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a b s t r a c t

Let k, m, and r be three integers such that 2 ≤ k ≤ m ≤ r . Let G be a 2r-regular, 2m-edge-
connected graph of odd order. We obtain some sufficient conditions for G − v to contain a
k-factor for all v ∈ V (G).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered are multigraphs (with loops allowed) and finite. Let G be a graph with vertex set V (G) and edge set
E(G). The number of vertices of a graph G is the order of G and is denoted by n. On the other hand, the number of edges of G
is the size of G and is denoted by e. We denote the degree of vertex v in G by dG(v). For two subsets S, T ⊆ V (G), let eG(S, T )
denote the number of edges of G joining S to T .

Let c(G) and co(G) denote the number of components and the number of odd components of G, respectively. Let k be a
positive integer. A k-factor of a graph G is a spanning subgraph H of G such that dH(x) = k for every x ∈ V (G). Let D and S
be disjoint subsets of V (G) and C be a component of G− (D∪ S). C is a k-odd component of G− (D∪ S) if k|C | + eG(S, V (C))
is odd.

Petersen obtained the following theorem, which is chronologically the first result on k-factors in regular graphs.

Theorem 1.1 (Petersen [3]). Every 3-regular, 2-connected graph has a 1-factor.

For the existence of 1-factors in arbitrary graphs, Tutte also characterized graphs having k-factors.

Theorem 1.2 (Tutte [4]). A graph G has a 1-factor if and only if co(G − S) ≤ |S| for all S ⊆ V (G).

The following theorem is the well-known Tutte’s k-factor Theorem.

Theorem 1.3 (Tutte [5]). Let k be a positive integer. A graph G has a k-factor if and only if, for all D, S ⊆ V (G) with D ∩ S = ∅,

δG(D, S) = k|D| +

−
x∈S

dG(x) − k|S| − eG(D, S) − qG(D, S; k) ≥ 0,

where qG(D, S; k) is the number of k-odd components C of G − (D ∪ S). Moreover, δG(D, S) ≡ k|V (G)|(mod 2).
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The following theorem examines the existence of a 1-factor in vertex-deleted subgraphs of a regular graph.

Theorem 1.4 (Little et al. [2]). Let G be a 2r-regular, 2r-edge-connected graph of odd order. For any vertex u in G, then graph
G − u has a 1-factor.

Katerinis presented the following result, which generalizes Theorem 1.4.

Theorem 1.5 (Katerinis [1]). Let G be a 2r-regular, 2r-edge-connected graph of odd order. If m is an integer such that 1 ≤ m ≤ r,
then G − u has an m-factor for any vertex u ∈ V (G).

In this paper, we set independent values to the degree and the edge-connectivity.We prove the following theorem,which
generalizes Theorem 1.5. Furthermore, we also show that each hypothesis cannot be weakened.

Theorem 1.6. Let m and r be two integers such that 2 ≤ m ≤ r. Let G be a 2r-regular, 2m-edge-connected graph with odd
order. If one of the following conditions holds, then G − v has a k-factor for all v ∈ V (G).

(i) k is even and 2 ≤ k ≤ m;
(ii) k is odd, 3 ≤ k ≤ m and 2m > r.

Our results reveal an interesting behavior of a k-factor with respect to the parity of k and a difference between the case
k = 1 and k > 1. These differences are not apparent in 1.5.

2. The proof of Theorem 1.6

In this section, we give the proof of Theorem 1.6 and show that each hypothesis cannot be weakened.

The Proof of Theorem 1.6. Suppose that the result does not hold. Now there exists u ∈ V (G) such that G − u contains no
k-factor. Let H = G − u. By Theorem 1.3, there exist disjoint subsets D and S of V (G) − u such that

qH(D, S; k) +

−
x∈S

(k − dH−D(x)) ≥ k|D| + 2. (1)

Define S ′
= S ∪ {u} and W = (G − D) − S ′.

Claim 1. c(W ) ≥ 2.

Otherwise, suppose c(W ) ≤ 1. We consider two cases.
Case 1. c(W ) = 0.

Since c(W ) ≥ qH(D, S; k), (1) implies−
x∈S

(k − dH−D(x)) ≥ k|D| + 2. (2)

So k|S| ≥ k|D| + 2 and hence |S| > |D|. Since V (H) = D ∪ S and |V (H)| is even, therefore

|S| ≥ |D| + 2. (3)

Now since G is 2r-regular, by Tutte’s Theorem we have−
x∈S′

(2r − dG−D(x)) ≤ 2r|D|,

which implies

2r|S ′
| −

−
x∈S′

dG−D(x) ≤ 2r|D|.

Therefore,

2r(|S| + 1) −

−
x∈S′

dG−D(x) ≤ 2r|D|,

and hence,

(2r − k)|S| + k|S| + 2r −

−
x∈S′

dG−D(x) ≤ k|D| + (2r − k)|D|. (4)
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Also −
x∈S′

dG−D(x) =

−
x∈S

dG−D(x) + dG−D(u)

=

−
x∈S

dH−D(x) + eG(u, S) + dG−D(u).

Therefore (4) becomes

k|D| + (2r − k)|D| ≥ (2r − k)|S| + k|S| + 2r −

−
x∈S

dH−D(x) − eG(u, S) − dG−D(u). (5)

Now using (2) and eG(u, S) ≤ dG−D(u) ≤ 2r , (5) implies

(2r − k)(|S| − |D|) ≤ 2r − 2. (6)

Moreover, since |S| ≥ |D|+2 by (3), we can conclude from (6) that k ≥ r +1. That is a contradiction, so Case 1 cannot occur.

Case 2. c(W ) = 1.
Now qH(D, S; k) ≤ 1, and this implies−

x∈S

(k − dH−D(x)) ≥ k|D| + 1. (7)

We conclude k|S| ≥ k|D| + 1, and hence |S| > |D|.
Since G is a 2m-edge-connected, 2r-regular graph, we have

2r|D| ≥ eG(D, V (G − D)) = eG(D, V (W )) + eG(D, S ′)

= eG(D ∪ S ′, V (W )) − eG(S ′, V (W )) + eG(D, S ′)

= eG(D ∪ S ′, V (W )) −

−
x∈S′

dG−D(x) − 2eG(S ′, S ′)


+


2r|S ′

| −

−
x∈S′

dG−D(x)


= eG(D ∪ S ′, V (W )) − 2

−
x∈S′

dG−D(x) + 2eG(S ′, S ′) + 2r|S ′
|

≥ 2m − 2

−
x∈S

dH−D(x) + eG(u, S) + dG−D(u)


+ 2eG(S ′, S ′) + 2r|S ′

|

= 2m − 2
−
x∈S

dH−D(x) − 2dG−D(u) + 2eG(S, S) + 2r|S ′
|

≥ 2m − 2
−
x∈S

dH−D(x) + 2r|S| − 2r.

Now (7) implies

2r|D| ≥ 2m − 2
−
x∈S

dH−D(x) − 2r + 2r|S|

≥ 2m − 2(k|S| − k|D| − 1) − 2r + 2r|S|.

Thus

(2r − 2k)(|D| − |S|) ≥ 2m − 2r + 2 ≥ 2k − 2r + 2,

from which it follows that |D| ≥ |S|, a contradiction. Hence Case 2 also cannot occur.
We conclude that c(W ) ≥ 2. Denote the components of W by C1, . . . , Cc(W ). Suppose that eG(C1,D ∪ S ′) ≤ · · · ≤

eG(Cc(W ),D ∪ S ′).
First assume condition (i) of the hypothesis. We have

2r|D| ≥ eG(D ∪ S ′, V (W )) − 2
−
x∈S′

dG−D(x) + 2eG(S ′, S ′) + 2r|S ′
|

= eG(D ∪ S ′, V (W )) − 2

−
x∈S

dH−D(x) + eG(u, S) + dG−D(u)


+ 2eG(S ′, S ′) + 2r|S ′

|

= eG(D ∪ S ′, V (W )) − 2
−
x∈S

dH−D(x) − 2dG−D(u) + 2eG(S, S) + 2r|S ′
|
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≥ 2mc(W ) − 2
−
x∈S

dH−D(x) − 2r + 2r|S| (since G is 2m-connected)

≥ (2m − 2)c(W ) + (2r − 2k)|S| − 2r + 2k|D| + 4 (by inequality (1))
≥ 4m − 2r + (2r − 2k)|S| + 2k|D|.

Thus we have (2r − 2k)(|D| − |S| + 1) ≥ 2m, from which it follows |D| ≥ |S|. For every odd component C of W , the
integer k|V (C)| + eH(V (C), S) is odd. Since k is an even integer, eH(V (C), S) must be odd. Thus eH(V (C), S) ≥ 1 and∑

x∈S dH−D(x) ≥ qH(D, S; k). Hence (1) implies k|S| ≥ k|D| + 2, from which it follows that |S| ≥ |D| + 1, a contradiction.
Next assume condition (ii) of the hypothesis; that is, k ≥ 3 is odd and 2m > r . Now

2r|D| ≥ eG(D ∪ S ′, V (W )) − 2
−
x∈S′

dG−D(x) + 2eG(S ′, S ′) + 2r|S ′
|

≥ (2m − 2)c(W ) − 4r + (2r − 2k)|S| + 2r + 2k|D| + 4
≥ 4m − 2r + (2r − 2k)|S| + 2k|D|

≥ (2r − 2k)|S| + 2k|D| + 2.

Thus we have (2r − 2k)(|D| − |S|) ≥ 4m − 2r ≥ 2 and hence |D| > |S|. Let q = qH(D, S; k). Note that

2r|D| ≥ 2mq + 2r|S| − 2r − 2
−
x∈S

dH−D(x).

We obtain

|D| − |S| ≥
m
r
q − 1 −

1
r

−
x∈S

dH−D(x). (8)

By (1), we have

|D| − |S| ≤
1
k


q −

−
x∈S

dH−D(x) − 2


, (9)

and q ≥ k + 2 since |D| > |S|. By (8) and (9), we have

0 ≤


1
k

−
1
r

−
x∈S

dH−D(x)

≤
q
k

−
2
k

−
mq
r

+ 1

<
q
k

−
2
k

−
q
2

+ 1

≤ q

1
k

−
1
2


−

2
k

+ 1

≤ (k + 2)

1
k

−
1
2


−

2
k

+ 1

= 1 − k/2 < 0,

a contradiction. This completes the proof. �

In the following discussion, let Γ be the graph obtained from the complete graph K2r+1 by deleting a matching of sizem.
The bounds are sharp. First, we show that the upper bound is sharp. Let G1 be the bipartite graph with bipartition (U,W )

obtained by deleting a matching of size m from K2r,2r . Let G be the 2r-regular graph obtained by matching the 2m vertices
of degree 2r − 1 in Γ to 2m vertices of degree 2r − 1 in G1. Clearly, G is 2m-edge-connected. Letm∗

≥ m+ 1. Nowwe show
that G − u contains no m∗-factor for all u ∈ U ∪ W . Without loss of generality, suppose that u ∈ U . Let D = U − u, S = W
and G′

= G − u. Note that qG′(D, S;m∗) = 1 if m∗
≠ m (mod 2) and qG′(D, S;m∗) = 0 ifm∗

≡ m (mod 2). Now

m∗
|D| − m∗

|S| +

−
x∈S

dG′−D(x) − qG′(D, S;m∗) ≤ −2 < 0.

By Theorem 1.3, G − u contains nom∗-factor.
Next we show that the lower bound is sharp. LetMr−1 be amatching of size r −1. Let H be the 2r-regular graph obtained

bymatching the 2r −2 vertices of degree 2r −1 in each of 2r −1 disjoint copies of Γ to the vertex set S ofMr−1. Clearly,H is
2r-regular (2r −2)-edge-connected graph. Since co(H −V (Mr−1)) = 2r −1 > |V (Mr−1)−v| = 2r −3 for all v ∈ V (Mr−1),
by Theorem 1.2, G − v contains no 1-factor for all v ∈ V (Mr−1). So the lower bound is sharp.
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Finally, we show that the condition 2m > r is sharp. Otherwise, suppose that 2m ≤ r . Let R1 denote the complete
bipartite graph K2r,2r−1 with bipartition (U,W ), where |U| = 2r and |W | = 2r −1. Take two copies of Γ . Match 4m vertices
of degree 2r − 1 of two copies of Γ to 4m vertices of degree 2r − 1 of K2r,2r−1, and then add a matching of size r − 2m to the
rest vertices of degree 2r − 1 of K2r,2r−1. This produces a 2r-regular, 2m-edge-connected graph R. Let u ∈ U and R′

= R− u.
Let D = U − u and S = W . Since k is odd, qR′(D, S; k) = 2 and hence we have

k|D| − k|S| +

−
x∈S

dR′−D(x) − qG′(D, S; k) = −2 < 0.

By Theorem 1.3, G − u contains no k-factor.
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