coefficients in K ; see [10, Lemma 2.1].
If F is not coherent, then we say that F is incoherent; we also say that F is totally incoherent if
every infinite subset of F is incoherent. From the previous theorem we immediately obtain a result
stated without proof in [10]:

Corollary 6.3. (See Boshernitzan and Rubel [10].) Let f ∈ zK [[z]] be unitary and let F := { f [0], f [1], f [2], . . .}
be the family of iterates of f . Then exactly one of the following holds:

(1) f∗ is differentially algebraic and F is coherent;
(2) f∗ is differentially transcendental and F is totally incoherent.

Proof. By the theorem above, it suffices to show: if f [t] is differentially algebraic, then F is coherent,
and if f [t] is differentially transcendental, then F is totally incoherent. The first implication is obvious
(specialize t to n in a given ADE for f [t]). For the second implication, suppose F is not totally incoher-
ent. Then there exists an infinite sequence (ni) of pairwise distinct natural numbers such that { f [ni ]}
is coherent. Let P ∈ K {Y }, P �= 0, be such that P ( f [ni ]) = 0 for every i. With g := P ( f [t]) ∈ K ∗[[z]]
we then have g|t=ni = 0 for every i; thus g = 0 (since the coefficients of g are polynomials in t
with coefficients from the integral domain K of characteristic 0). This shows that f [t] is differentially
algebraic. �
7. The iterative logarithm of ez − 1

In this section we apply the results obtained in Sections 4 and 5 to the unitary power series
f = ez − 1 ∈ zQ[[z]]. Recall that the iteration matrix [ez − 1] of this power series is the matrix S =
(Sij) ∈ 1 + tr1

Q
consisting of the Stirling numbers Sij = { j

i

}
of the second kind (cf. (3.8)).

7.1. Proof of the conjecture

We first finish the proof of the conjecture stated in Section 1. The matrix S is related to A =
(αi j) ∈ tr1

Q
via the equation

S+ = exp(A),

or equivalently (cf. (2.3)):

A = log(S)+.

(Recall: for a given matrix M = (Mij) ∈ trQ we defined M+ = (Mi+1, j+1)i, j ∈ trQ .) The conjecture
postulates the existence of a sequence (cn)n�1 of rational numbers such that
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αi j = c j−i+1

(
j + 1

i

)
for i < j. (7.1)

This now follows easily from the results of Section 4:

Proposition 7.1. Let h = itlog(ez − 1) ∈ z2Q[[z]], write h = ∑
n�1 hnzn where hn ∈ Q, and define cn := n!hn

for n � 1. Then (7.1) holds, and

cn =
∑

1�k<n
1<n1<···<nk−1<nk=n

(−1)k+1

k

{
n2

n1

}{
n3

n2

}
· · ·

{
nk

nk−1

}

for every n � 1.

Proof. We have log(S) = 〈h〉 by Theorem 4.3. Hence, using the formula for 〈h〉i j from Example 4.2 we
obtain for i < j, as required:

αi j = 〈h〉i+1, j+1 = ( j + 1)!
i! h j−i+1 = ( j + 1)!

i!( j − i + 1)! c j−i+1 = c j−i+1

(
j + 1

i

)
.

The displayed identity for cn follows from cn = 〈h〉1n = log(S)1n . �
We note that the cn may also be expressed using the Stirling numbers of the first kind, using

〈h〉 = − log(S−1):

cn =
∑

1�k<n
1<n1<···<nk−1<nk=n

(−1)k+n−n1

k

[
n2

n1

][
n3

n2

]
· · ·

[
nk

nk−1

]
(n � 1).

7.2. Proof of the convolution identity

We now turn to the convolution identity (C) for Stirling numbers stated in the introduction.
Jabotinsky’s functional equation (5.4) for f = ez − 1, writing again h = f∗ , reads as follows:

h ◦ (
ez − 1

) = ezh.

Taking derivatives on both sides of this equation and dividing by ez we obtain:

h′ ◦ (
ez − 1

) = h + h′. (7.2)

Now define, for M ∈ 1 + tr1
Q

:

Λ(M) :=
∑

n

(−1)n

n + 1
(M − 1)n ∈ 1 + tr1

Q,

so

Λ(M) · (M − 1) = log(M). (7.3)

For later use we note that then for every j � 1:

j∑
k=1

Λ(M)1k Mk, j+1 =
j+1∑
k=1

Λ(M)1k(M − 1)k, j+1

= (
Λ(M) · (M − 1)

)
1, j+1 = log(M)1, j+1, (7.4)

where in the last equation we used (7.3).
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Taking M = S we compute

log(S) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 · · ·
0 1 − 1

2
1
2 − 2

3
11
12 · · ·

0 3 −2 5
2 −4 · · ·

0 6 −5 15
2 · · ·

0 10 10 · · ·
0 −15 · · ·

0 · · ·
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

Λ(S) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 · · ·
1 − 1

2
1
2 − 2

3
11
12 · · ·

1 − 3
2

5
2 − 25

6 · · ·
1 −3 15

2 · · ·
1 −5 · · ·

1 · · ·
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We observe that the first row of Λ(S) agrees with the first row of log(S) shifted by one place to the
left. (This is simply a reformulation of the formula (C).)

Proposition 7.2. For every j � 1,

Λ(S)1 j = log(S)1, j+1.

Proof. As observed in (7.4),

j∑
k=1

Λ(S)1k

{
j + 1

k

}
= c j+1 for j � 1. (7.5)

On the other hand, by (7.2) we have [h′] · S = [h + h′]; thus

j+1∑
k=1

ck+1

{
j + 1

k

}
=

j+1∑
k=1

[
h′]

1k Sk, j+1 = ([
h′] · S

)
1, j+1 = [

h + h′]
1, j+1 = c j+1 + c j+2

and hence

j∑
k=1

ck+1

{
j + 1

k

}
= c j+1 for j � 1. (7.6)

An easy induction on j using (7.5) and (7.6) now yields Λ(S)1 j = c j+1 = log(S)1, j+1 for each j � 1, as
claimed. �
7.3. Differential transcendence of the egf of (cn)

It is easy to see that for n > 0, the nth iterate φ[n] of φ = ez − 1 is a solution of an ADE over Q of
order n. However, it is well known that φ[n] does not satisfy an ADE over C[z] of order < n. (See, e.g.,
[5, Corollary 3.7].) The egf of the sequence (cn) is itlog φ, hence from Corollary 6.3 we obtain the fact
(mentioned in the introduction) that this egf is differentially transcendental. In fact, Bergweiler [9]



654 M. Aschenbrenner / Journal of Combinatorial Theory, Series A 119 (2012) 627–654
showed the more general result that if f is (the Taylor series at 0 of) any transcendental entire
function, then itlog( f ) is differentially transcendental (equivalently, by Corollary 6.3, the family of
iterates of f is totally incoherent). Moreover, by the results quoted at the end of the previous section,
itlog φ is not convergent. (This can also be shown directly; cf. [25].) See [3] for a proof of a common
generalization of these two facts.
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