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I. INTRODUCTION 

In the theory of fluctuations of sums of independent, identically distributed, 
random variables X1 , X, , X, , *mm a central result is Spitzer’s formula 
[l , p. 3301 which says 

P&=0 k=l 
(1) 

for X real and 1 t 1 < 1, where 

so = 0, Sk =& 
j=l 

1 Q k, 

v&l) = d (exp (ih max (So , S, , *.a, SJ), 

yGk(h) = B (exp (iA max (So , S,)). 

E. S. Andersen [2-41 has studied a measure of the fluctuation of the partial 
sums other than max (So , S, , *em, S,), his measure being H, , the number 
of sides of the least concave majorant (this being a trivial change from [4]) 
of the graph of (0, So), (1, S,), a**, (n, S,), where a vertex of a side is a point 
(k, Sk), 0 < k < 11, which is on the least concave majorant of the aforemen- 
tioned graph. When the common distribution function is continuous he 
findsthatforIsI<l,ItI<l, 

qt, s) = 2 2 P(H, = m)PP = (1 - q-8 
n=o n&=0 

and so distribution free. 
There is another natural definition of the “number of sides” used by 

Andersen [4, pp. 2-31: “Remark on the definition of H, . 
If we plot in a coordinateplane the points (k, Sk) for k = 0, 1, a**, H and 
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connect the consecutive points with straight segments, then we obtain an 
open polygon from (0, 0) to (n, S,). To this polygon there exists a unique, 
least, upper concave polygon from (0,O) to (n, S,). The point on this concave 
polygon with abscissa k has ordinate Th (n). The definition of H, given in 2 
defines H, as the number of points (k, S,) for k = 1, e-e, n on the concave 
polygon (see Fig. 1). If the common distribution of the random variables 

(S,S,) 
H ,. 06, K,,=4 

FIG 1 “Number of sides” . . 

-&,x2, *-- is continuous then H,, is equal to the number of straight segments 
which form the concave polygon. This indicates that a natural alternative 
definition of H,, would have been to define H,, to be the number of 
straight segments in the concave polygon, we may denote this number by K, . 
Evidently H, >, K,, .” 

(The italicized words are changed from the Andersen text in order to be 
consistent with the departure from the Andersen definition. There is a 
corresponding change in the figure.) As indicated, when the X’s have the 
same continuous distribution, H,, = K,, with probability 1, so one has a 
corresponding formula for the generating functions. When the X’s have the 
same discrete distribution it is no longer true that H, = K,, with probability 
1 and Andersen [4] has developed somewhat complicated analogues to (2) 
for both the H, and K,, cases. 

Here another alternative is explored. A random variable Jn , the “number 
of sides,” is defined in Section II so that H,, 2 Jn 3 K, and a random variable 
nn , the number of periods, is defined so that for a particular sample point 

= (Xl, x2, ... x&7” > Xl, x2, **-9 Xd,, 1 .I., Xl , .*. x&h,) 
+----- 1 period ----+ 
< nn periods 

and X1 , X, , m-e, Xnln n is aperiodic. 
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Let 

Q,(h) = d (exp (ihJn)) and ?P&) = d (exp (ihrn). 

Then for A real and ] t 1 < 1 

2 @,(A) tn = exp 2 (Y,(h) P)/k, 
n=o k=l 

(3) 

i.e., the “Spitzer formula” holds this time relating the characteristic function 
of the “number of sides” and the characteristic function of the “number of 
periods.” A similar method could have been used to deduce the original 
Spitzer formula. Some connections are deduced between the distribution of 
Jn in the case of a classical random walk on the integers and the dimension 
of certain subspaces of a free Lie algebra on two generators. The author 
wishes to acknowledge helpful discussions with Glen Baxter and Marcel 
Schiitzenberger. 

II. THE NONCOMMUTATIVE WITT IDENTITY 

Let a, < a2 < -a* constitute a countable totally ordered set A which 
generates a free semigroup (= free monoid [5, p. IS]) F so that elements 
f EF are words generated from the ai’s and the binary associative operation 
is given by juxtaposition. Suppose F is lexicographically ordered so that for 
example $a, < ala2 < afll . A word is a standard word if it is aperiodic 
and lexicographically less than each of its cyclic permutations. The collection 
of all standard words [6, p. 831 is denoted by H. Note a:a2 E H since 
$a, < ala2a1 and afa2 < a2$ . Further (ala,)z 4 H since (a1a2)2 is periodic. 
Of course H C F implies H is totally ordered. By 17(1 - h : h E H; <} is 
meant a formal infinite product of binomial terms in the real algebra generated 
by F, the binomial terms taken in increasing lexicographic order in the h’s. 
The noncommutative Witt identity [7, Lemma 31 is 

(4) 

If one considers the obvious homomorphism which sends the generators of 
the free semigroup F into the generators of a free abelian semigroup he gets 
the classical Witt identity [S, pp. 155-156; 9, pp. 169-1701. If one takes 
inverses of both sides, [7, just prior to Lemma 31 

where 
(1 - h)-1 = 1 + h + h2 + *-* . 
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This says that each nonunit f E F has a unique monotone decreasing factoriza- 
tion into elements of H, 

f =h,h,-h,, 

h,>h,> . ..>h.,, 

hiEH, l<i<k. 

Whenever one has a free semigroup F and a subset of F such that each nonunit 
element of F admits of a unique monotone decreasing factorization into 
elements of that subset, then one says one has a (generalized) Witt identity. 
Related considerations are given in [IO]. 

III. APPLICATION TO FLUCTUATION OF SUMS OF 
INDEPENDENT RANDOM VARIABLES 

Let Xl, X2, .** be independent random variables with the same discrete 
distribution: 

P(X, = ai) independent ofj, 

zP(Xj=ai)=l* 
i=l 

Corresponding to the sample point w, the first n components are 

X,(w) = ail, *.., X,(w) = ain . 

Let 

So(W) = 0, 1 <k. 

Plot {(k, S,), 0 < k < n} and take the least concave majorant (see Fig. 2). 
Note that 

f(w) = ai, ) ai2 ..* ain = (- 1,2, - 2,3, - 1,2, - 1, 1,O) EF 

in the case of Fig. 2. 
From these words choose in stages a subset Sp to play the role of H. If f 

is a word let p(f), the slope off, be the sum of the letters divided by 1 f 1, 
the number of letters. A word f is in A&), the alphabet associated with slope 
A, if p(f) = t+ and H Ifl = 1. The pairs of successive points of contact of 
the least concave majorant and the original set ((0, S,), (1, S,), I**, (n, S,,)) 
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give rise to elements of A(p) (possibly different ~1 for different pairs of suc- 
cessive points of contact). Thus in Fig. 2 

(- 1,2) = UQZ,, = UQZ~, E A(pr) = A (8); 

(- 2,3) = U,*Uf4 E A(&) = A (4); 

(- 1, 1) = u,,ui, E A(& = A(O), and 0 = afp E A(& = A(0). 

(x,,X,,X,,X,,X,,X~,X,,X,,X,)=(--1,2,--2,3,--,2,--,1,0) 
(- 1,2) = ailaiz = ai5uig < ulguil = (2, - 2), 

0 = ui, < ui,ui, = (- 1, l), 

Jo(QJ) = 4, 

0 = ai, < uipi2 = (- 1, 2), 

f&M = 5, &a(w) = 2, TrTg(w) = 1 
&!(4 = 1, Z,(w) = 2. 

FIG. 2. - “Number of sides” in new sense 

For each fixed CL totally order A(p). Let Sp(p) be the set of standard words 
formed from A(p) and let Sp = U, Sp(p). Introduce a total order in Sp 
as follows: If P( fr) > P( fa), then fi > fa . Iffi , fa E Sp(r), then order these f 
lexicographically according to the order in the alphabet A(p). For example 
in Fig. 2 

(- 1,2) = U@i~ = UfsU~* < Ugz~, = (- 2, 3); 

(- 1, 1) = u,,ui, > a,# = 0 

and of course, 

Then 
(- 1,2) = U,#z& > Ui( = 0. 

and 

(- 192, - 233) = ~f,~f,~f*~f, E Sp(p1) = sp (8) c sp; 

(- 1, 1) = u#z~* E -q/L,) = A(O) c Sp(p,) c sp; 

( - 1,2, - 2,3) = u+zQz~p~, > Uqz~, = (- 1) 1). 
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Now each f E F has a unique monotone factorization (empty factorization in 
the case of the unit) in terms of the words in Sp. 

Let L(W) = K, the “number of sides” of the graph of the least concave 
majorant. For example in Fig. 2 

f = (~i,~i,~i,%,) (%,%,) (Ui,UiJ t%J = (- 1,2, -- 2, 3) (-- 112) t- 1, 1) to), 

lb) = 4, ho = 5, 4&J) = 2, %&J) = 1. 

Iffis not the identity let n[f] be the largest integer r such that for somefi E F 
one has f = (fJ’. If some sample point w gives rise to n-letter f(w) E F, let 
X, = ~[f(w)]. Let 

@&) =dfg text tWnN and 

THEOREM. If X1, X2, ..a are independent random variables with the same 
discrete distribution, then for h real and 1 t 1 < 1, 

2 @,(A) tn = exp 2 Y*(A) P/h, 

n-0 k=l 
(5) 

PROOF. From the definition of Sp 

~{(l-h)-l:h~Sp;>}=z{f:f~F}. 

Suppose one associates with each h E Sp, /; = ,P(h) tlhl exp (A) with 
1 h 1 = df the number of letters in h. If 

with 

f = hilh,, ..* hi, 

f = hilJ;i, *‘* hf. = P(f) exp (ish) tlf’, 

where the independence of the random variables X1, X, , e-m is used. (Only 
the independence of hi1 , hi, , --* at this stage.) 
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Then 

2 @,(A)tk =C{f:fd) 
k=O 

= 7T{(l -- I+’ : h E sp; >} 

= exp 2 2 P(hk) exp (ixk) tklhl/k 
heSz, k=l 

= exp 2 2 1 h I P(P) exp (ihk) tklhi/k I h I 
hoSp k=l 

= exp 2 W) exp @WA) WI f I 
fEF 

= eXp g y&i) t”/k, 
k=l 

where in next to the last equality one used (1) the fact that each aperiodic 
word has a unique cyclic permutation making it a standard word and (2) if 
one goes fromf tof’ by cyclically permuting the letters, then P(f) = P(fl). 
Thus the theorem is proved. 

Consider the classical random walk on the integers with only steps of f 1 
permitted, both being equally likely. What can be said about P(L = k) ? 

Suppose with [9, p. 169, 1711 one lets M,(d) be the number of circular 
words composed from two different letters but of length d and period d (= the 
number of basic commutators of weight d in 2 generators). Then 

(t/2)r $ exp (ihk) 2 p (i) 2d 
k=1 dkl T 

r 3. r=l 
The continuous analogue to Eq. (5) is Eq. (2), since for the case of a 

continuous distribution Jn = H, with probability one and b(rr,J = 1. 
The Theorem gives information about the distribution of Jn . Under the 

same assumptions what can be said about H,, ? Let (T be a cyclic permutation 
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of (1, 2, se., n) such that the chord joining (0,O) to (n, X,,, f Xg, + *** + X,,J 
is not below any vertex (k, X0, + *** + X,,), 1 < K < 11. Let Z,, be number 
of such vertices on the chord. While (I is not necessarily unique, Z, is unique. 
In Fig. 2, Z, = 1 and Z, = 2. 

Let 
G,(h) = B (exp iMY,) 

and 
F&t) = d (exp ihZ,). 

Then by redefining x one can show that for h real and / t ] < 1 

V&=0 k=l 

When applied to distributions which are continuous except for one jump this 
formula is consistent with [4, p. 3, Eq. (4.2)]. 

Appropriate redefinition of h yields, for discrete distributions of the X’s, 
analogues to Eq. (4.12) of [2] and Eqs. (3.6) and (9.12) of [3] as well as equa- 
tions involving the joint distribution of random variables of this hind. 

A slightly different analysis gives results about the distribution of K, and 
can be used to give an independent derivation of the last equation. No deriva- 
tion will be given here but the result will be stated. Let 

then 

&,,(A) = d (exp iA&) 

2 $,,(A) t” = exp 2 g S[ 1 - (1 - ei”)zk] . 
?I=0 k=l 

The classical Spitzer formula, Eq. (l), could have been established as was 
the main theorem by requiring for 

so = 0, S,=$=la,, 
j 

that 

h = P(h) exp (ih max (So , S, , ***, Sk)) tk 

= P(h) exp (ih max (So , S,,,)) tlhl. 

In establishing the classical Spitzer formula some of the niceties about 
standard words could be avoided. One could also establish a formula encom- 
passing the current formula and the classical one. If one is to use least concave 



476 SHERMAN 

majorants to get this kind of formula, then the “additivity” of the functional 
which is the coefficient of h is one limitation that must be observed. In com- 
paring Spitzer’s proof of his formula with the proof suggested just above 
one notes that the latter does not use the decomposition of a permutation 
into cycles [l, p. 326 Theorem 2.21. 

When one considers the variety of derivations of the classical Spitzer’s 
formula, it becomes of interest to see whether these techniques could be 
used to derive Eq. (5). In particular a Wiener-Hopf derivation of Eq. (5) 
would be desirable. This does not seem to be a transparent problem. 
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