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EDITORIAL REVIEW

Charge selectivity in kidney ultrafiltration

Efforts at understanding the apparent charge selective nature of
transglomerular transport of charged macromolecules, particu-
larly through the work performed in the 1970's and 1980's have
formed the basis for discussion of the properties of the glomerulus
and its molecular components in health and disease. Central to
this discussion is the role of the anionic sites provided by
glycosaminoglycans and sialoglycoproteins in the extracellular
matrices and on cell surfaces of the glomerular capillary wall
(GCW). Recent studies suggest that some of the interpretations
are in doubt and that the original studies should be revisited.

Anion sites of the glomerular capillary wall
Based on histochemical studies with cationic tracers, and

enzymtic and chemical extraction techniques, it is widely ac-
cepted that the glomerular basement membranes (GBM) contain
an array of anionic sites (>80%) due to the presence of heparan
sulfate proteoglycan [1—4]. Smaller amounts of chondroitin sul-
fate proteoglycan and hyaluronan have been detected [5]. Simi-
larly, the major anionic sites in the mesangial matrix are provided
by heparan sulfate and a lesser proportion by chondroitin sulfate
proteoglycans [6, 7]. Epithelial and endothelial cell surfaces are
known to retain heparan sulfate [8, 9]. The foot processes, too, are
coated with sialoglycoproteins that will contribute anion charge [10].

Filtration characteristics
The permeability of the glomerular capillary wall to macromol-

ecules is quantitatively expressed in terms ot fractional clearance.
It represents the relative transport of the macromolecule in
question to the transport of water (equivalent to the glomerular
filtration rate). Water transport is measured through the use of a
molecule that is biologically inert and is freely filtered by the
glomerulus such as inulin or creatinine. Experimental measure-
ments of fractional clearance have employed labeled macromol-
ecules (or more recently used specific antibodies) (Table 1) in
either single nephrons in situ or in whole kidneys (both in vivo or
& situ) where the labeled material is estimated in the urine.
Fractional clearance estimations from urine samples have to take
into consideration the possible post-glomerular tubular uptake of
the macromolecule.

Size selectivity

Fractional clearance studies to measure the size selectivity
associated with glomerular filtration have universally employed
dextran as a test transport probe. It is neither secreted nor
reabsorbed by the renal tubules so its clearance is easily measured.
The early studies of size selectivity have been reviewed by Renkin
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and Gilmore [11]. The fractional clearance of dextran of different
sizes by Chang et al [12] is shown in Figure 1. In these experiments
a tritium-labeled dextran fraction with a wide molecular weight
distribution was intravenously administered to rats to a steady
state level (plasma concentration 1O mg/100 ml) where blood
plasma and urine fractions were collected and analyzed for
radioactivity on Sephadex G100 (in 0.05 N NH4Ac) precalibrated
for hydrodynamic radii. For a given hydrodynamic size, the
relative amounts of labeled dextran in the urine and in plasma will
determine the fractional clearance value. A value of unity for the
fractional clearance corresponds to an equal clearance of dextran
and inulin. That is, any molecule with molecular radii �18 A will
be filtered freely across the glomerular wall. A value of zero
corresponds to complete impermeability of the riiolecule. Chang
et al [12] concluded from the data shown in Figure 1 that the
normal glomerular capillary wall acts as a membrane with uniform
pores with radii of approximately 50 A; the pores themselves have
yet to be identified. While the fractional clearance approaches
zero for radii —42 A more recent studies have demonstrated finite
clearances for dextrans up to a radius of 60 A. The size selectivity,
as measured by the dextrans, is similar for dogs, humans and rats
although marked diffences between different studies seem to
occur at fractional clearances <0.01. Other test random coil
molecules like polyvinylpyrrolidone show similar behavior to
dextran. The caution that should accompany these studies is that
molecular sizes are estimated in solvent environments in column
chromatography that are very different to those conditions these
molecules would experience in plasma.

Fractional clearance of proteins

A major function of the glomerular capillary wall is to severely
restrict the transglomerular passage of albumin and other plasma
proteins while filtration is occurring. In normal kidneys, some
albumin transport across the capillary wall may occur and it is
then subject to endocytosis by tubular cells. Therefore, the
appearance of protein in urine is the result of two processes: a
dominant filtration rejection at the capillary wall and postglo-
merular scavenging by tubules.

Studies on the fractional clearance of albumin, whose radius is
normally quoted at 36 A (see, however, next section), have yielded
a range of values, all of which are considerably lower (by a factor
<1/20) than dextran of equivalent hydrodynamic size (fractional
clearance —0.1; Table 2). The fractional clearance of albumin
would make it equivalent to a dextran molecule with a radius —43
to 60 A. The wide range of equivalent radii again reflects the
differences between various laboratories in terms of their frac-
tional clearance data. For example, if it is assumed that the
fractional clearance of albumin is 0.003 then this would corre-
spond to dextran of radii of 43 A (Fig. 1) or a range of 51 to 61 A
as studied in rats [18, 19], 54 A as studied in rabbits [20], or a
range of 60 to 64 A as studied in humans [21—23]. In general, the
comparative studies really typify the most extraordinary and
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Table 1. Commonly used molecular transport probes

Probe Shape Valence

Dextran Random coil (with
small stobbs of
saccharide
branching)

0

Ficoll
Dextran sulfate

Spherical
Random coil

0
—--60 (for radios of 36 A)

Native horseradish Globular 0
peroxidase
Anionic horseradish —11

peroxidase
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Fig. 1. Fractional clearance of differently charged dextrans. Fractional
clearances in rats of DEAE dextran (•), dextran (V), and dextran sulfate
(0) as a function of effective hydrodynamic radii as determined by gel
chromatographic analysis. Data have been obtained from [42].

unexplained aspect of the glomerular processing of albumin and
other proteins in that they appear larger to the glomerular filter as
compared to random coil molecules such as dextran. Because the
filtration of albumin is restricted to a greater degree than would
be predicted on hydrodynamic size alone, other factors have been
investigated.

Serum albumin structure

Table 3 lists some pertinent physical characteristics for bovine,
human and rat albumins. The albumin molecule is markedly polar
with a potential for 100 negative and 82 positive charges. The
overall net charge at pH 7 is —12 to —18 for the three albumins.
The conformation of the molecule is not a sphere as is commonly
stated in the literature but one of a prolate ellipsoid with the
minor and major axis approximately 40 A and 140 A, respectively,
and an axial ratio of 3.5. The molecule is essentially like a stubby
cigar.

Table 2. Fractional clearance of albumin in rats

Fractional
clearance Reference

Technique to account for
tubular reabsorption

0.0006 [13] Tissue accumulation methoda
0.005—0.007 [14] No tubular reabsorption
0.001 [151 Isolated perfused kidney, 10—

20 mm perfusion, Bowmans
space/plasma ratio

0.003 [16] Tissue accumulation methoda
0.0003 [17] Bowmans space/plasma ratio

a This method assumes that the marker present in the saline-flushed
filtering kidney after an intravenous infusion represents the reabsorbed
fraction of filtered marker as compared to a nonfiltering kidney

Table 3. Physicochemical properties of albumins (from Peters [24])

Property Bovine Human Rat

Molecular weight 66267 66439 65871
Net charge pH 7
Overall dimensions)

—18
41.6 X 140.9

—15
38 x 150

—12

Role of conformation of the transport probe
It is often stated in the literature that a contributing factor to

the glomerular permeability difference between dextran and al-
bumin is the fact that dextran, because of its deformable compli-
ant structure, may reptate (that is, extend and snake through the
pores of the filter) through the GBM and therefore appear
smaller on a hydrodynamic basis than albumin, There is, however,
no direct evidence for this suggestion of the role of conformation.

Perhaps the most commonly cited evidence for the reptation
effect in the renal literature comes from the data of Laurent et al
[251 on the diffusion (not forced flow as described on occasion) of
linear polymers with molecular weights between 30,000 and
530,000 in hyaluronan solutions at concentrations where there are
continuous intermolecular interactions (transient networks). The
diffusion study demonstrated that the linear molecules were less
retarded in the hyaluronan network than globular particles of
equal hydrodynamic dimensions. This interpretation has subse-
quently been put into doubt as the diffusion systems studied,
particularly hyaluronan networks, are subject to gravitational
instabilities [261. These instabilities lead to ordered microconvec-
tion that may manifest apparent diffusion rates much faster than
expected [27].

The onset of relative faster transport for linear molecules across
porous membranes seems to occur only above a critical concen-
tration of the diffusing molecule, which is probably related to
concentration regimes where effective intermolecular interaction
occurs, and is dependent on the partitioning at the solution/pore
interface [28]. Whether these conditions are met in the fractional
clearance studies of dextrans is not known but they are probably
not.

Some studies have directly investigated the role of conforma-
tion op transglomerular transport. Rennke and Venkatachalam
[29] found a difference in the fractional clearance of the globular
horseradish peroxidase (HRP) (radius = 29.8 A; 7-fold lower) as
compared to equivalent sized dextran. Bohrer et al [30] compared
the fractional clearance of polydisperse dextran with that of a
more rigid, spherical molecule Ficoll (a cross linked copolymer of
sucrose and epichlorohydrin). In the size range of 22 to 47 A the
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Table 4. Influence of charge on the fractional clearance of proteins

Tubular

Probe p1
Molecular

weight Radius A
Fractional
clearance

reabsorption
correction Reference

Native HRP 7.3—7.5 40,000 29.8 0.061 a [32, 33] (rats)
Anionic HRP <4.0 40,000 31.8 0.007 a
Cationic HRP 8.4—9.2 40,000 30.0 0.338 a
Pancreatic amylase 7.0 56,000 0.03 c [36] (human)
Salivary amylase 5.9—6.4 56,000 0.01 c

Native albumin 4.9 69,000 35 —0.006 c [14] (rats)
Neutral albumin 5.5—6.6 69,000 33 —0.006 c
Cationic albumin 7.2—8.2 69,000 33 —0.008 c

Native albumin 4.9 69,000 0.0006 b [131 (rats)
Cationic albumin 7.5—8.0 0.026 b

Anionic IgG 4.9 150,000 52 0.004 a [16] (rats)
Neutral IgG 7.4—7.6 150,000 52 0.001—0.005 a
Ceruloplasmin 4.9 137,000 50 0.021 a
Albumin 4.9 69,000 36 0.003 a

Abbreviation is HRP, horseradish peroxidase.
aTissue accumulation method without correction for binding (see Table 1)
bTissue accummulation method with correction for binding (see Table 1)
C

Negligible tubular reabsorption

dextran appeared more readily filtered than the Ficoll with a
maximum difference (factor of 2) at radius of 36 A. In a more
recent and important study, Oliver et al [31] confirmed that Ficoll
had a significantly lower clearance than dextran; for a radius of 36
A dextran clearance was —0.079 whereas the clearance for Ficoll
was —0.007. The plasma Ficoll concentration was not published in
either study and its effective size under the experimental condi-
tions was not measured. The authors found it difficult to explain,
in physical terms, the differences in clearance as the transport of
random coil molecules as compared to Ficoll through inert
synthetic membranes does not consistently manifest the same type
of behavior. It was argued, however, that the results for Ficoll go
a long way in accounting for the difference between the clearance
of dextran and albumin.

The conclusion from all these experiments is that the influence
of configuration or conformation of the transport probe on
transglomerular transport still remains to be established.

Influence of chatge
The relatively low fractional clearance of albumin has also been

discussed in terms of the negative charge of the molecule (valence
Z —12 to —18, Table 3). If this charge interacts electrostatically
with the fixed negative charge of the GBM matrix and other
charges of the glomerular unit, then it is generally thought that
repulsion would occur leading to decreased transglomerular
transport.

Efforts at demonstrating this charge effect by chemically mod-
ifying the net charge on the protein again have not given
consistent results (Table 4). The most detailed studies on the
influence of protein charge on fractional clearance are by Rennke
et a! [32, 33] where it was established that there is a significant
decrease (by a factor of 1/8.7) in the clearance of negatively
charged HRP material (Z = —11; p1 < 4.0) as compared to
neutral HRP (p1 7.3 to 7.5). The cationic HRP (8.4 to 9.2) had the
highest clearance, but because cationic material will bind to the
GCW it is difficult to interpret, unambiguously, the meaning of
clearance measurements with such materials [34]. Recent studies

also have demonstrated that analysis of HRP by enzyme activity,
as was performed in these studies, severely underestimates the
level HRP, particularly for the anionic material as it appears to be
degraded during filtration [35]. The actual differences between
neutral and anionic material are probably less than a factor of 3.
A similar difference is seen for anionic and neutral amylase [36].
On the other hand, Purtell et a! [141 found no difference between
rat or human native albumin with neutral albumin, but did
demonstrate an increased fractional clearance of cationic albu-
min. The studies of Bertolatus et al [16] also suggest that anionic
and neutral IgU were similar, although inconsistent results have
been obtained [13] (see also [37]). Surprisingly, they found that
the clearances of high molecular weight IgG and ceruloplasmin
were not that different to albumin (Table 4). Other studies
comparing the clearances of neutral IgO (p1 5.8 to 7.3) and
anionic IgG4 (p1 5.5 to 6.0) have yielded particularly inconsistent
results: the IgG/IgG4 fractional clearance ratio in humans has
been found to be 1.35 [38], 2.43 [23] and —10.0 [37]. At present
the major feature of these studies is that: (i) cationised proteins
always seem to be transported faster than their neutral or anionic
counterparts; (ii) neutral proteins have significantly lower clear-
ances than dextran o equivalent hydrodynamic size (HRP 0.062;
dextran 0.4: neutral albumin 0.006; dextran 0.19); and (iii) while
inconsistent results have been obtained in comparing anionic and
neutral protein species, generally the fractional clearance of
neutral proteins is only two to three times that of their negatively
charged counterparts.

Other factors which appear to influence albumin permeability,
by mechanisms that are unclear at present, are the presence of
non-albumin plasma proteins such as orosomucoid [39] and
possibly the concentration dependent albumin interaction with
the capillary wall as studied in other capillary beds [40, 41].

Frtwtional clearance of charged dextrans

The most compelling evidence to support the charge selective
nature of the glomerular filter has been associated with the series
of in vivo studies of the fractional clearance of charged dextran
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polysaccharides. The influence of the GBM and the filter as a
whole is thought to be quite specific as these molecules apparently
do not undergo tubular reabsorption.

Negatively charged dextrans, like dextran sulfate, have a signif-
icant restriction in transglomerular transport as compared to
uncharged dextran, whereas positively charged dextrans (DEAE
dextran) have facilitated clearance for a given hydrodynamic
radius (Fig. 1). In keeping with the evidence which would suggest
that the negative charge of albumin is responsible for its lowered
fractional clearance, it has been argued that results with dextran
sulfate [albeit with higher valence (—36 A, Z = ——60)] would
support this. Dextran sulfate clearances in rats for molecular
radius of 30 A have been shown to vary from 0.006 to 0.2 and for
radius of 40 A from 0.0004 to 0.026 [43]. In general the values are
higher than that for albumin.

Whether the enhanced clearance of the cationic species, such as
DEAE dextran, is strictly a function of charge is not yet settled.
Some have argued that some cationic macromolecules may bind
to anionic sites and damage the GCW to make it leakier which, in
turn, yields higher fractional clearance. Our own studies of the
fractional clearance of DEAE dextran in the isolated perfused rat
kidney demonstrated that there indeed was significant binding of
DEAE dextran to the glomerulus and this was accompanied by a
reduced fractional clearance as compared to dextran measured in
the same system [34].

Donnan partitioning—An explanation of the charge effects

The anionic sites of the GCW and particularly the GBM are
believed to be responsible for charge selectivity [1, 32, 42, 45]. The
electrostatic basis of charge selectivity was considered to be very
much substantiated by the Deen-Satvat-Jamieson model [46] that
used the classical Nernst-Planck equations, where it was assumed
that the GBM was like an anion exchange membrane and that
mobile charged probes would undergo electrostatic interaction
within it. The theoretical, hiophysical interpretation of renal
charge selectivity by Deen, Satvat and Jamieson [461 has been
based on the fact that transglomerular macromolecular transport
occurs as a passive process in the intercellular space of the
capillary wall and across the GBM. The fixed negative charges of
the basement membrane then account for transport charge selec-
tivity. The theory takes into account two processes: (i) the
partitioning of the macromolecule at the capillaiy-GBM interface
due to charge interaction (Donnan partitioning); and (ii) the
transport at the charge probe within the electrochemical environ-
ment of the GBM. Major charge effects are envisaged only to
occur with the Donnan partitioning, as transport (whether con-
vective or diffusive) within the GBM is not considered to manifest
the marked differences due to charge; this has been confirmed
experimentally [1• The Donnan partitioning has then been used
to evaluate an effective charge concentration of the GBM on the
basis of the fractional clearance data. Values of the effective
charge of the GBM were estimated to be in the range of 100 to
170 mEq/liter (an equivalent is a mole of charge or mole of
associated counterion like Na) with one estimate at 60 mEq/liter
(reviewed by Maddox, Deen and Brenner [43]). An anion charge
of 165 mEq/liter is equivalent to 40 to 45 mg/mI heparan sulfate.

Perhaps the major criticism of this approach is that partitioning
of charged macromolecules with charged membranes due to
Donnan has been experimentally tested and shown not to hold
[47]. Further, the large partition coefficients required do not fit

with the thermodynamic properties of charged molecules in
question [47].

Anion charge of the glomerular capillary wall
Apart from concerns regarding the assumptions associated with

the DSJ model experimental estimates of the GBM anion charge
have been demonstrated to be generally an order of magnitude
lower. Bray and Robinson [48] titrated the isolated GBM to
obtain a negative charge of 12 mEq/liter. They suggested that this
was at least twice as much as the value obtained from estimating
the charge knowing that heparan sulfate only accounts for 1% of
the dry weight of the rat GBM [49, 50]. Estimates of GBM charge
through a 22Na and 36C1 exchange technique gave values of 7.6

0.4 mEq/liter [51]. It could be argued that the low values of
GBM charge are the result of losses of heparan sulfate, particu-
larly as a cell surface component, during the course of GBM
purification. Further, it is noted that the above estimates are only
average GBM quantities and that higher concentrations result
from specific localization of the material such as in the lamina
rara. Other measurements of NaCl and water transport across the
GWC, as described below, also suggest a low charge concentra-
tion.

In another type of capillary, namely single microvessels of frog,
the charge selectivity of two globular proteins (lactalbumin and
ribonuclease) was analyzed with the use of a Donnan-type model
for electrostatic partitioning which gave a charge density as 11.4
mEq/liter 1521.

Donnan osmotic pressure

Wolgast and Ojteg [53] correctly recognized that the GBM is
not rigid but deformable [54, 55] and has an internal osmotic
pressure. In consideration of Donnan osmotic pressures on the
basis of very small differences in ion distributions, which may be
subject to error, they arrived at a GBM charge of —30 mEq/liter.

Transglomerular transport of NaC1
Charged membranes are known to restrict the transport of

simple electrolytes like NaCl. Yet with the ratio of chloride in the
Bowman's space/plasma equal to one [43] it is clear that the GBM
does not offer any significant restriction to NaCl transfer. Theo-
retical and experimental studies suggest that a GBM charge of less
than 200 mEq/liter exert only minor effects on electrolyte trans-
port [27].

Transglomerular transport of water
While the transglomerular transport of NaCl is not sensitive to

heparan sulfate-NaCI interaction, studies have established that
the transport of water is sensitive to heparan sulfate-water
interaction. This interaction essentially takes the form of a surface
area to volume obstruction effect of the flow of water over the
glycosaminoglycan chain. Therefore, water transport through the
GCW as reflected in the GFR may be determined by the GBM
heparan sulfate content.

The value of the hydraulic conductivity, as measured by sedi-
mentation velocity analysis, of heparin-like polysaccharides has
been measured as a function of concentration [47]. Its value
decreases with increasing concentration (as expected) and is
independent of ionic strength of solvent and degree of sulfation of
the polysaccharide. The studies demonstrate that the hydraulic
conductivity of all heparin-like polysaccharides is determined by
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the nature of the glycosidic linkage [56]. If we assume that the
single nephron GFR is governed essentially by the heparin-like
polysaccharide concentration, then an estimate of its concentra-
tion can be made. The volume flux of solvent (J) defining the
glomerular filtration rate (GFR) as a function of net pressure
(P) and the ultrafiltration coefficient of a single nephron (I(f) is

where

= K1P

= lç/Alv

and where k is the hydraulic conductivity; A is the effective
filtration area; 1, thickness of regions containing heparan sulfate;
and , is solvent viscosity.

The hydraulic conductivity (k) can then be calculated using Kf
for the single rat nephron as 0.1 nliter/second per mm Hg [57, 58].
This will be a minimal value as this does not take into account
osmotic gradients that may be generated within the GBM under a
pressure gradient [59]. The effective filtration area (A), deter-
mined by endothelial cell fenestrae is taken as 10% [46] of the
total nephron surface area of 0.0019 cm2 [60]. Heparan sulfate
appears to be located specifically in the laminal rara regions [3, 4,
8]. Assuming that each lamina rara region is 50 nm (for rat GBM)
and they act in series we assign a value of 100 nm for 1.

Using these quantities in equation gives a k of 2.76 x 10_14 cm2
which corresponds to a heparin-like polysaccharide concentration
of 40 to 45 mg/mi [47] or 165 mEq/liter, as estimated by Deen et
a! [46]. It is emphasized that this will be an overestimation of
GBM charge concentration as no account has been made for the
flow resistance effects of GBM collagen on the GFR.

Specific analysis of the variation of GFR with the removal of
heparan sulfate has not been investigated, though it should be
noted that neutralization of the heparan sulfate would be ex-
pected not to significantly alter the GFR. However, in a study
where charge selectivity was destroyed through removal of colloi-
dal-iron staining material (presumably heparan sulfate) in rats
with nephrotic serum nephritis [42] the single nephron GFR was
shown not to increase as predicted vide supra, but actually
decreased. Similar changes have also been noted for severe
reductions in renal mass [19]. These results would suggest that
actual GBM heparan sulfate concentration is too low to affect
GFR, that is, <10 mg/mi or 40 mEq/liter.

Isolated GBM preparations have considerably higher ultrafil-
tration coefficient, of the order of 1 nl/second per mm Hg [54, 61],
which demonstrate that their heparan sulfate content is relatively
low and that other components of the GCW may govern hydraulic
conductivity, such as the slit processes. Similar high ultrafiltration
coefficients have been obtained in acellular glomeruli [62].

Evidence for electrostatic charge influence on transport

Neutralization of GBM charge

The rationale behind these studies is that the addition of
exogenous polycation to neutralize the fixed anion charge of the
glomerular wall may perturb transglomerular transport of the
probe in some way [14, 32, 33, 44, 63—66]. Oddly, the degree of
neutralization has never been measured. In any case, polycationic
macromolecules have diverse effects upon permeability. The
possible effects include: (i) the distortion of the GBM gel network

thereby altering porosity; (ii) altered glomerular cell metabolism
even to extreme toxic effects; (iii) varying degrees of proteinuria;
(iv) conversion of negative sites to positive sites through an
imbalance of binding (charge reversal). These various manifesta-
tions of polycation neutralization have not been clearly delin-
eated.

In an attempt to decrease electrostatic interaction of circulating
proteins with glomerular charge the filtration properties of iso-
lated kidneys were studied in buffers with molarities up to 2.5 M
[67]. This resulted in increased amounts of native ferritin in the
GBM as determined by ultrastructural analysis and a decreased
permeability to insulin (by 1/3) and inulin (by 1/20). It was
concluded that the GBM was clogged at these high molarity buffer
and that the sulfated glycosaminoglycans serve as anticlogging
agents, although no evidence was provided that albumin accumu-
lated at the GCW. This is in spite of the fact that no changes were
observed at 1.5 M buffer molarity for insulin transport and 0.5 M
buffer molarity for inulin transport, which represent ionic
strengths more than enough to significantly mask any electrostatic
interaction between proteins and suiphated glycosaminoglycans,
These studies with circulating polycations do reinforce the fact,
however, that glomerular charge and ultrastructure are intimately
linked in some way.

Influence of heparan sulfate
There has only been indirect experimental evidence to suggest

that GBM heparan sulfate participates in influencing the electro-
static environment of charged transport probes in transit. Rosen-
zweig and Kanwar [68] have employed specific glycosaminoglycan
(GAG)-degrading enzymes in perfused kidneys to examine the
distribution of [1251]albumin between the urinary space and
capillary by quantitating light microscopic autoradiograms. The
capillary grain/urinary grain ratio decreased by 47% when hyal-
uronan was digested, by 54% when hyaluronan and chondroitin
sulfate were digested, and by 79% when hyaluronan, chondroitin
sulfate and heparan sulfate were digested. The surprising feature
of these results is that the digestion of minor glomerular GAG
components, namely hyaluronan and chondroitin sulfate had such
a profound influence of the permeability to albumin. Specific
removal of the heparan sulfate GAG was not investigated.
However, a previous study [69] demonstrated that heparinase
digestion removed all GBM binding sites to cationic ferritin and
that this heparinase treatment (not hyaluronidase or chondroiti-
nase ABC) leads to the appearance of native ferritin (radius = 61

A) in the urine.
In a more recent study, Adal et al [70] have demonstrated that

the binding of albumin to glomeruli and the GBM is enhanced
when these tissues are subject to heparinase digestion. The
enhancement of albumin transport in situations where there is a
loss of GCW heparan sulfate might be explained by weak inter-
actions between albumin and GCW components which would
tend to elevate albumin concentrations in membrane pores.

Many other studies have established a correlation of a change in
the GBM levels of heparan sulfate with increased glomerular
permeability particularly in disease states, although the mecha-
nism of these effects is unclear. Of recent interest is that exoge-
nous GAGs may prevent albuminuria in diabetic rats [71], and this
may be a metabolic effect as it is known that exogenous sulfated
polysaccharides may stimulate the synthesis of heparan sulfate in
endothelial cells [72].
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Monoclonal antibodies directed against the heparan sulfate
GAG chain in the GBM [73] are known to induce proteinuria.
While neutralization of the charge is unlikely, conformation and
structural integrity of the GBM in the GCW appears to be an
important factor demonstrated here in determining transglomeru-
lar transport. It had been noted earlier that polyclonal antibodies
directed against the protein core of the GBM heparan sulfate
proteoglycan also caused proteinuria [74—76].

The conclusion from these studies is that GBM heparan sulfate
functions not as a charge barrier but acts to maintain the
structural integrity of the glomerular filter and particularly those
pore structures that determine size selectivity. It also appears to
maintain protection of those sites in the GCW that may bind
albumin.

Glomerular permselectivily is not mimicked in isolated glomerular
basement membrane systems

These studies have used isolated glomerular basement mem-
brane strips compacted into a composite layer on a porous
structural support [77, 78]. Both hydraulic and macromolecular
permeabilities of these layers are much greater than that reported
for the intact GBM [54, 61]. The rejection of albumin by these
layers has been shown to be quite complex. It turns out that it is
dependent on stirring; with no stirring, there is a build up of
albumin next to the membrane (concentration polarization) and
the rejection of albumin falls appreciably [77], possibly due to an
osmotically induced change in the membrane structure due to the
adjacent albumin layer. Also for these layers, there is little
difference in the permeability of dextran and dextran sulfate over
the range of radii of 15 to 42 A. There was, however, a significantly
increased permeability of DEAE dextran over the same size
range. A low degree of charge selectivity has also been observed
with different charged albumins [55] which would also argue
against any specific role of carboxyl groups retained in GBM
preparations on charge selectivity in vivo [79]. The relative
difference in permeability between albumin and dextran (dextran
rejection 0.9 to 0.95, albumin rejection 0.96) did not appear to
reflect that seen in vivo [48, 54].

A feature of the isolated membranes that has not been exam-
ined for intact systems is the recognition that pressure-flux
relationships are nonlinear [78], which demonstrates that the
membrane is compressible [54—56].

Morphological studies

A large body of work has been carried out since the 1960's in
the renal field in the pursuit of the ultrastructural location of
tracer macromolecules. Much of the aim of this sort of exercise is
to identify regions within the glomerular filter (essentially extra-
cellular ones) where restriction of the transport probe may occur.
These studies have been reviewed elsewhere and will not be
considered here. A good deal of caution should accompany the
interpretation of these types of results particularly when conclu-
sions concerning transglomerular transport are made. There is no
a priori relationship between localization of the probe and frac-
tional clearance. The ultrastructural localization is performed
under nonequilibrium conditions whereas fractional clearance is a
steady state transport. Localization may mean a genuine transport
restriction but then it may also represent a binding interaction.
Further, the residence of the exogenous probe may exert cooper-

ative effects to influence further localization through changes in
filter structure. Overall, it is very difficult to interpret the ultra-
structural localization data alone in terms of transglomerular
transport.

Hemodynamic effects

Transglomerular transport of macromolecules may be influ-
enced by factors other than cell uptake, pore size and charge on
the GCW. These are hemodynamic factors that include blood
flow, the mean transcapillary hydraulic pressure difference, the
plasma protein concentration and the capillary ultrafiltration
coefficient. Theoretical relationships of the influence of these
hemodynamic factors on fractional clearance have been derived
[80] but have yet to be fully tested. Chang et a! [12] were able to
increase the dextran fractional clearance by a relatively small
amount by increasing the plasma flow rate that was in good
quantitative agreement with the theory. Ryan and Karnovsky [81]
showed that cessation of glomerular flows and pressures may
cause (reversibly) increased permeability of the GCW. However,
these results are controversial as other studies have shown no
effect on lowering renal plasma flow [82, 83]. There have been no
reasonable explanations for these effects. But what is clear is that
the integrity of the GWC appears important particularly through
its interaction with albumin [39—41, 48, 54, 77] under different
conditions. In all these studies there has not been the suggestion
that hemodynamic factors could explain the size and charge
selectivity profiles discussed vide supra.

The issues of the modes of macromolecular transglomerular
transport have been discussed in terms of convective transport or
diffusive transport yet there are no established conclusions about
how this may affect the fractional clearance data. Certainly for
small molecules, like inulin, the dominant transport is expected to
be convection as the transglomerular concentration gradients
would be too small to drive any significant diffusion.

Cell-mediated transport
Cell-mediated processing of proteins exposed to the glomerular

vascular bed has not been considered to be significant. Rather, it
is generally viewed that transport will be extracellular in this
relatively highly fenestrated region. Renkin and Gilmore [11]
state "the role of vesicular transport in glomerular filtration must
be entirely negligible. First, endothelial fenestrae provide an
alternate route of lower resistance; second, anything transported
by the vesicles is exposed to the sieving action of the basement
membrane and epithelial slits. The epithelial vesicles are probably
related to reabsorption of protein from the outer face of the
basement membrane and from Bowman's capsule."

In a review article Simionescu and Simionescu [84] have
described various aspects of endothelial cell-mediated processing
of proteins in non glomerular vascular beds. Endothelial cell
processing of probes, commonly used in glomerular transport
studies, are candidates for cell uptake in other capillary beds. This
may take the form of fluid phase endocytosis (horseradish perox-
idase, native ferritin together with dextran), nonspecific adsorp-
tive endocytosis (native ferritin), and specific endocytosis and
trancytosis (insulin, albumin). Albumin binding proteins function
in specific receptor-mediated binding and trancytosis of albumin
across cultured aortic endothelial cells [85]. It is clear that the
contribution of any cell-mediated processing in glomerular endo-
thelial cells has yet to be fully examined.
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The potential importance of the epithelial cell in governing
glomerular permeability of proteins is suggested by its intracellu-
lar machinery characteristic of endocytosis. The protein uptake by
epithelial cells may be a contributing factor to the unusually low
Bowman's space to plasma ratio of filtered protein. There is
simply a paucity of studies associated with epithelial uptake of
transport probes. Earlier studies with ferritin and dextran uptake
in the epithelium had been studied ultrastructurally [82, 86, 87].

Like the endothelial cell, the likelihood of the mesangial cell
taking a direct part in protein filtration would be low owing to the
relatively small fraction of the filtration surface that it occupies.

New evidence of dextran sulfate transglomerular transport
It has always been assumed that the dextran sulfate used to

study glomerular charge selectivity was inert, that is, it was not
taken up by any glomerular cells and changed chemically. We
have now established this 'assumption' is incorrect. During charge
selectivity clearance of dextran sulfate, it has been established that
there is a considerable steady state level of glomerular dextran
sulfate which has a relatively short half-life of glomerular resi-
dence (—2 to 4 mm). The half life can be extended to more than
one hour by cycloheximide [88]. The specific localization of
[1251]dextran sulfate in glomeruli has been demonstrated [89]
where dextran sulfate binding is predominantly to cellular ele-
ments rather than the GBM [90]. Preglomerular intracellular
vesicles have been isolated post perfusion and have been shown to
contain dextran sulfate [891. Additionally, analysis of dextran
sulfate fraction from the glomerulus and urine has also estab-
lished that significant desulfation of the probe had occurred [91].
These results demonstrate unequivocally that dextran sulfate is
taken up by glomerular cells, most probably endothelial cells, by a
receptor-mediated mechanism. When the receptors are recycled
they release the desulfated dextran sulfate ligands which may then
be transported through the GBM. Studies have demonstrated that
intravenously administered dextran sulfate in rats rapidly yields
plasma samples that are considerably desulfated. Therefore, when
using this probe, it will be presented to the kidney as a mixture of
sulfated, partially desulfated and completely desulfated products.

The concept of a cell-mediated mechanism associated with the
processing of dextran sulfate raises the question of saturating cell
uptake. The studies described above for the isolated perfused
kidney were with dextran sulfate at 15 j.tg/ml in the perfusate and
were not at saturating levels of glomerular uptake. Studies in vivo
were performed with a bolus injection to give an average plasma
concentration of 80 LgIml. Other studies on the clearance of
dextran sulfate have not described the plasma concentrations of
the probe, although in the studies of Chang et al [12] they describe
the plasma concentration of dextran to be <100 j.gIml, and
subsequent studies on dextran sulfate appeared to be performed
under similar conditions. If receptor-mediated uptake of dextran
sulfate governs the behavior of most of the dextran sulfate then its
fractional clearance should be concentration dependent, and
charge selectivity should be negligible at high dextran sulfate
concentrations. The concentration dependence of the fractional
clearance of dextran sulfate has been demonstrated in the isolated
perfused kidney [921. The dextran sulfate concentration in the
perfusate was studied over a range of 4 tg/ml to 1000 gIml. The
fractional clearance of the dextran sulfate was lowest for the
perfusate concentration of 4 .tg/ml. The fractional clearance
increased in value as the perfusate concentration was increased up

to 200 jg/ml dextran sulfate. The clearance of dextran sulfate did
not change over the concentration range of 200 to 1000 g/ml of
dextran sulfate. Dextran clearance studied in the presence of
either 200 j.tg/ml or 1000 .tg/ml dextran sulfate was not signifi-
cantly different when compared over a wide range of radii to
dextran sulfate clearance when studied at relatively high concen-
tration [92]. These results demonstrate that charge selectivity is
saturable above 200 g/ml dextran sulfate and markedly concen-
tration dependent below this concentration. Size selectivity as
measured by dextran clearance was unaffected over the range of
dextran sulfate concentrations studied. Dextran sulfate, when
used at relatively high concentrations but relatively low in relation
to the charge content of the GBM (1000 tg/ml dextran sulfate
corresponds to a charge concentration of approximately 3 mEq/
liter, whereas the fixed anion charge content of the GBM is 7.6
mEq/liter [51]), undergoes transglomerular transport in the same
manner as the uncharged dextran.

The apparent reduction of the fractional clearance of dextran
sulfate, when used at relatively low concentrations, as compared
to dextran (which is not taken up by glomerular cells) may result
from two factors: (1) the lowering of the plasma dextran sulfate
concentration at the GBM/capillary interface due to uptake by
neighboring endothelial cells; and (2) the lower molecular weight
and size of the desulfated material on the gel chromatographic
column used for fractional clearance analysis.

Other evidence to support glomerular cell uptake of the sulfated
polysaccha rides

Desulfation of other exogenous, intravenously-administered
sulfated polysaccharides has been observed including pentosan
polysulfate [93], heparan sulfate [94], and dermatan sulfate [95].
The sites of desulfation have not been established but they are
likely to occur in the liver and kidney.

Studies of dextran sulfate clearance in ex situ kidney perfusions
have demonstrated that the material that appears in the urine is
partially desulfated and that sulfatase activity exists in both
glomerular and tubular extracts. The fact that glomerular endo-
thelial cells may actively take up dextran sulfate is not unusual as
endothelial cells in other vascular beds have been shown to
endocytose a variety of sulfated polysaccharides [96, 971. Human
vascular endothelial cells have been shown to catabolize exoge-
nous glycosaminoglycans, including heparin [94, 98]. The binding
of heparin is saturable through at least two binding sites. These
sites are not specific for heparin as other sulfated polysaccharides
may bind. A high proportion of the bound heparin is ultimately
endocytozed and degraded [98, 99]. Intracellular uptake of hep-
arm by endothelial cells may also result in its protracted release
[72] and prevent morphological renal alterations and albuminuria
in diabetic rats [71]. Heparin and dextran sulfate uptake by
cultured endothelial cells is known to stimulate the synthesis of
heparan sulfate [100]. Liver endothelial cells have been demon-
strated to bind and rapidly endocytose (within minutes) chon-
droitin sulfate and the unsulfated anionic polysaccharide, hyaluro-
nan [101—103]. The receptors responsible for the internalization
of hyaluronan are recycled back to the cell surface very rapidly
during the continuous endocytosis of the macromolecule, and this
recycling is reduced significantly (by 50%) in the presence of
cycloheximide [103].

The role of glomerular endothelial cell in the transport of
sulfated polysaccharides is confirmed, but there is a paucity of
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information regarding other glomerular cells and their interaction
with sulfated polysaccharides. It is well known that accumulation
of macromolecules in the mesangium may occur [87], particularly
in disease states [104, 105].

Concluding remarks

Various factors, including charge effects, have been studied to
explain why albumin has a lower fractional clearance than dextran
and other uncharged random coil molecules of equivalent hydro-
dynamic size. These factors are reviewed in this article particularly
in relation to the role of the molecular and cellular elements of
the glomerular capillary wall in governing transport. A compari-
son of the fractional clearance of the spherical Ficoll to dextran
revealed that spherical molecules may have lower clearance and
this may account, in part, for the albumin transport when consid-
ered on size alone. Unfortunately, there has been considerable
variation in the published quantitative fractional clearance values
of the various probes concerned and clearly, further comparative
studies should include estimates of different probes on the same
system and their hydrodynamic size measurements performed
under conditions that they would encounter during filtration.

Is there charge selectivity associated with glomerular ultrafiltration?

The answer to this question is that some transport probes do
manifest differential transport based on their charge, but it is
likely that the influence of electrostatic interactions with the
negative charge of the glomerular capillary wall will not be as
significant as originally thought. The apparent charge selectivity in
the dextran sulfate/dextran system is influenced by glomerular
cell-mediated interactions with dextran sulfate and biochemical
changes to this probe. Intact glomeruli are required as isolated
GBM preparations do not show charge selectivity. Further, it is
difficult to support the explanations of the relative differences
between the two probes on the basis of the charge content of the
GI3M and physicochemical models of the electrostatic interaction.
Some protein systems, particularly as studied for different charged
derivatives of the same protein, manifest charge selectivity al-
though there is a disconcerting lack of consistency between
published data. The morphological evidence for charge barriers
has been qualitative and not of value in relation to the steady state
clearance measurements. While there may be an electrostatic
basis for some charge selectivity being exerted on charged pro-
teins it is apparent that an unambiguous interpretation will only
come from a complete quantitative analysis of both the glomeru-
lar binding and cell uptake, as well as tubular processing.

It is apparent from these studies that there is still no definitive
answer to the vital question as to why the glomerular capillary wall
has a relatively low permeability to albumin. Further studies are
required to address this important issue if there is to be correct
understanding of the structure and function of GCW components
in governing transglomerular transport in health and disease.
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