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Symmetric disk graphs are often used to model wireless communication networks. Given a
set S of n points in R

d (representing n transceivers) and a transmission range assignment
r : S → R, the symmetric disk graph of S (denoted SDG(S)) is the undirected graph over S
whose set of edges is E = {(u, v) | r(u) � |uv| and r(v) � |uv|}, where |uv| denotes the
Euclidean distance between points u and v . We prove that the weight of the MST of any
connected symmetric disk graph over a set S of n points in the plane, is only O (logn)

times the weight of the MST of the complete Euclidean graph over S . We then show that
this bound is tight, even for points on a line.
Next, we prove that if the number of different ranges assigned to the points of S is only k,
k � n, then the weight of the MST of SDG(S) is at most 2k times the weight of the MST of
the complete Euclidean graph. Moreover, in this case, the MST of SDG(S) can be computed
efficiently in time O (kn log n).
We also present two applications of our main theorem, including an alternative proof of
the Gap Theorem, and a result concerning range assignment in wireless networks.
Finally, we show that in the non-symmetric model (where E = {(u, v) | r(u) � |uv|}), the
weight of a minimum spanning subgraph might be as big as Ω(n) times the weight of the
MST of the complete Euclidean graph.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Symmetric disk graphs are often used to model wireless communication networks. Given a set S of n points in R
d

(representing n transceivers) and a transmission range assignment r : S → R, the symmetric disk graph of S (denoted SDG(S))
is the undirected graph over S whose set of edges is E = {(u, v) | r(u) � |uv| and r(v) � |uv|}, where |uv| denotes the
Euclidean distance between points u and v . If r(u) � diam(S), for each u ∈ S , then SDG(S) is simply the complete Euclidean
graph over S . However, usually, the transmission ranges are much shorter than diam(S).

The Minimum Spanning Tree (MST) of a connected Euclidean graph G is an extremely important substructure of G . In
the context of wireless networks, the MST is especially important. Besides its role in various routing protocols, it is also used
to obtain good approximations when the problem being considered is NP-hard; see, e.g., the power assignment problem.

It is usually impossible to use the Euclidean MST of S (denoted MST(S)), under the symmetric disk graph model, simply
because some of the edges of MST(S) are not present in SDG(S). Instead, it is natural to use the MST of SDG(S) (denoted
MSTSDG(S)). However, it is still desirable to (tightly) bound the approximation ratio also with respect to the weight of MST(S)

✩ A preliminary version of this paper appears in Proceedings of the 12th Scandinavian Symposium and Workshops on Algorithm Theory, 2010.
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(and not only with respect to the weight of MSTSDG(S)). The main result of this paper makes this possible. We prove the
following, somewhat surprising, theorem. For any set S of points in the plane and for any assignment of ranges to the points
of S , such that SDG(S) is connected, the weight (i.e., the sum of the edge lengths) of MSTSDG(S) is O (log n) times the weight
of MST(S).

Disk graphs and especially unit disk graphs have received much attention, especially in the context of wireless networks.
Notice that the unit disk graph of S is the symmetric disk graph of S that is obtained when r(u) = 1, for each point u ∈ S .
The disk graph of S , on the other hand, is a directed graph, where there is an arc from u to v if r(u) � |uv|. Despite their
importance, symmetric disk graphs have not received as much attention as (unit) disk graphs. Before describing our results
concerning the MST of symmetric disk graphs, we mention two applications of our main result (stated above).

The Gap Theorem. The proof of our main result is based on a property of MSTSDG(S) (see Lemma 2.1). This property also
allows us to obtain an alternative and possibly simpler proof of the, so-called, Gap Theorem, stated and proved by Chandra
et al. [4]. The Gap Theorem is used to show that the weight of the greedy spanner is O (log n) times the weight of MST(S)

[1,8].

Range assignment. A range assignment is an assignment of transmission ranges to each of the nodes of a network, so that
the induced communication graph is connected and the total power consumption is minimized. The power consumed by a
node v is r(v)α , where r(v) is the range assigned to v and α � 1 is some constant. The range assignment problem was first
studied by Kirousis et al. [7], who did not impose any restriction on the potential transmission range of a node. They proved
that the problem is NP-hard in three-dimensional space, assuming α = 2. Subsequently, Clementi et al. [5] proved that the
problem remains NP-hard in two-dimensional space. Kirousis et al. [7] also presented a simple 2-approximation algorithm,
based on MST(S).

It is more realistic to study the range assignment problem under the symmetric disk graph model. That is, the potential
transmission range of a node u is bounded by some maximum range r(u), and two nodes u, v can directly communicate
with each other if and only if v lies within the range assigned to u and vice versa. The range assignment problem under this
model was studied in [3,2]. Blough et al. [2] show that this version of the problem is also NP-hard in 2-dimensional and in
3-dimensional space. Our main theorem enables us, assuming α = 1, to bound the weight of an optimal range assignment
with limits on the ranges with respect to an optimal range assignment without such limits.

1.1. Our results

In this paper, we prove several results concerning the minimum spanning tree of symmetric disk graphs. In Section 2, we
prove that the weight of the MST of any connected symmetric disk graph SDG(S) is bounded by O (log n) times the weight
of MST(S). Or, in our notation, wt(MSTSDG(S)) = O (log n) · wt(MST(S)). We also show that this bound is tight, in the sense
that there exists a symmetric disk graph, such that wt(MSTSDG(S)) = Ω(log n) · wt(MST(S)). If the ratio between the max-
imum range and minimum range is bounded by some constant, then we show that wt(MSTSDG(S)) = O (wt(MST(S))). In
Section 3, we consider the common case where the number of different ranges is only k, for k � n. We prove that in
this case wt(MSTSDG(S)) � 2k · wt(MST(S)). Moreover, we present an algorithm for computing MSTSDG(S) in this case in time
O (kn log n). In Section 4, we discuss the two applications mentioned above. In particular, we provide an alternative proof of
the Gap Theorem. In Section 5, we consider disk graphs. We prove that the weight of a minimum spanning subgraph of a
disk graph is bounded by O (n) times the weight of MST(S), and give an example where this bound is tight.

2. Symmetric disk graphs

Given a set S of n points in the plane and a function r : S → R, the symmetric disk graph of S , denoted SDG(S), is the
undirected graph over S whose set of edges is E = {(u, v) | r(u) � |uv| and r(v) � |uv|}, where |uv| denotes the Euclidean
distance between points u and v . The weight, wt(e), of an edge e = (u, v) ∈ E is |uv|, and the weight, wt(E ′), of E ′ ⊆ E is∑

e∈E ′ wt(e).
We denote by MSTSDG(S) the minimum spanning tree of SDG(S). In this section, we show that wt(MSTSDG(S)) = Θ(log n) ·

wt(MST(S)), where MST(S) is the Euclidean minimum spanning tree of S (i.e., the minimum spanning tree of the complete
Euclidean graph over S). More precisely, we show that if SDG(S) is connected, then wt(MSTSDG(S)) = O (log n) · wt(MST(S)),
and that there exists a connected symmetric disk graph (over some set S of points) whose spanning tree’s weight is
Ω(log n) · wt(MST(S)).

Lemma 2.1. Let SDG(S) = (S, E) be a symmetric disk graph over S. Let (a,b), (c,d) ∈ E(MSTSDG(S)) be two edges of MSTSDG(S) that
do not share an endpoint, such that 0 < |ab| � |cd|. Then at most one edge from the set A = {(a, c), (b, c), (a,d), (b,d)} is shorter than
(a,b).

Proof. Assume that there are two edges e′, e′′ ∈ A that are shorter than (a,b). Since e′ is shorter than (a,b) (and therefore
also shorter than (c,d)), it belongs to SDG(S). Similarly, e′′ belongs to SDG(S). Therefore the edges e′ , e′′ together with
(a,b), (c,d) contain a cycle in SDG(S), implying that (a,b) or (c,d) is not in E(MSTSDG(S)) — a contradiction. �
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Fig. 1. Proof of Lemma 2.2.

Lemma 2.2. Let e1 = (l1, r1), e2 = (l2, r2) be two edges of MSTSDG(S) , where ri is to the right of li , i = 1,2, such that (i) 1 � |e2|
|e1| � 5

4 ,

and (ii) the difference α between the orientations of e1 and e2 is in the range [0, π
9 ]. Then |l1l2| � 1

2 |e1|.

Proof. First, notice that it is impossible that l1 = l2. (Otherwise, the edge (r1, r2) is shorter than e1 and therefore is present
in SDG(S), implying that e2 is not an edge of MSTSDG(S) .) Moreover, assume that e1 and e2 do not share an endpoint, since,
if they do (i.e., if l1 = r2, or l2 = r1, or r1 = r2), then the proof becomes much easier. Assume that |l1l2| < 1

2 |e1|. Let r′
1 be the

point to the right of l2, such that (l1, r1) and (l2, r′
1) are parallel to each other and |l1r1| = |l2r′

1|; see Fig. 1. By the triangle
inequality,

|l1l2| +
∣∣r′

1r2
∣∣ = ∣∣r1r′

1

∣∣ + ∣∣r′
1r2

∣∣ � |r1r2|.
Since |e1| � |e2| and |l1l2| < |e1|, we know, by Lemma 2.1, that |r1r2| � |e1|. Thus, we get that

∣∣r′
1r2

∣∣ � |e1| − |l1l2| > |e1| − 1

2
|e1| = 1

2
|e1|.

By the law of cosines,
∣∣r′

1r2
∣∣2 = |e1|2 + |e2|2 − 2|e1||e2| cos(α)

and therefore

|e1|2 + |e2|2 − 2|e1||e2| cos(α) >
1

4
|e1|2

or

3

4
+ |e2|2

|e1|2 − 2
|e2|
|e1| cos(α) > 0. (1)

We now show that this is impossible. Replacing |e2|
|e1| by x in (1), we get x2 − 2 cos(α)x + 3/4 > 0. The solutions of the

equation x2 − 2 cos(α)x + 3/4 = 0 are x1,2 = cos(α) ±
√

cos2(α) − 3
4 . Notice that since 0 < α � π

9 , we have cos(α) > 37/40,

and therefore x1 > 5/4 and x2 < 1. Thus, for any x in the interval [1, 5
4 ], the left side of inequality (1) is non-positive. But

this contradicts the assumption that 1 � |e2|
|e1| � 5/4. We conclude that |l1l2| � 1

2 |e1|. �
We are ready to prove our main theorem.

Theorem 2.3 (SDG Theorem).

1. The weight of the minimum spanning tree of a connected symmetric disk graph over a set S of n points in the plane is O (log n) ·
wt(MST(S)), where MST(S) is the Euclidean minimum spanning tree of S.

2. There exists a set S of n points on a line, such that wt(MSTSDG(S)) = Ω(log n) · wt(MST(S)).

We prove the first part (i.e., the upper bound) in Section 2.1, and the second part (i.e., the lower bound) in Section 2.2.

2.1. Upper bound

Let SDG(S) = (S, E) be a connected symmetric disk graph over a set S of n points in the plane. We prove that
wt(MSTSDG(S)) = O (log n) · wt(MST(S)).
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We partition the edge set of MSTSDG(S) into two subsets. Let E ′ = {e ∈ MSTSDG(S) | |e| > wt(MST(S))/n} and let E ′′ = {e ∈
MSTSDG(S) | |e| � wt(MST(S))/n}. Since MSTSDG(S) has n − 1 edges,

wt
(

E ′′) =
∑
e∈E ′′

|e| � (n − 1) · wt(MST(S))

n
< wt

(
MST(S)

)
.

In order to bound wt(E ′), we divide the edges of E ′ into k � 9 classes {C1, . . . , Ck}, according to their orientation (which
is an angle in the range (−π/2,π/2]). Within each class we divide the edges into O (log n) buckets, according to their
length. Specifically, for 1 � i � k and 1 � j � logp n, where p = 5/4, let

Bi, j =
{

e ∈ E ′ ∩ Ci

∣∣∣ |e| ∈
(

wt(MST(S))

n
· p j−1,

wt(MST(S))

n
· p j

]}
.

(Notice that for each e ∈ E ′, |e| � diam(S) � wt(MST(S)).) Finally, let Si, j = {s ∈ S | there exists a point t such that (s, t) ∈
Bi, j}.

Let s, s′ ∈ Si, j , and let t, t′ ∈ S such that e = (s, t) and e′ = (s′, t′) are edges in Bi, j . Since e, e′ belong to the same class,
the difference between their orientations is less than π

9 , and since they also belong to the same bucket, we may apply

Lemma 2.2 and obtain that |ss′| � 1
2 · min{|e|, |e′|}.

We now show that wt(Bi, j) = O (wt(MST(S))). First notice that

wt
(
MST(Si, j)

)
�

(|Si, j| − 1
) · min

e∈MST(Si, j)

{|e|} � (|Si, j| − 1)

2
· min

e∈Bi, j

{|e|},
and since for any e1, e2 ∈ Bi, j , min{|e1|, |e2|} � 1

p · max{|e1|, |e2|} we get that

wt
(
MST(Si, j)

)
� (|Si, j| − 1)

2p
· max

e∈Bi, j

{|e|} � 1

2p
·
(

wt(Bi, j) − max
e∈Bi, j

{|e|}).

Rearranging,

wt(Bi, j) � 2p · wt
(
MST(Si, j)

) + max
e∈Bi, j

{|e|} � 2p · wt
(
MST(Si, j)

) + p · min
e∈Bi, j

{|e|}

� 2p · wt
(
MST(Si, j)

) + 2p · max
e∈MST(Si, j)

{|e|} � 2p · wt
(
MST(Si, j)

) + 2p · wt
(
MST(Si, j)

)

� 4p · wt
(
MST(Si, j)

)
.

Referring to S \ Si, j as Steiner points we get wt(MST(Si, j)) � 2 · wt(MST(S)) (see, e.g., Lemma 1.1.4 in [8]), and therefore
wt(Bi, j) � 8p · wt(MST(S)).

It follows that

wt
(

E ′) =
k∑

i=1

logp n∑
j=1

wt(Bi, j) � 8pk logp n · wt
(
MST(S)

)
, and

wt(E) = wt
(

E ′) + wt
(

E ′′) � 8pk logp n · wt
(
MST(S)

) + wt
(
MST(S)

) = O (log n) · wt
(
MST(S)

)
.

A more delicate upper bound. We showed that the weight of the minimum spanning tree of a connected symmetric disk
graph is bounded by O (log n) ·wt(MST(S)), whereas the weight of the minimum spanning tree of a connected unit disk graph
(UDG) is equal to wt(MST(S)). A more delicate bound that depends also on rmax and rmin, the maximum and minimum
ranges, bridges between the two upper bounds.

This bound is obtained by changing the above proof in the following manner. Let l1 = max{rmin,wt(MST(S))/n} and
l2 = min{rmax,wt(MST(S))}. Define E ′′ = {e ∈ MSTSDG(S) | |e| � l1}, and E ′ = {e ∈ MSTSDG(S) | |e| > l1}. Now, if l1 = rmin, then
we get that E ′′ ⊆ E(MST(S)) and therefore wt(E ′′) � wt(MST(S)), and if l1 = wt(MST(S))/n, then we get that wt(E ′′) �
(n − 1) · wt(MST(S))/n < wt(MST(S)). Thus, in both cases we get that wt(E ′′) � wt(MST(S)).

Concerning E ′ , we slightly modify the division into buckets, so that Bi, j = {e ∈ E ′ ∩ Ci | |e| ∈ (l1 p j−1, l1 p j]}. Since the
weight of any edge in MSTSDG(S) is at most l2, we get that the number of buckets is logp(l2/l1). The asymptotic weight of
each bucket remains O (wt(MST(S))) (as before).

Therefore, the new bound on the weight of MSTSDG(S) is O (log(l2/l1) + 1) · wt(MST(S)). The following theorem summa-
rizes our result.

Theorem 2.4.

wt(MSTSDG(S)) = O

(
log

(
min{rmax,wt(MST(S))} )

+ 1

)
· wt

(
MST(S)

)
,

max{rmin,wt(MST(S))/n}
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Fig. 2. Theorem 2.3 — the lower bound.

where rmax and rmin are the maximum and minimum ranges, respectively. In particular, if (rmax/rmin) is bounded by some constant,
then wt(MSTSDG(S)) = O (wt(MST(S))).

2.2. Lower bound

Consider the following set of n + 1 points S = (v0, v1, . . . , vn) on a line, where n = 2k for some positive integer k. The
distance between two adjacent points vi and vi+1 is 1 + iε, where ε = O (1/n), for i = 0, . . . ,n − 1. We assign a range r(vi)

to each of the points vi ∈ S; see Fig. 2.
Set

r(v0) = n + (n − 1)n

2
ε.

That is, v0’s range is the distance between the two extreme points v0 and vn . For i 	= 0, let m = 2l be the largest power of
two that divides i. Set

r(vi) = m + m(2i − m − 1)

2
ε.

Consider the induced symmetric disk graph, SDG(S), depicted in Fig. 2. Observe that this graph is actually a tree. Since,
if we build it by adding the nodes, one by one, from left to right, then each node (except for v0) contributes exactly one
new edge to SDG(S). That is, SDG(S) is connected and contains n − 1 edges. Therefore, MSTSDG(S) is simply SDG(S),

wt(MSTSDG(S)) >
n

2
· 1 + n

4
· 2 + n

8
· 4 + · · · + n

n
· n

2
= n

2
· log n = Ω(n log n).

On the other hand, MST(S) is simply the path v0, v1, . . . , vn , and therefore

wt
(
MST(S)

) = n +
n−1∑
i=1

iε = n + (n − 1)n

2
ε = O (n).

Therefore, in this example, wt(MSTSDG(S)) = Ω(log n) · wt(MST(S)).

3. k-Range symmetric disk graphs

In this section we consider the common case where the number of different ranges assigned to the points of S is
only k, for k � n. That is, the function r : S → R assumes only k different values, denoted r1 < r2 < · · · < rk . We first prove
that in this case the weight of the minimum spanning tree of SDG(S) is at most 2k · wt(MST(S)). Next, we present an
efficient O (kn log n) algorithm for computing this minimum spanning tree. Thus, assuming k is some constant, we get that
wt(MSTSDG(S)) = O (wt(MST(S))) and MSTSDG(S) can be constructed in time O (n log n).

3.1. The weight of the minimum spanning tree

Let SDG(S) be a k-range symmetric disk graph. Let MSTSDG(S) be the minimum spanning tree of SDG(S), and let E be
the set of edges of MSTSDG(S) . We divide the edges of E into k subsets according to their length. Notice that, by definition,
the length of the longest edge in E is at most rk . Put r0 = 0, and let Ei = {e ∈ E | ri−1 < |e| � ri}, for i = 1, . . . ,k. Also, let
Si = {v ∈ S | ri � r(v)}, for i = 1, . . . ,k. Then, S = S1 ⊇ S2 ⊇ · · · ⊇ Sk .

Claim 3.1. Ei ⊆ E(MST(Si)), for i = 1, . . . ,k.
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Proof. Let e = (u, v) ∈ Ei . We first observe that u, v ∈ Si . Indeed, since e ∈ E(SDG(S)), we know that r(u) � |e| and r(v) � |e|.
Now, since |e| > ri−1, it follows that r(u) � ri and r(v) � ri and therefore u, v ∈ Si .

Let u′, v ′ be any two vertices in Si , such that |u′v ′| < |e|. Then, e′ = (u′, v ′) ∈ E(SDG(S)) (since r(u′) � ri � |e| > |e′| and
r(v ′) � ri � |e| > |e′|). Thus, in the construction of MSTSDG(S) by Kruskal’s algorithm (see [6]), the edge e′ , as well as all other
edges of SDG(S) with both endpoints in Si and shorter than e, were considered before e. Nevertheless, e was selected, since
there was still no path between u and v . Therefore, in the construction of MST(Si), when e is considered, there is still no
path between its endpoints, and it is selected, i.e., e ∈ E(MST(Si)). �
Theorem 3.2. wt(MSTSDG(S)) � 2k · wt(MST(S)).

Proof. For each 1 � i � k, Ei ⊆ MST(Si) (by the claim above), and therefore wt(Ei) � wt(MST(Si)). Referring to S \ Si

as Steiner points, we get that wt(Ei) � 2 · wt(MST(S)). Thus, wt(MSTSDG(S)) = ∑k
i=1 wt(Ei) �

∑k
i=1 2 · wt(MST(S)) = 2k ·

wt(MST(S)). �
3.2. Constructing the minimum spanning tree

We describe below an O (kn log n) algorithm for computing the minimum spanning tree of a k-range symmetric disk
graph. The algorithm applies Kruskal’s minimum spanning tree algorithm (see [6]) to a subset of the edges of SDG(S). We
then prove that the subset E of edges that were selected by Kruskal’s algorithm is E(MSTSDG(S)).

Algorithm 1 Computing the MST of a k-range symmetric disk graph
Require: S; r1 < r2 < · · · < rk; r : S → {r1, . . . , rk}
Ensure: MSTSDG(S)

1: E ← ∅
2: for i = 1 to k do
3: Si ← ∅; Ei ← ∅
4: for all s ∈ S such that r(s) � ri do
5: Si ← Si ∪ {s}
6: DT (Si) ← Delaunay triangulation of Si

7: for all e ∈ DT (Si) such that ri−1 < |e| � ri do
8: Ei ← Ei ∪ {e}
9: E ← Kruskal(

⋃k
i=1 Ei)

10: return E

Lemma 3.3. E = E(MSTSDG(S)).

Proof. We prove that E(MSTSDG(S)) ⊆ E , and since the algorithm assures that E does not contain any cycle (line 9), we
conclude that E(MSTSDG(S)) = E .

Let e = (u, v) ∈ E(MSTSDG(S)) and let i, 1 � i � k, such that ri−1 < |e| � ri . (Recall that r0 = 0.) Since e is an edge of
SDG(S), we have that r(u) � |e| and r(v) � |e|, implying that r(u), r(v) � ri and therefore u, v ∈ Si .

We show that e ∈ E(MST(Si)). Assume that e /∈ E(MST(Si)), then E(MST(Si)) ∪ {e} contains a cycle C . For each e′ ∈ C ,
e′ 	= e, we have that |e′| < |e| � ri . That is, e′ is an edge of SDG(Si), and therefore also an edge of SDG(S). Now, assume we
apply Kruskal’s minimum spanning tree algorithm to SDG(S). Then, since each of the edges of C −{e} is considered before e,
e is not selected as an edge of MSTSDG(S) — a contradiction.

Since E(MST(Si)) ⊆ E(DT(Si)), e also belongs to E(DT(Si)), and therefore (since ri−1 < |e| � ri ) e ∈ Ei . To complete
the proof, notice that Ei ⊆ E(SDG(S)), for i = 1, . . . ,k, and since, by assumption, e ∈ E(MSTSDG(S)), we conclude that e ∈
Kruskal(

⋃k
i=1 Ei) = E . �

Theorem 3.4. The minimum spanning tree of a k-range symmetric disk graph of n points can be computed in time O (kn log n).

Proof. In each of the k iterations of the main loop, we compute the Delaunay triangulation of a subset of S . This can
be done in O (n log n) time. Finally, we apply Kruskal’s algorithm to a set of size O (kn). Thus, the total running time is
O (kn log n). �
4. Applications

4.1. An alternative proof of the Gap Theorem

Let w � 0 be a real number, and let E be a set of directed edges in R
d . We say that E has the w-gap property if for any

two distinct edges (p,q) and (r, s) in E , we have |pr| > w · min{|pq|, |rs|}. The gap property was introduced by Chandra et
al. [4], who also proved the Gap Theorem; see below. The Gap Theorem bounds the weight of any set of edges that satisfies
the gap property.
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Theorem 4.1 (Gap Theorem). Let w > 0, let S be a set of n points in R
d, and let E ⊆ S × S be a set of directed edges that satisfies the

w-gap property. Then wt(E) = O (log n) · wt(MST(S)).

Chandra et al. use in their proof a shortest traveling salesperson tour TSP(S) of S . They charge the lengths of the edges
in E to portions of TSP(S), and prove that wt(E) < (1 + 2/w) log n · wt(MST(S)). We give an alternative, simpler, proof of the
Gap Theorem, which is similar to the proof of the first part of Theorem 2.3.

We now present our proof. Let E ′ = {e ∈ E | wt(e) > wt(MST(S))/n} and let E ′′ = {e ∈ E | wt(e) � wt(MST(S))/n}. Since
w > 0, each point of S is the source of at most one edge of E , which implies that there are at most n edges in E . Therefore,

wt
(

E ′′) =
∑
e∈E ′′

w(e) � n · wt(MST(S))

n
= wt

(
MST(S)

)
.

As for wt(E ′), notice that for each e ∈ E ′ , wt(e) � diam(S) � wt(MST(S)). We divide the edges of E ′ into log n buckets
according to their size. Specifically, for 1 � i � log n, let Bi = {e ∈ E ′ | wt(e) ∈ (

wt(MST(S))
n · 2i−1,

wt(MST(S))
n · 2i]} and let Si =

{s ∈ S | there exists a point t such that (s, t) ∈ Bi}.
Let s, s′ ∈ Si , and let t, t′ ∈ S such that e = (s, t) and e′ = (s′, t′) are edges in Bi . By the w-gap property, wt(ss′) >

w · min{wt(e),wt(e′)} � w
2 · max{wt(e),wt(e′)}. We claim that wt(Bi) � 8

w · wt(MST(S)). We omit the details; however, this
claim is very similar to the analogous claim in the proof of the first part of the SDG Theorem.

It follows that

wt
(

E ′) =
log n∑
i=1

wt(Bi) � 8

w
logn · wt

(
MST(S)

)
, and therefore

wt(E) � 8

w
logn · wt

(
MST(S)

) + wt
(
MST(S)

) = O (log n) · wt
(
MST(S)

)
.

4.2. Range assignment

Let S be a set of n points in the plane (representing transceivers). For each vi ∈ S , let ri be the maximum transmission
range of vi , and put r = (r1, . . . , rn). The following problem is known as the Range Assignment Problem. Assign a transmission
range di , di � ri , to each of the points vi of S , such that (i) the induced symmetric disk graph (using the ranges d1, . . . ,dn)
is connected, and (ii)

∑n
i=1 di is minimized. Below, we compute a range assignment, such that the sum of ranges of the

assignment is bounded by O (log n) times the sum of ranges of an optimal assignment, computed under the assumption that
r1 = · · · = rn = diam(S).

Let SDG(S) be the symmetric disk graph of S . We first compute MSTSDG(S) . Next, for each vi ∈ S , let di be the weight of
the heaviest edge incident to vi in MSTSDG(S) . Notice that the induced symmetric disk graph (using the ranges d1, . . . ,dn)
is connected, since it contains E(MSTSDG(S)). It remains to bound the sum of ranges of the assignment with respect to
wt(MST(S)), where MST(S) is the Euclidean minimum spanning tree of S . Let OPT(S) denote an optimal range assignment
with respect to the complete Euclidean graph of S . It is easy to see that wt(MST(S)) < wt(OPT(S)) < 2 · wt(MST(S)) (see
Kirousis et al. [7]). Thus,

∑n
i=1 di < 2 · wt(MSTSDG(S)) = O (log n) · wt(MST(S)) = O (log n) · wt(OPT(S)). (Of course, we also

know that
∑n

i=1 di < 2 · wt(OPTr(S)), where OPTr(S) is an optimal range assignment with respect to SDG(S).)

5. Disk graphs

Given a set S of n points in R
d and a function r : S → R, the Disk Graph of S , denoted DG(S), is a directed graph over S

whose set of edges is E = {(u, v) | r(u) � |uv|}. In this section we show that, unlike symmetric disk graphs, the weight of a
minimum spanning subgraph of a disk graph might be much bigger than that of MST(S).

Notice that if the corresponding symmetric disk graph SDG(S) is connected, then the weight of a minimum spanning
subgraph of DG(S) (denoted MSTDG(S)) is bounded by wt(MSTDG(S)) � 2 · wt(MSTSDG(S)) = O (log n) · wt(MST(S)).

We now state the main theorem of this section.

Theorem 5.1. Let DG(S) be a strongly connected disk graph over a set S of n points in R
d. Then, (i) wt(MSTDG(S)) = O (n) ·wt(MST(S)),

and (ii) there exists a set of n points in the plane, such that wt(MSTDG(S)) = Ω(n) · wt(MST(S)).

Proof. Upper bound. Since maxe∈E(DG(S)){wt(e)} � wt(MST(S)) and since the number of edges in MSTDG(S) is less than 2n,

wt(MSTDG(S)) < 2n · max
e∈E(DG(S))

{
wt(e)

}
� 2n · wt

(
MST(S)

) = O (n) · wt
(
MST(S)

)
.

Lower bound. Consider the following set S of n + 1 points in the plane, where n = 3k for some positive integer k. We
place 2

3 n + 1 points on the line y = 0, such that the distance between any two adjacent points is 1 − ε, where 0 < ε < 1/2,

and we place 1 n points on the line y = 1, such that the distance between any two adjacent points is 2 − 2ε; see Fig. 3. For
3
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Fig. 3. Theorem 5.1 — the lower bound.

each point u on the top line, set r(u) = 1, and for each point v on the bottom line, except for the rightmost point s, set
r(v) = 1 − ε. Set r(s) so that it reaches all points on the top line.

We show that wt(MSTDG(S)) = Ω(n) · wt(MST(S)). First notice that the Euclidean minimum spanning tree of S has the
shape of a comb, and therefore

wt
(
MST(S)

) = 2

3
n · (1 − ε) + 1

3
n · 1 < n = O (n).

Next notice that for each point u on the top line, the minimum spanning subgraph of DG(S) must include the edge (s, u),
since this is the only edge that enters u. The total weight of these n/3 edges is at least 2+4+· · ·+2n/3 = Ω(n2). Therefore,
wt(MSTDG(S)) = Ω(n2) = Ω(n) · wt(MST(S)). �
6. Concluding remarks

The main result of this paper is a proof that the weight of the MST of any connected symmetric disk graph over a set S
of n points in the plane, is only O (log n) times the weight of the MST of the complete Euclidean graph over S . Moreover,
this bound is tight, even for points on a line.

Recently and independently, Michiel Smid [9] introduced the weak gap property: A set E of directed edges has the weak
w-gap property for some constant w > 0, if for any two distinct edges (p,q) and (r, s) in E , |pq| � w · min{|pq|, |rs|},
or |qs| � w · min{|pq|, |rs|}. Smid proved that if E has the weak w-gap property, then wt(E) = O (log n) · wt(MST(S)) and
|E| = O (n), where S is the set of endpoints of edges in E and |S| = n. (His proof applies to any metric space of constant
doubling dimension.) Moreover, the O (log n) upper bound is tight.

Observe that if one assigns an arbitrary direction to each of the edges in E(MSTSDG(S)), then the resulting set of directed
edges has the weak gap property for w = 1; this follows immediately from Lemma 2.1. Thus, one could apply Smid’s result
to obtain our main result. This is not surprising, as both Smid’s proof and our proof proceed essentially along the same
lines. In particular, we obtain an alternative proof for the Gap Theorem.

We end this section with an open problem. In Section 3.2, we presented an algorithm for computing, in time O (kn log n),
the MST of a k-range symmetric disk graph of n points. Can one always compute the MST of a symmetric disk graph
efficiently?
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