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Abstract

We show that for any k,m, p, c, if G is a Ky-free graph on N then there is an independent set
of vertices in G that contains an (m, p, ¢)-set. Hence if G is a Ki-free graph on N, then one can
solve any partition regular system of equations in an independent set. This is a common
generalization of partition regularity theorems of Rado (who characterized systems of linear
equations Ax = 0 a solution of which can be found monochromatic under any finite coloring
of N) and Deuber (who provided another characterization in terms of (m,p,c)-sets and a
partition theorem for them), and of Ramsey’s theorem itself.
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1. Introduction and statement of results

In this paper we are interested in graphs whose vertices are natural numbers, and
in arithmetic properties of independent sets in such graphs. We use N to denote the
set of natural numbers—not including 0—and o = NuU{0}. We write [a,b] =
{ceZ:a<c<b} to denote an interval of integers.

Let A be a finite matrix with integer entries. The system of linear equations Ax = 0
is called partition regular (over N) if for every partition of N into finitely many
classes there exists a solution completely contained in one class.

Schur’s theorem [17] says that for any positive integer r, there exists n so that for
every coloring p : [1,n] —[1, r] there exist x, ye[1,n] with p(x) = p(y) = p(x + ). The
equation x + y — z = 0 describes these Schur triples, and so is partition regular. Van
der Waerden’s theorem [19] states that for any positive integers r, /, there exists n so
that for any coloring p:[l,n]—[l,r] there is a monochromatic /-term arithmetic
progression. Solutions to equations x — 2y + z = 0 are 3-term arithmetic progres-
sions or are constant and so this system is also partition regular. Similarly, systems of
equations describing any longer arithmetic progressions form partition regular
systems. An example of a simple system which is not partition regular is x + y = 3z.
(See, e.g., [6] or [7] for more details.)

A characterization of partition regular systems of equations was first given by
Rado [15] in terms of something (which is not relevant to our use here) called the
“columns property”. Deuber [2] later gave another characterization of partition
regular systems using structures called ““(m, p, ¢)-sets”’, which we now define.

Definition 1.1. Let p, ce N with ¢<p, and let me w. A set of integers S is an (m, p, ¢)-
set if S=N and there exist positive integers (generators) Xo,Xp, ..., X; SO that
S = Ry(S)UR(S)U - UR,(S), where

R()(S) = {CXo—l—)ylxl + Aoxg + oo+ ApXon: ;»1, ...7/1m€[—p,p]},
R(S) = {ex1 4+ Aaxo + -+ + AwXm: 22, ..oy Am€[—p, D]},
Rmfl (S) = {me,1 + ;WHXm: ;Lm € [—PaP]}a
R,(S) = {cxm}-
In this case we write S = (xo, X1, ..., Xm), . and we say that R(S) is the (k + 1)th row

of S.

We note that the condition ¢<p is for convenience only; nothing would be lost
without this condition because for any p’ > p, every (m, p’, ¢)-set trivially contains an
(m, p, c)-set.

In honor of Deuber’s contributions to the field, if a set S is an (m, p, ¢)-set for some
m, p,c, then we might simply say that S is a Deuber set without specifying the
parameters m, p, c.
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Theorem 1.2 (Deuber [2]). A4 linear system Ax = 0 is partition regular if and only if
there exist positive integers m,p, c such that every (m,p,c)-set contains a solution of
Ax =0.

In proving a conjecture by Rado regarding partition regular systems, Deuber used
the following partition theorem.

Theorem 1.3 (Deuber [2]). For every mew, every p,ceN with ¢c<p and every keN,
there exists n,q,deN with d<gq so that for every (n,q,d)-set X and every coloring
p: X —>[1,k], there exists a monochromatic (m,p, c)-set contained in X.

To state our results, we adopt standard notation. For a set S and new,
let [S]" ={F<S:|F|=n}. Let G= (V,E) denote a (simple) graph on vertex set
V = V(G) with edge set E = E(G)<=[V]*. A set Y<V(G) is called independent
in G if [Y?nE(G) =0. When E(G) = [V(G)]*, we say that G is complete, and
the complete graph on n vertices is denoted by K,. A graph G = (V, E) is k-partite
if V' can be partitioned into k sets, V' = Viu---uVy, each V; containing no
edges, and is a complete k-partite graph if for each i#j, whenever xe V; and yeV;
then {x,y}eE. A complete bipartite graph on sets of size m and n will be denoted
by K-

The main result in this paper is the following.

Theorem 1.4. Given k,p,ceN with c<p and me w, there exist n,q,deN so that any
Ki-free graph on an (n,q,d)-set contains an independent (m, p, c)-set.

Remarks. (1) Theorem 1.4 generalizes Theorem 1.3 by the following reasoning: Fix
k,m,p,c,let n,q,d be guaranteed by Theorem 1.4, and fix an (n, ¢, d)-set X. Color X
with r = k — 1 colors and form the complete (k — 1)-partite graph G whose partite
sets are color classes. Since G is Ki-free, by Theorem 1.4 some (m,p,c)-set is
independent in G, and hence must be contained in one partite set, i.c., a single color
class. Hence there is a monochromatic (m, p, ¢)-set. Since (m, p, ¢)-sets contain sum-
sets and arithmetic progressions, Theorem 1.4 also implies theorems of van der
Waerden, Schur, and others.

(2) Theorem 1.4 also generalizes Ramsey’s theorem for graphs, because under any
red—blue coloring of the pairs of a large set, rather than guaranteeing either a red K
or a large blue clique, we guarantee either a red Kj, or a large blue clique on an
(m,p, c)-set.

Since any (n, ¢, d)-set sits in some initial interval of the positive integers, Theorem
1.4 immediately implies the following statement:

Corollary 1.5. Given k,p,ceN, mew, and any Ki-free graph G with vertex set N,
there exists an (m, p, c¢)-set which is independent in G.
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Corollary 1.5 can be formulated in terms of partition regular systems by using the
m, p, ¢ guaranteed in Theorem 1.2:

Corollary 1.6. For any k=2 and any K-free graph on N, one can solve any partition
regular system in an independent set.

We do not know if there is a hypergraph version of Theorem 2.1. For example, is
there an analogous condition on a family of triples of N that would imply that there
is an (m, p, ¢)-set not containing any triple? If so, it is not so simple, as the following
example indicates. Let H be the 3-uniform hypergraph on N defined with hyperedges

of the form {x,x + d,x + 3d}. Then H is K‘§3>-free, yet every arithmetic progression
of length 4 contains a hyperedge.

2. Earlier work

Ramsey’s theorem for graphs [16] says that for any positive integers r, and m, there

exists 7 so that for any coloring p : [1,n]* —[1,r], there exists M e[1,n]" so that [M]*
is monochromatic. Erdds [4] asked whether the following natural generalization of
both Ramsey’s theorem and Schur’s theorem holds: If G is a triangle-free graph on
vertex set N, does there always exist an independent Schur triple, that is, do there
exist x, y, x#y so that FS(x,y) = {x,y,x + y} is independent in G? The answer is
yes, as proved in [13] where it was shown that in fact, for fixed k and d, if G is a K-
free graph on N, then there exist distinct integers a;, as, ..., aq, so that the finite sum
set FS({ay, ...,a4}) is an independent set in G. Harborth ez al. (see, e.g., [1,11]) have
given some sharp lower bounds on n so that if G is a graph on [1,#], these results
hold (except the a; need not be distinct).

Related progress was also made for an infinite version of Erdds’ question.

Given a set {x;};.; of distinct positive integers, let FS({x;},.;) = {ZjeJ Xj:

0#J<1,]J| < oo} denote the finite sums (with no repetitions) from the set. When 7 is
infinite, we say that FS({x;},.;) is a Hindman set. In 1995, Hajnal asked the
following (see [5]): If G is a triangle-free graph on N, does there always exist a
Hindman set independent in G? Hajnal’s question has been answered in the negative
in [3]. Variants of Hajnal’s question have been shown to indeed have a positive
answer; for example, if the condition ‘‘triangle-free” is replaced by *“Kj x-free”
(see [3,9,13]).

A common generalization of Ramsey’s theorem and van der Waerden’s theorem
was also found in [9]: For fixed k and /, if G is a Kj-free graph on N, then there exists
an /-term arithmetic progression which spans an independent set in G.

Coloring theorems for arithmetic progressions or finite sums have abstract
analogues (the Hales—Jewett theorem and the Graham—Rothschild theorem,
respectively; see, e.g., [7] or [14]), from which they can be deduced instantly. In
contrast, Deuber’s theorem for partitioning (m, p, ¢)-sets cannot be accomplished by
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any one application of such a theorem; several iterations are required. As with
Deuber’s theorem, one would not expect to be able to prove our main result for
(m,p,c)-sets with any single application of an abstract theorem. Indeed, the first
situation where a single process does not seem to work is for an arithmetic
progression together with its difference—which is the simplest kind of subset of an
(m, p, c)-set not necessarily contained in any one row. In [9] it was proved that for
any k,/>3, in any Ki-free graph, there exists an /-term arithmetic progression
together with its difference, all contained in an independent set. This proof used a
form of the Gallai—Witt theorem applied iteratively; it does not seem to follow from
one application of any of the major abstract theorems (like the Hales—Jewett or
Graham—Rothschild theorems).

3. Preliminary results

We now briefly describe one of our main tools, the Hales—Jewett theorem.

Let A denote a finite alphabet; write A4° = {(x|,...,x;) : x;€4}. Let [l,s] =
FUM; U - UM, be a partition with |M;|>0 forj = 1,2, ...,z and let (g;),. € A" be
a fixed |F|-tuple. A t-dimensional subcube of A° (associated with (g;);.r and the
partition FUM;u --- U M) is a set of the form

HIC(F, My, ..., M:,(9j);cr) = {(x1, ..., X) 1 x; = g; for jeF and
x; = xy if j,j'e M, for some o}.
We now state the central theorem regarding parameter sets.
Theorem 3.1 (Hales—Jewett). For every t,reN and every finite alphabet A, there

exists s = HJ(t,r,|A|) so that for every coloring p:A*—|[l,r], there exists a
monochromatic t-dimensional subcube of A°.

The original version in [10] yields a one-dimensional subcube. That version easily
implies the current version (see [7, p. 40]). See [14] for a survey of results,
applications, and notation for parameter words, another language to describe the
Hales—Jewett theorem.

Definition 3.2. Let p,¢,q,deN with c<p and ¢<d, let U = (xo, x1, ...,xm)p’c be an
(m,p,c)-set, and let V = (yo,y1, ...,yn)q_’d be an (n,q,d)-set. We say that U is

naturally contained in V', written U<V if and only if there is a strictly increasing
function

v :{0,1,...,m}—{0,1,...,n}
such that for each i€ {0, 1, ...,m}, Ri(U)= Ry (V).

Notice that natural containment is trivially transitive.
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Example 3.3. The (1,3,1)-set 4= (10,1);; is contained in the (2,2,1)-set B =
(20,5,1),, but 4 is not naturally contained in B. In fact, Ry(4) is not contained in
any row of B.

We now present some simple results that guarantee that all inclusions with which
we shall be concerned are natural.
For any p,meN, we use

[a07a1, --~7am]p = {)“OaO"_}vlal + .- +/1mam : /107/117 ~~-»;Lme[_pvp]}v

to denote the span of ay, ay, ..., a,m.

Lemma 34. Let m,p,xo,x1,....,xn€N. If for each ie{0,1,....m—1},
Xi>2p Zm i+1 Xj, then expressions in [xo, x|, ...,xm]p are unique. That is, if

m m
;‘07/115 "'7/1Ma1u07:u'17 7lu'me[_p7p] and Z iixi = Z WiXi,

i=1

then for each i€{0,1,....m}, 1; = ;.

Proof. Assume that Ao, A1, ..., A, o, 15 oo i € [—p,p) and D7 ix; = D0, ;.
Suppose that there is some i€ {0, 1, ..., m} such that 4;# u, and pick the first such i.
Assume without loss of generality that 4;> ;. If A,,x,,, = w,,%m, then 4,, = u,,, so we
have that i<m. Then

m m m

Z (b = 2)X; = (i = py)xi = x> 2p Z Xj= Z — 2)X;,

Jj=i+1 Jj=i+1 J=i+1

a contradiction. O

With a little more work one can show that 6pc can be replaced by Spc in the
following lemma. (Here and later, if i = m, then we set 37, x; = 0.)

Lemma 3.5. Let m,p,ceN with c¢<p and assume that xg,x1,...,xn€N and
(X0, X1, oevy X )6P(C§N Let U= (X07X1,-~,Xm)p_,(,- For each ie{0,1,...,m— 1},
xi>6p> it x; and min R;(U)>max R (U). Also, any length 3 arithmetic
progression in U is contained in some row of U.

Proof. Let i€{0,1,...,m—1}. Then cx; — 37", 6pcx;eN so x;>6p3 0, X;.
Thus

m m
min R;(U) =cx; — E DXj=X; — E DX > E DXj=CXiq
Jj=i+1 J=i+1 Jj=i+l

m

+ Z px; = max Ry (U).
J=it2
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Now assume we have d >0 such that {a,a + d,a+ 2d} = U. Pick i, ke {0, 1, ..., m}
and Aiy1, Aig2s oo Ay Wi ts M2y -+ 5 My € [—P, p] such that

m
a=cx;+ g A X;
j=it1

and

m
a+d=cx;+ Z RS
J=k+1
Since a + d>a, we have that k<i. Suppose that k<i. Then
i—1

m
d = cxi + Z 1 + (= €)x; + Z (1 = 4)%;
j=kt1 j=it1
and so

m

i1
a+2d =2cxy + Z 2% + (2p; — ¢)xi + Z (2w — 4j)x;.
j=k+1 j=itl

Since the absolute value of each coefficient in the expansion of a + 24 is at most 3p,
we have by Lemma 3.4 that a + 2d ¢ U.

Thus k =i and
d= Z (1 — 27)x;
j=it1
and so

a+2d=cx;+ Z (2u; — 4)x;.
J=i+1

Again by Lemma 3.4 we have that a +2de R;(U). O

Lemma 3.6. Let n,q,deN with d<q and assume that xo,xi,...,x,€N and
(xo,xl,...,xn)6qd_d§N. If mew, p,ceN with ¢c<p, yo,¥1,...,ym€N, and Y =

(ro, ¥1, ...,y,,,)p_’(,g(xo,xl, ...,xn)q,d = X, then for each i€{0,1,....m} there exists
Jj€{0,1,...,n} such that Ri(Y)< R;(X).

Proof. We proceed by induction on m. The case m = 0 is trivial, so assume that
meN and the assertion is true for m — 1. Let i€ {0, 1, ...,m}. If i>0, then R;(Y) =

Ri-1((»1,»2: +--,¥m),.) so the conclusion holds by the induction hypothesis. So
assume that i =0. Let D = Ro((»o, 1, ...,ym,l)p76) and pick by the induction
hypothesis some j€{0, 1, ...,n} such that D= R;(X). Now let A, 42, ..., An€[—p,p].
If A, =0, then cyg+ Y /", Ayie DS R;(X), so assume A, #0. Then E = {cyy+
S 2yt = oy evo + 05 v evo + 505" Ayt + oy} is a three  term
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arithmetic progression in X so is contained Ry (X) for some k by Lemma 3.5. Since
DNnE#0, k=j. O

Lemma 3.7. Let n,q,deN with d<q and assume that xo,xi,...,x,€N and
(xo,xl,...,xn)6qd_d§N. If mew, p,ceN with ¢c<p, yo,¥1,...,ym€N, and Y =

(V0 V15 ooy Ym) p e = (X0, X1 o0 Xn) g = X, then Y <X

Proof. Let ie{0,1,...,m —1} and pick by Lemma 3.6 j,ke{0,1,...,n} such
that R;(Y)SRy(X) and R i(Y)SRi(X). We show that j<k. Pick A4,
}~j+27 '”7&”’/1./‘""17#/“"2’ "'aunayk+l7yk+27 "';yne[7Q;Q] such that

n
cy; = dx; + Z Ay,
I=j+1

n
cyi + cip1 = dx; + Z My X1
I=j+1
and
n

cyipt = dxi+ Y X1
]

Then ¢y = Z';:j-H (1 — A1)xy, so by Lemma 3.4 k>j+1. O

We shall refer later to the conclusion of the following theorem by stating that ““all
inclusions in (xg, x1, ---7Xn)q7d are natural”.

Theorem 3.8. Let n,q,deN with d<q and assume that xy,Xxy,...,x,€N and
(xo,xl,...,x,,)éqdﬁdEN. If mMew, p,c,P,CeN with c¢<p and C<P,
y07y1,--‘7ym;ZOaZla"')ZMENa Y:(J’Oa)’l»--~7J’m)p,c§(x07x1»---7xn)q7d:X» Z =
(20,215 s ZM) pc € X, and Y = Z, then Y < Z.

Proof. By Lemma 3.7 we have that Y <X and Z<X. We show first that for each
ie{0,1,...,m} there exists j€ {0, I, ..., M} such that R;(Y) = R;(Z). Suppose instead
that one has ie{0,1,...,m}, a,beR;(Y), and j<k in {0,1,...,M} such that
a€R;(Z) and beRi(Z). Since Z<X, we have u<v in {0,1,...,n} such that
aeR,(X) and beR,(X). By Lemma 3.5, R,(X)"R,(X) =0 and by Lemma 3.6,
R/(Y)=R,(X), a contradiction.

Now let ie{0,1,...,m — 1} and pick j,ke{0,1, ..., M} such that R;(Y)=R;(Z)
and R 1(Y)=Ri(Z). Pick u<v in {0,1,...,n} such that R;(Y)=R,(X)
and R 1(Y)SR,(X). Then R/(Z)nR,(X)#0 so Ri(Z)=R,(X). Likewise
Ri(Z)= Ry(X), and therefore j<k. O

We shall need a slightly strengthened version of Deuber’s Theorem (Theorem 1.3).
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Theorem 3.9. For every mew, every p,ceN with ¢c<p and every ke N, there exists
n,q,deN with d<q so that for every (n,q,d)-set X and every coloring p: X —[1, k],
there exists a monochromatic (m,p, c)-set naturally contained in X .

Proof. Pick #',¢’,d’ as guaranteed by Theorem 1.3. Letn =n', ¢ = 64'd’, and d = d'.
Let X = (xo,x1, ...,xn)q,d be k-colored. Then Y = (xo,xy, ...,xn/)q,vd, is naturally
contained in X and by Theorem 1.3 Y contains a monochromatic (m, p, ¢)-set. By
Lemma 3.7, this inclusion is natural. [

The following technical lemma completes our preliminaries.

Lemma 3.10. Let m,p,c, M,P,CeN with ¢<p and C<P. Let wi,wy, ...,
Wiy, V1,02, ..., U €NLIf (wl,wz,...,wm)p’cg(cvl,cvz,...,cvM)P_’C, then [wi,wa, ...,

wm]pg [v1, vz, ...,UM](chrp)P.

Proof. First consider any )", /;w; with each J;€[—p, p]. Then

m
cwy + Awi€ (wi, wa, ...,wm)p’cg(cvl,cvz, ...,cvM)P’CE[cvl,cvz, ey CUM]p
J=2
m L)
and cw; €lcvr, cva, ..., CUM]p, SO ijz Ajwi€levr, cva, ..., corlrp S [V1, 02, o, Urr]oep-
Also ew; €lcvy, cvay ..., cOp]p SO W E V1,02, ..., Uyl p, SO fOr any 4; €[—p,p] one has
m
Ziwi € vy, 2, "'7UM]1)P and thus ijl Ajwi€ v, 02, ...,vM]pPJrsz. O

4. Main proof: existence of independent (m, p, c)-sets
In the proof of Theorem 1.4, we use the following earlier result.

Theorem 4.1. For every k,n,q,deN there exist n',q',d' €N so that for any (n',q',d')-
set X and any Ki-free graph G with vertex set X, there exists an (n,q,d)-set S
naturally contained in X, each of whose rows is an independent set in G.

The proof of Theorem 4.1 (see [8]) is accomplished by repeating the standard
parameter sets proof of Deuber’s partition theorem (see, e.g., [12]), once one knows
that in a Kj-free graph on a large-dimensional Hales—Jewett cube there is always a
line (or, more generally, a d-dimensional subspace) that is independent—this latter
fact is proved in [9].

In view of Theorem 4.1, it is sufficient to prove Theorem 1.4 under the assumption
that the graph G on an (n,q,d)-set S has all rows as independent sets. Rather than
prove Theorem 1.4 with this additional assumption, we will prove a stronger
statement, Theorem 4.3, below. Since a large complete k-partite graph contains
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many copies of Ky, Theorem 1.4 will clearly follow. This somewhat stronger theorem
turns out to be easier to prove.

Definition 4.2. Let k,p,c,teN with ¢<p and let mew. Then ¢(k,m,p,c,t) is the
statement “there exist n,q,d €N such that whenever S is an (n,¢,d)-set and G is a
graph on S such that the rows of S are independent, there exist either

(a) an independent (m, p, ¢)-set contained in S or
(®) zy,2, ..., 2x,a0,a1, ...,a,eN such that (ag,a, ...,a,)NES and the sets <{cz; +

[ao, a, ..., a,]p f:] form a complete k-partite subgraph of G.”

Theorem 4.3. For all k,p, c,teN with c<p and all me w, the statement @(k,m,p,c,t)
holds.

Proof. The proof is by induction on m and k.

For the base cases, note that for all n/, p, ¢, t, part (b) of ¢(1,n,p, ¢, t) holds, and
for all k', p, ¢, t, part (a) of @(k',0,p,c, 1) holds.

So assume that k=2 and m>1, and for the induction hypotheses, suppose
that for all w/,p,c,t, statement @(k— 1,m' p,c,t) holds, and for all p,c,¢,
statement @(k,m — 1,p,c,t) holds. We need to show that ¢(k,m,p,c,t) holds for
all p,c,t. Pick p,c,t such that part (a) of ¢(k,m,p,c,t) fails; we show that
part (b) holds.

1. Let (M, P, C) be the (n,q,d) guaranteed by ¢(k,m — 1,p,c,1).

2. Let (N, Q, D) be such that whenever an (N — 1, Q, D)-set is (k — 1)-colored, it
naturally contains a monochromatic (M, (p + 2¢)P, cC)-set. (Such (N, Q, D) exist
by Theorem 3.9.) We may assume that N >m.

3. Set ' = (2¢C+ (2¢+p)P)Q, D' = ¢CD, and let

T=HIr+1,20 + D™, (4p0 + )N + N.

4. Put Q" =2cp(Q)(N+1), D" =c(D')?, and let (0, q,d') satisfy o(k—1,
N,Q', D', T).

5. Pick (n,q,d) such that any (n,q, d)-set S’ naturally contains an (', ¢, d")-set for
which all inclusions are natural. (Such (n, ¢, d) exists by Theorem 3.8.)

Since part (a) of ¢(k,m,p,c,t) fails, pick an (n,q,d)-set S’ and a graph G’ on
S’ for which the rows are independent but S’ does not contain an independent
(m,p, c)-set.

Pick an (#',¢',d')-set S which is naturally contained in S’ and such that all
inclusions within S are natural. Let G be the subgraph of G’ induced on S. Note that
S does not contain an independent (m, p, ¢)-set.

Claim 1. If U = (v0, V1, -+, OM+1) (py20)pec S, then there is an edge of G between a
point in the first row of U and a point in some later row of U.
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Proof. We have (cvi,cva, ..., com+1)pcSUSS so by the choice of (M,P,C),
pick an independent (m — 1,p, c)-set (wy, wy, ...7Wm)p’c§((!l)1,(fl)2, ooy cOp1)p e (If
clause (b) of the definition of ¢(k,m—1,p,c,t) applied, one would have
o(k,m,p,c,t).)

Let V' = (Cvp, wy, wo, ...,wm)p‘r. One has immediately that

M+1

Ri(V) = (wy, wy, ...,wm)pyt,g(cvl,cvz, ...,cvMH)P’CE U R,(U)<S.
1 i=1

Cs=

Also, Ry(V') = cCuvy + [w1, wa, ...,wm]pgcho + [v1, v2, ...,vm](
the inclusion holds by Lemma 3.10.
Now Ry(V) is contained in a row of S, so is independent, and

2eipyp = Ro(U), where

s

Ri(V) = (Wi, w2, oocs W), o

i=1

which is independent, so, since V' is not independent, there must be an edge between
a point of Ry(¥) and a later row of 7 and hence between a point of Ry(U) and a
later row of U. [

Claim 2. Let wy,w, ...,wy €N. Recall that Q' = (2¢C 4 (2¢ + p)P)Q and D' = ¢CD.
Assume that for each ie{l,2,....k—1}, p;eN and (p;,wi,wa, ...,1VN)Q,7D,ES.
Then there is some xe€(cCwy,cCwy,...,cCwy) 0D (and therefore some xe
(w1, wa, ...,WN)Q,’D,) such that for each ie{1,2, ...,k — 1} there is an edge from x
10 a point in the first row of (B, wi, w2, ..., WN) g py-

Proof. Suppose not and color xe(cCwy,cCwy, ...,chN)Q‘D by the first
i€{1,2, ...,k — 1} such that there is no edge from x to a point in the first row of
(Biywi, wa, ...,WN)Q,’D,. By the choice of (N,Q,D) pick ie{l,2,....k—1} and
Vg, U1, ..., Uy such that (vg, vy, ...,UM)@JrzC)P’CCE(CCWl,CCWz, "'7CCWN)Q,D and for
each x€ (vo, v1, .., V) p120)p cc there is no edge from x to any point in the first row

of (B, wi, w2, ..., wn) g -
Let U = (DB;, 00,01, -, UM) (py20)pec- NOW

(0, V15 +oes UM) (pi2e pec S (W1, W2, s W) g ccp-

We claim that Ro(U)<= Ro((B;; wi, w2, ..., wn)g pr). To see this, let y = cCDB; +
SM Jv where each 4 €[—(p 4 2¢)P, (p + 2¢) P]. By Lemma 3.10,

M
Z AU € Wi, wa, ..., WN]<M+(],+2C)P>Q,
=0

s0 y€Ro((Bi, w1, w2, ..., WN) o 1) as claimed.
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Thus by Claim 1, there is an edge between a point ye Ry(U) and some point x
in a later row of U. But then xe(cCwi,cCws,...,cCwy)yp and yeRo((;,

Wi, W2, ..., WN) o ), @ contradiction. [

We now observe that there is no independent (N, Q”, D")-set in S. Indeed, assume

one has (xo, X1, ..., xXy)gr pr ©S. Then, since m<N and pe(D')* < Q" one has that
(¢(D')*xq, c(D')x1, ...,(:(D’)zxm)p_’cg(xo,xl7 s XN) g -

Since  (c(D')*x0, ¢(D')*x1, ...,c(D’)zx,,,)p,c is not independent, neither is

(X(),XI, "'7‘XN)Q"‘D”'

By the choice of (#/,¢', d"), since there is no independent (N, 9", D")-set in S, pick
bo, by, ....,br,z1",22', ..., zi1" in N such that (bo, by, ..., br) g p €S and the sets

(D"z/ +[bo, b1, ..., b1l g Yo}
form a complete (k — 1)-partite graph.

Now let yo,yi,...,yNE[bN+1,bN+2, ...,bT]sz/ and ie{l,2,...,k— 1}, and for
Jje{0,1,...,N}, pick A1, AjNg2s - AT €200, 2pQ']  such  that  y; =
S w1 Azbi. We claim that the first row of (2D'z/ + 2D'by + ¢y, D'by +
cy1,c2D'by 4 ¢cyy, ..., > D'by + ¢yN) g p 18 contained in D"z + [bo, by, ..., br] . To
see this, let u;, ty, ..., uy€[—Q', @], so that

N N
w=c(D)z + (D) by + ¢D'yy + Z D' by + Z iy
= =
is a typical member of the first row of (¢>D'z/’ + ¢>D'by + cyo, *D'by + cy1, > D'by +
ey, ...,c*D'by + cyN)Q,vD,. For each je{0,1,..., N}, the absolute value of the

coefficient of b; in the given expansion of w is at most ¢*D'Q/<Q". And for
le{N+1,N+2,...,T}, the absolute value of the coefficient of b, in the given
expansion of w is

N
(D dos+ " ey <eD'2pQ + 2pe(Q PN < Q'
j=1
Next, we claim that (¢2D'b; + cyy,?D'by + ¢y, ..., c*D'by + CYN)g p 1S con-
tained in (b, by, ...,bT)Q,,_’D,,. To see this, let p, fty, ..., uy€[—Q', Q'] such that,
if r=min{je{l,2,...,N}: y;#0}, then y, = D',
and let
N N T N
w = Z ,uj(czD'bj + Cyj) = Z MjCZD/bj + Z Z C,uj/lj‘,]bl.
=1 J=1 I=N+1 j=1

Then w,c?D' = D", and for je{r+1,r+2,...,N}, if any, the absolute value
of the coefficient of b; in the given expansion of w is at most *D'Q’' < Q". Also, for
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le{N+1,N+2,...,T}, the absolute value of the coefficient of b, in the given
expansion of w is at most Z,AL, c2p(Q’)2< 0"
In particular, we have established that
(?D'z{ + *D'by + cyy, *D'by + cyy, 2 D'by + ¢y, ..., 2 Dby + N)gp =S,
so we may apply Claim 2.
We define 7 : ([—2p0',2p0 V™YV 5 (-0, 0]")" as follows: Let
2= ((AoN41, ANty o ANN1), (AoN425 ALNA2, ooy AN NA42)s
.y (/l()j, j.],T7 N )LN’T)) € ([—Zle, 2pQ/]N+])T_N.
For je{0,1,...,N}, let y; = ZIT:NH Zj1b;. Then by Claim 2 applied to
D'z + A D'by + cyo, *D'by + cy1,*D'by + ¢y, ..., > Dby + YN o !
there is some point in (¢2D'by + cy1,2D'by + cyy, ..., D'by + CYN) g With an

edge to a point in the first row of each (¢>D'z;/ + ¢>D'by + cyo, *D'by + ¢y, *D'by +
ey, ...,c*D'by + ¢yN)g - That is there is some

}7: ((Vl,layl,27 -~-7V1,N)ﬂ (V2,1vy2,2a -~-7V2,N)a ceey (yk,lvyk.% "'7Vk,N))€([_Q7 Q]N)k
such that, if r=min{je{l,2,. n}-ykﬂéO} then y,,.,=D" and for each

ie{l,2,...,k — 1}, there is an edge between Z 0 (Db + S ni1 €Aibr) and
A(D')z) + A(D)by + Z Dc)o,b,+zyu( 2D'b; + Z cA,;b;)
I=N+1 = I=N+1

Define (1) = 7.

Now since 7' = HJ(1+ 1,20 + )™ (4p0 + )N + N, Pick F, My, M, ...,
Ml7 <(V0,17V1,/7 ~~-3VN,/)>]€F7

ﬁ = ((’71,17’71,27 "'7'71,N)’ ('72,17712,27 "'7’72,N)7 I (nk,lvnklv "'7’7k,N))e([_Qv Q]N>k7

and re{l1,2,..., N} such that
(1) F, My, M, ..., M, are pairwise disjoint;
) FuMyuMu...uM, = {N+1N—|—2 LT}
(3) each M,#0 and min My<min M; < --- <min M,;
(4) for each IeF, (vo1, Vi, ...,vNJ)e[—2pQ’,2pQ’]N+1;
(5) r=min{je{l,2,...,N} : n;#0} and n; , = D’; and,
(6) whenever

7= ((AON+1, M NATs ees ANN41)s (AON+25 ALN42y oovs ANN42)s

©y (;LO,Ta }“l‘Tv "'le,T)) € ([_2Ple 2PQI]N+1)T7N

satisfies
(a) for each IeF, (Ao, 217, vy ANg) = (Vous Vi, ..., V) and
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(b) for each se€{0,1,...,¢} and each [lLveM,, (los, it ..., ANI)=
(Z0.0y AMuy ---sAnp) one has t(4) =7, and consequently, for each
ie{l,2,...,k—1}, there is an edge between Zfil nkj(czD’bj +

S Lns1 ¢Ajibr) and

A(D'Vz! + (Db + Z Dc}01b1+z 0, (Db + Z chjibi).

I=N+1 J=1 I=N+1

Now for each s€{0,1, ..., 1}, leta; = >, ), (D')?chy. For ie{1,2, ...,k — 1}, let

= (D/)ZCZ, D/ chy + Z DVO /b; + Z Dcnub + ZZ n;Vj, by,

leF leF j=
and let
% = Z Dlety b+ Z e Vi1b1
leF j=
We shall show that (ag,ay, .. )pc_S and that the sets {cz; + [ao, a1, ...,a,]p>f:1

form a complete k-partite subgraph of G, completing the proof that part (b) of
o(k,m,p,c,t) holds.
We show first that (ag,ay, ...,a )p(,_(bo,bl,...,br)Q,,,D,,‘ So let xe(ag,a,...,

)pL, and pick f€{0,1, ..., ¢} and pg.y, pg.o, ..., 4, €[—p,p] such that

X = cag+ Z Uy,
s=p+1

Then

1

x=> ADVhi+ Y Y ue(D)h.

le My s=p+1 leM,

Since min Mg<min UE:/} 41 M, we have that the leading coefficient in this

expansion is D", while all other coefficients are at most pc(D’ )2< (048
Next we show that for each ie{1,2, ...,k — 1},

czi + |ao, ar, ...,al}pED"z,-’ + [bo, b1, oo b7 s

and consequently the sets < cz; + [ag, ay, ..., d;] ) >f-:11 form a complete (k — 1)-partite
graph. To this end, let ugy, uy, ...,y €[—p,p]. Then

czi + Zuvas = 2c22 "+ (D )2 by + Z cDvy by + Z D’cznub
leF Jj=1

IDID SRS o SPRCIE

leF j= s=0 leM;
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The coefficient on z; in this expansion is D” while the coefficients on the b;,’s have
absolute value at most 2pc(Q’)2< (048

Finally we let ie{l,2,...,k—1}, let wecz; +[ag, ai, ...,al,, let xecz +
[a0, a1, ...,a,]p7 and show that there is an edge between w and x. Pick
%0, 01y oery O, 00,01, ..., Os€[—p,p]  such that w=cz+>.. , wa; and x=
czx + Z;:o dsas. Then

w=(D')Pz + (D) by + Z cD'vy b; + Z D’czn,db + Z Z cn; viabi

leF leF j=
t
+3° 3 a(D) el

s=0 le M,
and
X*ZDcnk]b +Z chka]/b[+Z Z cb/
leF j= s=0 leM;

For/eF andje{0,1,...,N}, let 4;; =v;;. For se{0,1, ..., ¢} and le My, let 4,; =
D'oy, let Aoy = D'ug —1n;,05, and for je{l,2,..., N}\{r}, let 4;; = 0. Note that each
|4;1|<2pQ'. Note also that for se{0, 1, ..., 7} and /e M,

S 2
Z’?kﬂ/}l = (D)
=1

and
N
D'cios + an—ij,;c = (D).
=
Then
A= ((RoN+1y oo ANN41) (RO N425 ooos ANN12)s vy (R0,T5 ooy ANT)) E
([-2pQ . 2pQ NN
satisfies

(a) for each /e F, (Aos, A1sy -, 2ng) = (Vou, Vi, ..., Vi) and
(b) for each se{0,1,...,¢7} and each [LveM, (los,Aij, ..o Ang) =
(20,05 Ay +evs ANw)-

Consequently, there is an edge between Z{L Ny (¢ D'by + S ns1 Cby) and

A(D)z! + A(D)hy + Z Dcﬂglbm—Zr/,J (*D'b; + Z cjiby).

I=N+1 J= [=N+1
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Now

leb + Z (//L,][b]

\\Mz

I=N+1
N t N
*Z Db+ Z "ka"//Cbl+Z S mhiach
J=1 leF j= s=0 leM, j=1
N
= JEDb +Y Z nkjv,zcbwz ST D)o
j=1 leF j= s=0 leM,

Also,

A(D')*z + A(D)hy + Z Dc)q)/b;—i—z n;; (*D'b; + Z cjiby)

I=N+1 = I=N+1

:CZ(D/)zz[’+C(D' b +Z r’ld 2D’b +Z DC/10[+Z 11[] IICb
/1

leF Jj=1
+Z > Dc)uoz-FZ n;jAj,1¢)b

s=0 leM;

ZCZ(D/)2ZZ,/+C (D’ b0+z 0 e 2Db Jrz DCVOIJFZ n,JV//C b
Jj=1

leF j=1
+i Z (D)2 coby

s=0 leM;
= w. O

5. Independent arithmetic progressions, revisited

The following (in a more general form) was originally proved in [9] by application
of the Hales—Jewett theorem. To illustrate a different approach in a special case, we
now give a different proof, this time using Szemerédi’s density theorem for arithmetic
progressions [18] (which says that for any m and ¢> 0 there exists an # so that any set

of en elements from [1, n] contains an m-term arithmetic progression).

Theorem 5.1 (Gunderson et al. [9]). Fix k and /. If G is a Ky-free graph on N, then

there exists an {-term arithmetic progression which spans an independent set in G.

Proof. Denote by S(k, /) the following statement: There exists an integer n = n(k, /)
such that for every Ki-free graph G whose vertex set is an arithmetic progression of
length n, there exists an arithmetic progression of length # which is an independent

set in G.
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If for every k and ¢, S(k, /) holds, then Theorem 5.1 follows. For each fixed / we
will prove S(k,/) by induction on k.

Observe that S(2,/) is trivially true with n(2,/) = /. Suppose, therefore, that
S(k — 1,/) holds and set n* = n(k — 1,/). Let n = n(k, /) be very large and consider
a Kj-free graph G with vertex set {a,a+d,....,a+ (n—1)d}. Assume that G
contains no independent set which is an arithmetic progression of length /. Also,
observe that V(G) contains

(”(/1))+(n2(,/1))+...+(n V_IJ(‘”)%

/-1

arithmetic progressions of length /. Since each of these arithmetic progressions
contains an edge and each edge is contained in at most (g) arithmetic progressions of
length / the graph G contains at least

n’ </ ) - 2n?

I 2_

30\ 2 3/
edges. This means that there exists a vertex x joined to at least 34% other vertices. Now
if n is sufficiently large compared to n*, we may infer by Szemerédi’s theorem that the
neighborhood of x contains an arithmetic progression Y of length n*. Since
{x,y} € E(G) for every ye Y the subgraph G[Y] of G induced by Y does not contain
Ki_i. Thus, by the induction assumption S(k —1,/), the set Y contains an
arithmetic progression of length # which is an independent set in G[Y] and hence

alsoin G. O

We note that since an early draft of this paper, J. Solymosi (personal
communication) has independently observed a similar proof of Theorem 5.1.
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