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Abstract

We show that for any k;m; p; c; if G is a Kk-free graph on N then there is an independent set

of vertices in G that contains an ðm; p; cÞ-set. Hence if G is a Kk-free graph on N; then one can
solve any partition regular system of equations in an independent set. This is a common

generalization of partition regularity theorems of Rado (who characterized systems of linear

equations Ax ¼ 0 a solution of which can be found monochromatic under any finite coloring

of N) and Deuber (who provided another characterization in terms of ðm; p; cÞ-sets and a

partition theorem for them), and of Ramsey’s theorem itself.
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1. Introduction and statement of results

In this paper we are interested in graphs whose vertices are natural numbers, and
in arithmetic properties of independent sets in such graphs. We use N to denote the
set of natural numbers—not including 0—and o ¼ N,f0g: We write ½a; b� ¼
fcAZ : apcpbg to denote an interval of integers.
Let A be a finite matrix with integer entries. The system of linear equations Ax ¼ 0

is called partition regular (over N) if for every partition of N into finitely many
classes there exists a solution completely contained in one class.
Schur’s theorem [17] says that for any positive integer r; there exists n so that for

every coloring r : ½1; n�-½1; r� there exist x; yA½1; n� with rðxÞ ¼ rðyÞ ¼ rðx þ yÞ: The
equation x þ y 	 z ¼ 0 describes these Schur triples, and so is partition regular. Van
der Waerden’s theorem [19] states that for any positive integers r; c; there exists n so
that for any coloring r : ½1; n�-½1; r� there is a monochromatic c-term arithmetic
progression. Solutions to equations x 	 2y þ z ¼ 0 are 3-term arithmetic progres-
sions or are constant and so this system is also partition regular. Similarly, systems of
equations describing any longer arithmetic progressions form partition regular
systems. An example of a simple system which is not partition regular is x þ y ¼ 3z:
(See, e.g., [6] or [7] for more details.)
A characterization of partition regular systems of equations was first given by

Rado [15] in terms of something (which is not relevant to our use here) called the
‘‘columns property’’. Deuber [2] later gave another characterization of partition
regular systems using structures called ‘‘ðm; p; cÞ-sets’’, which we now define.

Definition 1.1. Let p; cAN with cpp; and let mAo: A set of integers S is an ðm; p; cÞ-
set if SCN and there exist positive integers (generators) x0; x1;y; xm so that
S ¼ R0ðSÞ,R1ðSÞ,?,RmðSÞ; where

R0ðSÞ ¼ fcx0 þ l1x1 þ l2x2 þ?þ lmxm: l1;y; lmA½	p; p�g;
R1ðSÞ ¼ fcx1 þ l2x2 þ?þ lmxm: l2;y; lmA½	p; p�g;

^ ^

Rm	1ðSÞ ¼ fcxm	1 þ lmxm: lmA½	p; p�g;
RmðSÞ ¼ fcxmg:

In this case we write S ¼ ðx0; x1;y; xmÞp;c and we say that RkðSÞ is the ðk þ 1Þth row
of S:

We note that the condition cpp is for convenience only; nothing would be lost
without this condition because for any p04p; every ðm; p0; cÞ-set trivially contains an
ðm; p; cÞ-set.
In honor of Deuber’s contributions to the field, if a set S is an ðm; p; cÞ-set for some

m; p; c; then we might simply say that S is a Deuber set without specifying the
parameters m; p; c:
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Theorem 1.2 (Deuber [2]). A linear system Ax ¼ 0 is partition regular if and only if

there exist positive integers m; p; c such that every ðm; p; cÞ-set contains a solution of

Ax ¼ 0:

In proving a conjecture by Rado regarding partition regular systems, Deuber used
the following partition theorem.

Theorem 1.3 (Deuber [2]). For every mAo; every p; cAN with cpp and every kAN;
there exists n; q; dAN with dpq so that for every ðn; q; dÞ-set X and every coloring

r : X-½1; k�; there exists a monochromatic ðm; p; cÞ-set contained in X.

To state our results, we adopt standard notation. For a set S and nAo;
let ½S�n ¼ fFDS : jF j ¼ ng: Let G ¼ ðV ;EÞ denote a (simple) graph on vertex set

V ¼ VðGÞ with edge set E ¼ EðGÞD½V �2: A set YCVðGÞ is called independent

in G if ½Y �2-EðGÞ ¼ |: When EðGÞ ¼ ½VðGÞ�2; we say that G is complete, and
the complete graph on n vertices is denoted by Kn: A graph G ¼ ðV ;EÞ is k-partite

if V can be partitioned into k sets, V ¼ V1,?,Vk; each Vi containing no
edges, and is a complete k-partite graph if for each iaj; whenever xAVi and yAVj

then fx; ygAE: A complete bipartite graph on sets of size m and n will be denoted
by Km;n:
The main result in this paper is the following.

Theorem 1.4. Given k; p; cAN with cpp and mAo; there exist n; q; dAN so that any

Kk-free graph on an ðn; q; dÞ-set contains an independent ðm; p; cÞ-set.

Remarks. (1) Theorem 1.4 generalizes Theorem 1.3 by the following reasoning: Fix
k;m; p; c; let n; q; d be guaranteed by Theorem 1.4, and fix an ðn; q; dÞ-set X : Color X

with r ¼ k 	 1 colors and form the complete ðk 	 1Þ-partite graph G whose partite
sets are color classes. Since G is Kk-free, by Theorem 1.4 some ðm; p; cÞ-set is
independent in G; and hence must be contained in one partite set, i.e., a single color
class. Hence there is a monochromatic ðm; p; cÞ-set. Since ðm; p; cÞ-sets contain sum-
sets and arithmetic progressions, Theorem 1.4 also implies theorems of van der
Waerden, Schur, and others.

(2) Theorem 1.4 also generalizes Ramsey’s theorem for graphs, because under any
red–blue coloring of the pairs of a large set, rather than guaranteeing either a red Kk

or a large blue clique, we guarantee either a red Kk; or a large blue clique on an
ðm; p; cÞ-set.

Since any ðn; q; dÞ-set sits in some initial interval of the positive integers, Theorem
1.4 immediately implies the following statement:

Corollary 1.5. Given k; p; cAN; mAo; and any Kk-free graph G with vertex set N;
there exists an ðm; p; cÞ-set which is independent in G:
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Corollary 1.5 can be formulated in terms of partition regular systems by using the
m; p; c guaranteed in Theorem 1.2:

Corollary 1.6. For any kX2 and any Kk-free graph on N; one can solve any partition

regular system in an independent set.

We do not know if there is a hypergraph version of Theorem 2.1. For example, is
there an analogous condition on a family of triples of N that would imply that there
is an ðm; p; cÞ-set not containing any triple? If so, it is not so simple, as the following
example indicates. Let H be the 3-uniform hypergraph onN defined with hyperedges

of the form fx; x þ d; x þ 3dg: Then H is K
ð3Þ
4 -free, yet every arithmetic progression

of length 4 contains a hyperedge.

2. Earlier work

Ramsey’s theorem for graphs [16] says that for any positive integers r; and m; there

exists n so that for any coloring r : ½1; n�2-½1; r�; there exists MA½1; n�m so that ½M�2
is monochromatic. Erd +os [4] asked whether the following natural generalization of
both Ramsey’s theorem and Schur’s theorem holds: If G is a triangle-free graph on
vertex set N; does there always exist an independent Schur triple, that is, do there
exist x; y; xay so that FSðx; yÞ ¼ fx; y; x þ yg is independent in G? The answer is
yes, as proved in [13] where it was shown that in fact, for fixed k and d; if G is a Kk-
free graph on N; then there exist distinct integers a1; a2;y; ad ; so that the finite sum
set FSðfa1;y; adgÞ is an independent set in G: Harborth et al. (see, e.g., [1,11]) have
given some sharp lower bounds on n so that if G is a graph on ½1; n�; these results
hold (except the ai need not be distinct).
Related progress was also made for an infinite version of Erd +os’ question.

Given a set fxigiAI of distinct positive integers, let FSðfxigiAI Þ ¼
P

jAJ xj :
n

|aJDI ; jJjoNg denote the finite sums (with no repetitions) from the set. When I is
infinite, we say that FSðfxigiAIÞ is a Hindman set. In 1995, Hajnal asked the

following (see [5]): If G is a triangle-free graph on N; does there always exist a
Hindman set independent in G? Hajnal’s question has been answered in the negative
in [3]. Variants of Hajnal’s question have been shown to indeed have a positive
answer; for example, if the condition ‘‘triangle-free’’ is replaced by ‘‘Kk;k-free’’

(see [3,9,13]).
A common generalization of Ramsey’s theorem and van der Waerden’s theorem

was also found in [9]: For fixed k and c; if G is a Kk-free graph onN; then there exists
an c-term arithmetic progression which spans an independent set in G:
Coloring theorems for arithmetic progressions or finite sums have abstract

analogues (the Hales–Jewett theorem and the Graham–Rothschild theorem,
respectively; see, e.g., [7] or [14]), from which they can be deduced instantly. In
contrast, Deuber’s theorem for partitioning ðm; p; cÞ-sets cannot be accomplished by
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any one application of such a theorem; several iterations are required. As with
Deuber’s theorem, one would not expect to be able to prove our main result for
ðm; p; cÞ-sets with any single application of an abstract theorem. Indeed, the first
situation where a single process does not seem to work is for an arithmetic
progression together with its difference—which is the simplest kind of subset of an
ðm; p; cÞ-set not necessarily contained in any one row. In [9] it was proved that for
any k; cX3; in any Kk-free graph, there exists an c-term arithmetic progression
together with its difference, all contained in an independent set. This proof used a
form of the Gallai–Witt theorem applied iteratively; it does not seem to follow from
one application of any of the major abstract theorems (like the Hales–Jewett or
Graham–Rothschild theorems).

3. Preliminary results

We now briefly describe one of our main tools, the Hales–Jewett theorem.
Let A denote a finite alphabet; write As ¼ fðx1;y; xsÞ : xiAAg: Let ½1; s� ¼

F,M1,?,Mt be a partition with jMj j40 for j ¼ 1; 2;y; t and let ðgiÞiAFAAF be

a fixed jF j-tuple. A t-dimensional subcube of As (associated with ðgjÞjAF and the

partition F,M1,?,Mt) is a set of the form

HJCðF ;M1;y;Mt; ðgjÞjAF Þ ¼ fðx1;y; xsÞ : xj ¼ gj for jAF and

xj ¼ xj0 if j; j0AMa for some ag:

We now state the central theorem regarding parameter sets.

Theorem 3.1 (Hales–Jewett). For every t; rAN and every finite alphabet A; there

exists s ¼ HJðt; r; jAjÞ so that for every coloring r : As-½1; r�; there exists a

monochromatic t-dimensional subcube of As:

The original version in [10] yields a one-dimensional subcube. That version easily
implies the current version (see [7, p. 40]). See [14] for a survey of results,
applications, and notation for parameter words, another language to describe the
Hales–Jewett theorem.

Definition 3.2. Let p; c; q; dAN with cpp and qpd; let U ¼ ðx0; x1;y; xmÞp;c be an

ðm; p; cÞ-set, and let V ¼ ðy0; y1;y; ynÞq;d be an ðn; q; dÞ-set. We say that U is

naturally contained in V ; written U%V if and only if there is a strictly increasing
function

c : f0; 1;y;mg-f0; 1;y; ng

such that for each iAf0; 1;y;mg; RiðUÞDRcðiÞðVÞ:

Notice that natural containment is trivially transitive.
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Example 3.3. The ð1; 3; 1Þ-set A ¼ ð10; 1Þ3;1 is contained in the ð2; 2; 1Þ-set B ¼
ð20; 5; 1Þ2;1 but A is not naturally contained in B: In fact, R0ðAÞ is not contained in

any row of B:

We now present some simple results that guarantee that all inclusions with which
we shall be concerned are natural.
For any p;mAN; we use

½a0; a1;y; am�p ¼ fl0a0 þ l1a1 þ?þ lmam : l0; l1;y; lmA½	p; p�g;

to denote the span of a0; a1;y; anm:

Lemma 3.4. Let m; p; x0; x1;y; xmAN: If for each iAf0; 1;y;m 	 1g;
xi42p

Pm
j¼iþ1 xj ; then expressions in ½x0; x1;y; xm�p are unique. That is, if

l0; l1;y; lm; m0; m1;y; mmA½	p; p� and
Xm

i¼1
lixi ¼

Xm

i¼1
mixi;

then for each iAf0; 1;y;mg; li ¼ mi:

Proof. Assume that l0; l1;y; lm; m0; m1;y; mmA½	p; p� and
Pm

i¼1 lixi ¼
Pm

i¼1 mixi:

Suppose that there is some iAf0; 1;y;mg such that liami and pick the first such i:
Assume without loss of generality that li4mi: If lmxm ¼ mmxm; then lm ¼ mm; so we
have that iom: ThenXm

j¼iþ1
ðmj 	 ljÞxj ¼ ðli 	 miÞxiXxi42p

Xm

j¼iþ1
xjX

Xm

j¼iþ1
ðmj 	 ljÞxj;

a contradiction. &

With a little more work one can show that 6pc can be replaced by 5pc in the

following lemma. (Here and later, if i ¼ m; then we set
Pm

j¼iþ1 xj ¼ 0:)

Lemma 3.5. Let m; p; cAN with cpp and assume that x0; x1;y; xmAN and

ðx0; x1;y; xmÞ6pc;cDN: Let U ¼ ðx0; x1;y; xmÞp;c: For each iAf0; 1;y;m 	 1g;
xi46p

Pm
j¼iþ1 xj and min RiðUÞ4max Riþ1ðUÞ: Also, any length 3 arithmetic

progression in U is contained in some row of U :

Proof. Let iAf0; 1;y;m 	 1g: Then cxi 	
Pm

j¼iþ1 6pcxjAN so xi46p
Pm

j¼iþ1 xj :

Thus

min RiðUÞ ¼ cxi 	
Xm

j¼iþ1
pxjXxi 	

Xm

j¼iþ1
pxj4

Xm

j¼iþ1
pxjXcxiþ1

þ
Xm

j¼iþ2
pxj ¼ max Riþ1ðUÞ:
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Now assume we have d40 such that fa; a þ d; a þ 2dgDU : Pick i; kAf0; 1;y;mg
and liþ1; liþ2;y; lm; mkþ1; mkþ2;y; mmA½	p; p� such that

a ¼ cxi þ
Xm

j¼iþ1
ljxj

and

a þ d ¼ cxk þ
Xm

j¼kþ1
mjxj:

Since a þ d4a; we have that kpi: Suppose that koi: Then

d ¼ cxk þ
Xi	1

j¼kþ1
mjxj þ ðmi 	 cÞxi þ

Xm

j¼iþ1
ðmj 	 ljÞxj

and so

a þ 2d ¼ 2cxk þ
Xi	1

j¼kþ1
2mjxj þ ð2mi 	 cÞxi þ

Xm

j¼iþ1
ð2mj 	 ljÞxj:

Since the absolute value of each coefficient in the expansion of a þ 2d is at most 3p;
we have by Lemma 3.4 that a þ 2deU :
Thus k ¼ i and

d ¼
Xm

j¼iþ1
ðmj 	 ljÞxj

and so

a þ 2d ¼ cxi þ
Xm

j¼iþ1
ð2mj 	 ljÞxj:

Again by Lemma 3.4 we have that a þ 2dARiðUÞ: &

Lemma 3.6. Let n; q; dAN with dpq and assume that x0; x1;y; xnAN and

ðx0; x1;y; xnÞ6qd ;dDN: If mAo; p; cAN with cpp; y0; y1;y; ymAN; and Y ¼
ðy0; y1;y; ymÞp;cDðx0; x1;y; xnÞq;d ¼ X ; then for each iAf0; 1;y;mg there exists

jAf0; 1;y; ng such that RiðYÞDRjðX Þ:

Proof. We proceed by induction on m: The case m ¼ 0 is trivial, so assume that
mAN and the assertion is true for m 	 1: Let iAf0; 1;y;mg: If i40; then RiðY Þ ¼
Ri	1ððy1; y2;y; ymÞp;cÞ so the conclusion holds by the induction hypothesis. So

assume that i ¼ 0: Let D ¼ R0ððy0; y1;y; ym	1Þp;cÞ and pick by the induction

hypothesis some jAf0; 1;y; ng such that DDRjðXÞ: Now let l1; l2;y; lmA½	p; p�:
If lm ¼ 0; then cy0 þ

Pm
l¼1 llylADDRjðXÞ; so assume lma0: Then E ¼ fcy0 þPm	1

l¼1 llyl 	 lmym; cy0 þ
Pm	1

l¼1 llyl ; cy0 þ
Pm	1

l¼1 llyl þ lmymg is a three term
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arithmetic progression in X so is contained RkðXÞ for some k by Lemma 3.5. Since

D-Ea|; k ¼ j: &

Lemma 3.7. Let n; q; dAN with dpq and assume that x0; x1;y; xnAN and

ðx0; x1;y; xnÞ6qd ;dDN: If mAo; p; cAN with cpp; y0; y1;y; ymAN; and Y ¼
ðy0; y1;y; ymÞp;cDðx0; x1;y; xnÞq;d ¼ X ; then Y%X :

Proof. Let iAf0; 1;y;m 	 1g and pick by Lemma 3.6 j; kAf0; 1;y; ng such
that RiðYÞDRjðX Þ and Riþ1ðY ÞDRkðXÞ: We show that jok: Pick ljþ1;
ljþ2;y; ln; mjþ1; mjþ2;y; mn; gkþ1; gkþ2;y; gnA½	q; q� such that

cyi ¼ dxj þ
Xn

l¼jþ1
llxl ;

cyi þ cyiþ1 ¼ dxj þ
Xn

l¼jþ1
mlxl ;

and

cyiþ1 ¼ dxk þ
Xn

l¼kþ1
glxl :

Then cyiþ1 ¼
Pn

l¼jþ1 ðml 	 llÞxl ; so by Lemma 3.4 kXj þ 1: &

We shall refer later to the conclusion of the following theorem by stating that ‘‘all
inclusions in ðx0; x1;y; xnÞq;d are natural’’.

Theorem 3.8. Let n; q; dAN with dpq and assume that x0; x1;y; xnAN and

ðx0; x1;y; xnÞ6qd ;dDN: If m;MAo; p; c;P;CAN with cpp and CpP;

y0; y1;y; ym; z0; z1;y; zMAN; Y ¼ ðy0; y1;y; ymÞp;cDðx0; x1;y; xnÞq;d ¼ X ; Z ¼
ðz0; z1;y; zMÞP;CDX ; and YDZ; then Y%Z:

Proof. By Lemma 3.7 we have that Y%X and Z%X : We show first that for each
iAf0; 1;y;mg there exists jAf0; 1;y;Mg such that RiðYÞDRjðZÞ: Suppose instead
that one has iAf0; 1;y;mg; a; bARiðYÞ; and jok in f0; 1;y;Mg such that
aARjðZÞ and bARkðZÞ: Since Z%X ; we have uov in f0; 1;y; ng such that

aARuðX Þ and bARvðXÞ: By Lemma 3.5, RuðXÞ-RvðXÞ ¼ | and by Lemma 3.6,
RiðYÞDRuðX Þ; a contradiction.
Now let iAf0; 1;y;m 	 1g and pick j; kAf0; 1;y;Mg such that RiðY ÞDRjðZÞ

and Riþ1ðY ÞDRkðZÞ: Pick uov in f0; 1;y; ng such that RiðY ÞDRuðXÞ
and Riþ1ðYÞDRvðXÞ: Then RjðZÞ-RuðX Þa| so RjðZÞDRuðXÞ: Likewise

RkðZÞDRvðX Þ; and therefore jok: &

We shall need a slightly strengthened version of Deuber’s Theorem (Theorem 1.3).
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Theorem 3.9. For every mAo; every p; cAN with cpp and every kAN; there exists

n; q; dAN with dpq so that for every ðn; q; dÞ-set X and every coloring r : X-½1; k�;
there exists a monochromatic ðm; p; cÞ-set naturally contained in X :

Proof. Pick n0; q0; d 0 as guaranteed by Theorem 1.3. Let n ¼ n0; q ¼ 6q0d 0; and d ¼ d 0:
Let X ¼ ðx0; x1;y; xnÞq;d be k-colored. Then Y ¼ ðx0; x1;y; xn0 Þq0;d 0 is naturally

contained in X and by Theorem 1.3 Y contains a monochromatic ðm; p; cÞ-set. By
Lemma 3.7, this inclusion is natural. &

The following technical lemma completes our preliminaries.

Lemma 3.10. Let m; p; c;M;P;CAN with cpp and CpP: Let w1;w2;y;
wm; v1; v2;y; vMAN: If ðw1;w2;y;wmÞp;cDðcv1; cv2;y; cvMÞP;C ; then ½w1;w2;y;

wm�pD½v1; v2;y; vM �ð2cþpÞP:

Proof. First consider any
Pm

j¼2 ljwj with each ljA½	p; p�: Then

cw1 þ
Xm

j¼2
ljwjAðw1;w2;y;wmÞp;cDðcv1; cv2;y; cvMÞP;CD½cv1; cv2;y; cvM �P

and cw1A½cv1; cv2;y; cvM �P; so
Pm

j¼2 ljwjA½cv1; cv2;y; cvM �2PD½v1; v2;y; vM �2cP:

Also cw1A½cv1; cv2;y; cvM �P so w1A½v1; v2;y; vM �P; so for any l1A½	p; p� one has
l1w1A½v1; v2;y; vM �pP and thus

Pm
j¼1 ljwjA½v1; v2;y; vM �pPþ2cP: &

4. Main proof: existence of independent ðm; p; cÞ-sets

In the proof of Theorem 1.4, we use the following earlier result.

Theorem 4.1. For every k; n; q; dAN there exist n0; q0; d 0AN so that for any ðn0; q0; d 0Þ-
set X and any Kk-free graph G with vertex set X ; there exists an ðn; q; dÞ-set S

naturally contained in X ; each of whose rows is an independent set in G:

The proof of Theorem 4.1 (see [8]) is accomplished by repeating the standard
parameter sets proof of Deuber’s partition theorem (see, e.g., [12]), once one knows
that in a Kk-free graph on a large-dimensional Hales–Jewett cube there is always a
line (or, more generally, a d-dimensional subspace) that is independent—this latter
fact is proved in [9].
In view of Theorem 4.1, it is sufficient to prove Theorem 1.4 under the assumption

that the graph G on an ðn; q; dÞ-set S has all rows as independent sets. Rather than
prove Theorem 1.4 with this additional assumption, we will prove a stronger
statement, Theorem 4.3, below. Since a large complete k-partite graph contains
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many copies of Kk; Theorem 1.4 will clearly follow. This somewhat stronger theorem
turns out to be easier to prove.

Definition 4.2. Let k; p; c; tAN with cpp and let mAo: Then jðk;m; p; c; tÞ is the
statement ‘‘there exist n; q; dAN such that whenever S is an ðn; q; dÞ-set and G is a
graph on S such that the rows of S are independent, there exist either

(a) an independent ðm; p; cÞ-set contained in S or
(b) z1; z2;y; zk; a0; a1;y; atAN such that ða0; a1;y; atÞp;cDS and the sets /czi þ

½a0; a1;y; at�pSk
i¼1 form a complete k-partite subgraph of G:’’

Theorem 4.3. For all k; p; c; tAN with cpp and all mAo; the statement jðk;m; p; c; tÞ
holds.

Proof. The proof is by induction on m and k:
For the base cases, note that for all m0; p; c; t; part (b) of jð1;m0; p; c; tÞ holds, and

for all k0; p; c; t; part (a) of jðk0; 0; p; c; tÞ holds.
So assume that kX2 and mX1; and for the induction hypotheses, suppose

that for all m0; p; c; t; statement jðk 	 1;m0; p; c; tÞ holds, and for all p; c; t;
statement jðk;m 	 1; p; c; tÞ holds. We need to show that jðk;m; p; c; tÞ holds for
all p; c; t: Pick p; c; t such that part (a) of jðk;m; p; c; tÞ fails; we show that
part (b) holds.

1. Let ðM;P;CÞ be the ðn; q; dÞ guaranteed by jðk;m 	 1; p; c; tÞ:
2. Let ðN;Q;DÞ be such that whenever an ðN 	 1;Q;DÞ-set is ðk 	 1Þ-colored, it

naturally contains a monochromatic ðM; ðp þ 2cÞP; cCÞ-set. (Such ðN;Q;DÞ exist
by Theorem 3.9.) We may assume that N4m:

3. Set Q0 ¼ ð2cC þ ð2c þ pÞPÞQ; D0 ¼ cCD; and let

T ¼ HJðt þ 1; ð2Q0 þ 1ÞNk; ð4pQ0 þ 1ÞNþ1Þ þ N:

4. Put Q00 ¼ 2cpðQ0Þ2ðN þ 1Þ; D00 ¼ c2ðD0Þ2; and let ðn0; q0; d 0Þ satisfy jðk 	 1;
N;Q00;D00;TÞ:

5. Pick ðn; q; dÞ such that any ðn; q; dÞ-set S0 naturally contains an ðn0; q0; d 0Þ-set for
which all inclusions are natural. (Such ðn; q; dÞ exists by Theorem 3.8.)

Since part (a) of jðk;m; p; c; tÞ fails, pick an ðn; q; dÞ-set S0 and a graph G0 on
S0 for which the rows are independent but S0 does not contain an independent
ðm; p; cÞ-set.
Pick an ðn0; q0; d 0Þ-set S which is naturally contained in S0 and such that all

inclusions within S are natural. Let G be the subgraph of G0 induced on S: Note that
S does not contain an independent ðm; p; cÞ-set.

Claim 1. If U ¼ ðv0; v1;y; vMþ1Þðpþ2cÞP;cCDS; then there is an edge of G between a

point in the first row of U and a point in some later row of U.
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Proof. We have ðcv1; cv2;y; cvMþ1ÞP;CDUDS so by the choice of ðM;P;CÞ;
pick an independent ðm 	 1; p; cÞ-set ðw1;w2;y;wmÞp;cDðcv1; cv2;y; cvMþ1ÞP;C : (If

clause (b) of the definition of jðk;m 	 1; p; c; tÞ applied, one would have
jðk;m; p; c; tÞ:)
Let V ¼ ðCv0;w1;w2;y;wmÞp;c: One has immediately that

[m
i¼1

RiðVÞ ¼ ðw1;w2;y;wmÞp;cDðcv1; cv2;y; cvMþ1ÞP;CD
[Mþ1

i¼1
RiðUÞDS:

Also, R0ðVÞ ¼ cCv0 þ ½w1;w2;y;wm�pDcCv0 þ ½v1; v2;y; vm�ð2cþpÞP ¼ R0ðUÞ; where
the inclusion holds by Lemma 3.10.
Now R0ðVÞ is contained in a row of S; so is independent, and

[m
i¼1

RiðVÞ ¼ ðw1;w2;y;wmÞp;c;

which is independent, so, since V is not independent, there must be an edge between
a point of R0ðVÞ and a later row of V and hence between a point of R0ðUÞ and a
later row of U : &

Claim 2. Let w1;w2;y;wNAN: Recall that Q0 ¼ ð2cC þ ð2c þ pÞPÞQ and D0 ¼ cCD:
Assume that for each iAf1; 2;y; k 	 1g; biAN and ðbi;w1;w2;y;wNÞQ0;D0DS:

Then there is some xAðcCw1; cCw2;y; cCwNÞQ;D (and therefore some xA
ðw1;w2;y;wNÞQ0;D0) such that for each iAf1; 2;y; k 	 1g there is an edge from x

to a point in the first row of ðbi;w1;w2;y;wNÞQ0;D0 :

Proof. Suppose not and color xAðcCw1; cCw2;y; cCwNÞQ;D by the first

iAf1; 2;y; k 	 1g such that there is no edge from x to a point in the first row of
ðbi;w1;w2;y;wNÞQ0;D0 : By the choice of ðN;Q;DÞ pick iAf1; 2;y; k 	 1g and

v0; v1;y; vm such that ðv0; v1;y; vMÞðpþ2cÞP;cCDðcCw1; cCw2;y; cCwNÞQ;D and for

each xAðv0; v1;y; vMÞðpþ2cÞP;cC there is no edge from x to any point in the first row

of ðbi;w1;w2;y;wNÞQ0;D0 :

Let U ¼ ðDbi; v0; v1;y; vMÞðpþ2cÞP;cC : Now

ðv0; v1;y; vMÞðpþ2cÞP;cCDðw1;w2;y;wNÞcCQ;cCD:

We claim that R0ðUÞDR0ððbi;w1;w2;y;wNÞQ0;D0 Þ: To see this, let y ¼ cCDbi þPM
l¼0 llvl where each llA½	ðp þ 2cÞP; ðp þ 2cÞP�: By Lemma 3.10,

XM
l¼0

llvlA½w1;w2;y;wN �ð2cCþðpþ2cÞPÞQ;

so yAR0ððbi;w1;w2;y;wNÞQ0;D0 Þ as claimed.
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Thus by Claim 1, there is an edge between a point yAR0ðUÞ and some point x

in a later row of U : But then xAðcCw1; cCw2;y; cCwNÞQ;D and yAR0ððbi;

w1;w2;y;wNÞQ0;D0 Þ; a contradiction. &

We now observe that there is no independent ðN;Q00;D00Þ-set in S: Indeed, assume

one has ðx0; x1;y; xNÞQ00;D00DS: Then, since moN and pcðD0Þ2oQ00; one has that

ðcðD0Þ2x0; cðD0Þ2x1;y; cðD0Þ2xmÞp;cDðx0; x1;y; xNÞQ00;D00 :

Since ðcðD0Þ2x0; cðD0Þ2x1;y; cðD0Þ2xmÞp;c is not independent, neither is

ðx0; x1;y; xNÞQ00;D00 :

By the choice of ðn0; q0; d 0Þ; since there is no independent ðN;Q00;D00Þ-set in S; pick
b0; b1;y; bT ; z1

0; z2
0;y; zk	1

0 in N such that ðb0; b1;y; bT ÞQ00;D00DS and the sets

/D00zi
0 þ ½b0; b1;y; bT �Q00Sk	1

i¼1

form a complete ðk 	 1Þ-partite graph.
Now let y0; y1;y; yNA½bNþ1; bNþ2;y; bT �2pQ0 and iAf1; 2;y; k 	 1g; and for

jAf0; 1;y;Ng; pick lj;Nþ1; lj;Nþ2;y; lj;TA½	2pQ0; 2pQ0� such that yj ¼PT
l¼Nþ1 lj;lbl : We claim that the first row of ðc2D0zi

0 þ c2D0b0 þ cy0; c2D0b1 þ
cy1; c2D0b2 þ cy2;y; c2D0bN þ cyNÞQ0;D0 is contained in D00zi

0 þ ½b0; b1;y; bT �Q00 : To

see this, let m1; m2;y; mNA½	Q0;Q0�; so that

w ¼ c2ðD0Þ2zi
0 þ c2ðD0Þ2b0 þ cD0y0 þ

XN

j¼1
c2D0mjbj þ

XN

j¼1
cmjyj

is a typical member of the first row of ðc2D0zi
0 þ c2D0b0 þ cy0; c2D0b1 þ cy1; c2D0b2 þ

cy2;y; c2D0bN þ cyNÞQ0;D0 : For each jAf0; 1;y;Ng; the absolute value of the

coefficient of bj in the given expansion of w is at most c2D0Q0oQ00: And for

lAfN þ 1;N þ 2;y;Tg; the absolute value of the coefficient of bl in the given
expansion of w is

jcD0l0;l þ
XN

j¼1
cmjlj;l jpcD02pQ0 þ 2pcðQ0Þ2NoQ00:

Next, we claim that ðc2D0b1 þ cy1; c2D0b2 þ cy2;y; c2D0bN þ cyNÞQ0;D0 is con-

tained in ðb0; b1;y; bTÞQ00;D00 : To see this, let m1; m2;y; mNA½	Q0;Q0� such that,

if r ¼ minf jAf1; 2;y;Ng: mja0g; then mr ¼ D0;

and let

w ¼
XN

j¼1
mjðc2D0bj þ cyjÞ ¼

XN

j¼1
mjc

2D0bj þ
XT

l¼Nþ1

XN

j¼1
cmjlj;lbl :

Then mrc
2D0 ¼ D00; and for jAfr þ 1; r þ 2;y;Ng; if any, the absolute value

of the coefficient of bj in the given expansion of w is at most c2D0Q0oQ00: Also, for
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lAfN þ 1;N þ 2;y;Tg; the absolute value of the coefficient of bl in the given

expansion of w is at most
PN

j¼r c2pðQ0Þ2oQ00:

In particular, we have established that

ðc2D0zi
0 þ c2D0b0 þ cy0; c2D0b1 þ cy1; c2D0b2 þ cy2;y; c2D0bN þ cyNÞQ0;D0DS;

so we may apply Claim 2.

We define t : ð½	2pQ0; 2pQ0�Nþ1ÞT	N-ð½	Q0;Q0�NÞk as follows: Let

%l ¼ððl0;Nþ1; l1;Nþ1;y; lN;Nþ1Þ; ðl0;Nþ2; l1;Nþ2;y; lN;Nþ2Þ;

y; ðl0;T ; l1;T ;y; lN;TÞÞAð½	2pQ0; 2pQ0�Nþ1ÞT	N :

For jAf0; 1;y;Ng; let yj ¼
PT

l¼Nþ1 lj;lbl : Then by Claim 2 applied to

/ðc2D0zi
0 þ c2D0b0 þ cy0; c2D0b1 þ cy1; c2D0b2 þ cy2;y; c2D0bN þ cyNÞQ0;D0Sk	1

i¼1

there is some point in ðc2D0b1 þ cy1; c2D0b2 þ cy2;y; c2D0bN þ cyNÞQ0;D0 with an

edge to a point in the first row of each ðc2D0zi
0 þ c2D0b0 þ cy0; c2D0b1 þ cy1; c2D0b2 þ

cy2;y; c2D0bN þ cyNÞQ0;D0 : That is there is some

%g ¼ ððg1;1; g1;2;y; g1;NÞ; ðg2;1; g2;2;y; g2;NÞ;y; ðgk;1; gk;2;y; gk;NÞÞAð½	Q;Q�NÞk

such that, if r ¼ minf jAf1; 2;y; ng : gk;ja0g; then gk;r ¼ D0 and for each

iAf1; 2;y; k 	 1g; there is an edge between
PN

j¼1 gk;jðc2D0bj þ
PT

l¼Nþ1 clj;lblÞ and

c2ðD0Þ2zi
0 þ c2ðD0Þ2b0 þ

XT

l¼Nþ1
D0cl0;lbl þ

XN

j¼1
gi;j c2D0bj þ

XT

l¼Nþ1
clj;lbl

 !
:

Define tð%lÞ ¼ %g:
Now since T ¼ HJðt þ 1; ð2Q0 þ 1ÞNk; ð4pQ0 þ 1ÞNþ1Þ þ N; Pick F ;M0;M1;y;

Mt; /ðn0;l ; n1;l ;y; nN;lÞSlAF ;

%Z ¼ ððZ1;1; Z1;2;y; Z1;NÞ; ðZ2;1; Z2;2;y; Z2;NÞ;y; ðZk;1; Zk;2;y; Zk;NÞÞAð½	Q;Q�NÞk;

and rAf1; 2;y;Ng such that

(1) F ;M0;M1;y;Mt are pairwise disjoint;
(2) F,M0,M1,y,Mt ¼ fN þ 1;N þ 2;y;Tg;
(3) each Msa| and min M0omin M1o?omin Mt;
(4) for each lAF ; ðn0;l ; n1;l ;y; nN;lÞA½	2pQ0; 2pQ0�Nþ1;
(5) r ¼ minf jAf1; 2;y;Ng : Zk;ja0g and Zk;r ¼ D0; and,

(6) whenever

%l ¼ððl0;Nþ1; l1;Nþ1;y; lN;Nþ1Þ; ðl0;Nþ2; l1;Nþ2;y; lN;Nþ2Þ;

y; ðl0;T ; l1;T ;y; lN;TÞÞAð½	2pQ0; 2pQ0�Nþ1ÞT	N

satisfies
(a) for each lAF ; ðl0;l ; l1;l ;y; lN;lÞ ¼ ðn0;l ; n1;l ;y; nN;lÞ and
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(b) for each sAf0; 1;y; tg and each l; vAMs; ðl0;l ; l1;l ;y; lN;lÞ ¼
ðl0;v; l1;v;y; lN;vÞ one has tð%lÞ ¼ %Z; and consequently, for each

iAf1; 2;y; k 	 1g; there is an edge between
PN

j¼1 Zk;jðc2D0bj þPT
l¼Nþ1 clj;lblÞ and

c2ðD0Þ2zi
0 þ c2ðD0Þ2b0 þ

XT

l¼Nþ1
D0cl0;lbl þ

XN

j¼1
Zi;jðc2D0bj þ

XT

l¼Nþ1
clj;lblÞ:

Now for each sAf0; 1;y; tg; let as ¼
P

lAMs
ðD0Þ2cbl : For iAf1; 2;y; k 	 1g; let

zi ¼ ðD0Þ2czi
0 þ ðD0Þ2cb0 þ

X
lAF

D0n0;lbl þ
XN

j¼1
D0cZi;jbj þ

X
lAF

XN

j¼1
Zi;jnj;lbl ;

and let

zk ¼
XN

j¼1
D0cZk;jbj þ

X
lAF

XN

j¼1
Zk;jnj;lbl :

We shall show that ða0; a1;y; atÞp;cDS and that the sets /czi þ ½a0; a1;y; at�pS
k
i¼1

form a complete k-partite subgraph of G; completing the proof that part (b) of
jðk;m; p; c; tÞ holds.
We show first that ða0; a1;y; atÞp;cDðb0; b1;y; bTÞQ00;D00 : So let xAða0; a1;y;

atÞp;c; and pick bAf0; 1;y; tg and mbþ1; mbþ2;y; mtA½	p; p� such that

x ¼ cab þ
Xt

s¼bþ1
msas:

Then

x ¼
X

lAMb

c2ðD0Þ2bl þ
Xt

s¼bþ1

X
lAMs

mscðD0Þ2bl :

Since min Mbomin
St

s¼bþ1 Ms; we have that the leading coefficient in this

expansion is D00; while all other coefficients are at most pcðD0Þ2oQ00:
Next we show that for each iAf1; 2;y; k 	 1g;

czi þ ½a0; a1;y; at�pDD00zi
0 þ ½b0; b1;y; bT �Q00 ;

and consequently the sets /czi þ ½a0; a1;y; at�pS
k	1
i¼1 form a complete ðk 	 1Þ-partite

graph. To this end, let m0; m1;y; mtA½	p; p�: Then

czi þ
Xt

s¼0
msas ¼ðD0Þ2c2zi

0 þ ðD0Þ2c2b0 þ
X
lAF

cDn0;lbl þ
XN

j¼1
D0c2Zi;jbj

þ
X
lAF

XN

j¼1
cZi;jnj;lbl þ

Xt

s¼0

X
lAMs

msðD0Þ2cbl :
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The coefficient on zi
0 in this expansion is D00 while the coefficients on the bl ’s have

absolute value at most 2pcðQ0Þ2oQ00:
Finally we let iAf1; 2;y; k 	 1g; let wAczi þ ½a0; a1;y; at�p; let xAczk þ

½a0; a1;y; at�p; and show that there is an edge between w and x: Pick

a0; a1;y; as; d0; d1;y; dsA½	p; p� such that w ¼ czi þ
Pt

s¼0 asas and x ¼
czk þ

Pt
s¼0 dsas: Then

w ¼ðD0Þ2c2zi
0 þ ðD0Þ2c2b0 þ

X
lAF

cD0n0;lbl þ
XN

j¼1
D0c2Zi;jbj þ

X
lAF

XN

j¼1
cZi;jnj;lbl

þ
Xt

s¼0

X
lAMs

asðD0Þ2cbl

and

x ¼
XN

j¼1
D0c2Zk;jbj þ

X
lAF

XN

j¼1
cZk;jnj;lbl þ

Xt

s¼0

X
lAMs

dsðD0Þ2cbl :

For lAF and jAf0; 1;y;Ng; let lj;l ¼ nj;l : For sAf0; 1;y; tg and lAMs; let lr;l ¼
D0ds; let l0;l ¼ D0as 	 Zi;rds; and for jAf1; 2;y;Ng\frg; let lj;l ¼ 0: Note that each

jlj;l jp2pQ0: Note also that for sAf0; 1;y; tg and lAMs;

XN

j¼1
Zk;jlj;l ¼ ðD0Þ2ds

and

D0cl0;l þ
XN

j¼1
Zi;jlj;lc ¼ ðD0Þ2cas:

Then

%l ¼ððl0;Nþ1;y; lN;Nþ1Þ; ðl0;Nþ2;y; lN;Nþ2Þ;y; ðl0;T ;y; lN;T ÞÞA

ð½	2pQ0; 2pQ0�Nþ1ÞT	N

satisfies

(a) for each lAF ; ðl0;l ; l1;l ;y; lN;lÞ ¼ ðn0;l ; n1;l ;y; nN;lÞ and
(b) for each sAf0; 1;y; tg and each l; vAMs; ðl0;l ; l1;l ;y; lN;lÞ ¼

ðl0;v; l1;v;y; lN;vÞ:

Consequently, there is an edge between
PN

j¼1 Zk;jðc2D0bj þ
PT

l¼Nþ1 clj;lblÞ and

c2ðD0Þ2zi
0 þ c2ðD0Þ2b0 þ

XT

l¼Nþ1
D0cl0;lbl þ

XN

j¼1
Zi;jðc2D0bj þ

XT

l¼Nþ1
clj;lblÞ:
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Now

XN

j¼1
Zk;jðc2D0bj þ

XT

l¼Nþ1
clj;lblÞ

¼
XN

j¼1
Zk;jc

2D0bj þ
X
lAF

XN

j¼1
Zk;jnj;lcbl þ

Xt

s¼0

X
lAMs

XN

j¼1
Zk;jlj;lcbl

¼
XN

j¼1
Zk;jc

2D0bj þ
X
lAF

XN

j¼1
Zk;jnj;lcbl þ

Xt

s¼0

X
lAMs

cðD0Þ2dsbl

¼ x:

Also,

c2ðD0Þ2zi
0 þ c2ðD0Þ2b0 þ

XT

l¼Nþ1
D0cl0;lbl þ

XN

j¼1
Zi;jðc2D0bj þ

XT

l¼Nþ1
clj;lblÞ

¼ c2ðD0Þ2zi
0 þ c2ðD0Þ2b0 þ

XN

j¼1
Zi;jc

2D0bj þ
X
lAF

ðD0cl0;l þ
XN

j¼1
Zi;jlj;lcÞbl

þ
Xt

s¼0

X
lAMs

ðD0cl0;l þ
XN

j¼1
Zi;jlj;lcÞbl

¼ c2ðD0Þ2zi
0 þ c2ðD0Þ2b0 þ

XN

j¼1
Zi;jc

2D0bj þ
X
lAF

ðD0cn0;l þ
XN

j¼1
Zi;jnj;lcÞbl

þ
Xt

s¼0

X
lAMs

ðD0Þ2casbl

¼ w: &

5. Independent arithmetic progressions, revisited

The following (in a more general form) was originally proved in [9] by application
of the Hales–Jewett theorem. To illustrate a different approach in a special case, we
now give a different proof, this time using Szemerédi’s density theorem for arithmetic
progressions [18] (which says that for any m and e40 there exists an n so that any set
of en elements from ½1; n� contains an m-term arithmetic progression).

Theorem 5.1 (Gunderson et al. [9]). Fix k and c: If G is a Kk-free graph on N; then

there exists an c-term arithmetic progression which spans an independent set in G.

Proof. Denote by Sðk; cÞ the following statement: There exists an integer n ¼ nðk; cÞ
such that for every Kk-free graph G whose vertex set is an arithmetic progression of
length n; there exists an arithmetic progression of length c which is an independent
set in G:
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If for every k and c; Sðk; cÞ holds, then Theorem 5.1 follows. For each fixed c we
will prove Sðk; cÞ by induction on k:
Observe that Sð2; cÞ is trivially true with nð2; cÞ ¼ c: Suppose, therefore, that

Sðk 	 1; cÞ holds and set n� ¼ nðk 	 1; cÞ: Let n ¼ nðk; cÞ be very large and consider
a Kk-free graph G with vertex set fa; a þ d;y; a þ ðn 	 1Þdg: Assume that G

contains no independent set which is an arithmetic progression of length c: Also,
observe that VðGÞ contains

ðn 	 ðc	 1ÞÞ þ ðn 	 2ðc	 1ÞÞ þ?þ n 	 n 	 1

c	 1

� 	
ðc	 1Þ


 �
X

n2

3c

arithmetic progressions of length c: Since each of these arithmetic progressions

contains an edge and each edge is contained in at most ðc
2
Þ arithmetic progressions of

length c the graph G contains at least

n2

3c

c

2

 !	1

X
2n2

3c3

edges. This means that there exists a vertex x joined to at least 4n
3c3

other vertices. Now

if n is sufficiently large compared to n�; we may infer by Szemerédi’s theorem that the
neighborhood of x contains an arithmetic progression Y of length n�: Since
fx; ygAEðGÞ for every yAY the subgraph G½Y � of G induced by Y does not contain
Kk	1: Thus, by the induction assumption Sðk 	 1; cÞ; the set Y contains an
arithmetic progression of length c which is an independent set in G½Y � and hence
also in G: &

We note that since an early draft of this paper, J. Solymosi (personal
communication) has independently observed a similar proof of Theorem 5.1.
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