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Abstract 

Bollobas, B. and H.R. Hind, Graphs without large triangle free subgraphs, Discrete 
Mathematics 87 (1991) 119-131. 

The main aim of the paper is to show that for 2 < r <s and large enough n, there are graphs 

of order n and clique number less than s in which every set of vertices, which is not too small, 
spans a clique of order r. Our results extend those of Erd& and Rogers. 

Consider the set of graphs of order n not containing a K”, a complete graph of 
order s, as a vertex induced subgraph. What is the maximum number of vertices, 
fr,s(n), such that any graph in our set contains a vertex induced subgraph of order 
fr,S(n) not containing a K’ as a vertex induced subgraph? 

This problem, which is essentially a problem of Ramsey Theory, was first 
considered by Erdiis and Rogers [5] in 1961, when they showed that there exist 
graphs of order n, not containing a K”, such that every vertex induced subgraph 
of order more than r~‘-~~“, contains a KS-‘. The value of l s obtained was 
E - 1/(512s4 logs) for large values of S. The main aim of this paper is to 
improve this result. 

The notation used will be standard (see [l]) and as is customary, the symbols 
C, Ct, Cl, . . . will be used to denote constants. Most of our proofs will make use of 
the theory of random graphs; for an introduction to the subject see [2]. 

For a given graph G, define 

h,(G) = max{lWI: W c V(G), cl(G[W]) s r - l}. 

That is to say, h,(G) is the order of the largest subset of V(G) for which the 
corresponding vertex-induced subgraph of G does not contain a K’. For 2 s r < s 
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define 

fr,$(n) = min{h,(G): cl(G) <s - 1, IGI = n}. 

Note that&(n) is intimately connected with the Ramsey number R(s, t) (see [l, 
p. 1031 or for a comprehensive introduction to Ramsey Theory, see [6]). To be 

precise 

f&(N) = max{t: R(s, t) SN} 

and 

R(s, t) = min{N: f2,JN) 3 t}. 

The function fr,s(n) can thus be viewed as a generalized Ramsey function. The 
method of proof we shall use in order to give an upper bound forf,,,(n) is similar 
to that used by Erdiis [3,4] in his attack on the Ramsey number R(s, t). 

Initially we shall be concerned with the function f=Jn). Our lower bound for 
j&(n) is essentially trivial. 

Theorem 1. Zf n > 4 then j&(n) > (2n)“2. 

Proof. Let G be a graph of order n with cl(G) < 3 and let x E V(G) be a vertex of 
maximal degree, d,(x) = A(G). Define W = T,(x). It is clear that cl(G[W]) c 2. 
Therefore in proving the theorem we may assume A(G) < (2n)‘“. 

Since n - 1 > (2n) l/2 for n > 4, the graph G is not a complete graph. 
Furthermore, since (2n)“2 > 3 for n > 4, the graph G is not an odd cycle with 
maximal degree at least (2n)ln - 1. Thus Brooks’ Theorem guarantees that the 
graph is k-vertex-colourable for some k < (2n)“2. Let W, and W2 be colour classes 
in a k-vertex-colouring of G such that (WI U W21 is maximal. Then 

I WI U W,] * 2( 9 > (2n)l” 

and G[W, U W2] contains no K3. 0 

Before establishing an upper bound a few definitions are required. Let 
fi3)(n, p) be the probability space of 3-uniform hypergraphs with vertex set 
V = [n] = {1,2, . . . , n} in which a 3-set of vertices is chosen to be a hyperedge 
with probability p, and independently of the choice for any other 3-set. Let HP be 
a random element of WC3)(n, p). To each such H = HP ~lY(~)(n, p) we associate a 
graph G = GH on vertex set V in which a vertex i and a vertex j are joined by an 
edge if some hyperedge of H contains {i, j}. Note that two distinct hypergraphs H 

and H’ in ti3’(n, p) may have the same associated graph. 
Let Gc3)(n, p) be the probability space of graphs obtained in this way, and 

write GC3) for a random element of this space. Thus for every graph Go on V we 
P 
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have 

P(Gr’ = GO) = P(H E HC3)(n, p): GH = GO). 

We shall later show that for any E > 0 and n sufficiently large, j&,(n) =S n7’10CE, 

but first we give a flavour of the proofs by proving a weaker result. 

Theorem 2. If n is suficiently large, then 

fs,,$(n) s (n log n)? 

Proof. For a given n, select k to be the greatest positive integer for which 

n 3k + 2[(log;)y3]’ 
and select E and p such that 

log log n 

c= 310gn 
and 

p = n-(3”)-E _ c312 

- (log n)1’3. 

Note that if n is sufficiently large, then 

k <rz - [n1-2EJ and i(n log n)3’4 s (k log k)3’4. 

We shall assume that these inequalities hold. 

(i) Let Y be the random variable on GC3)(n, p) defined by putting Y(G) = 

k,(G), i.e., Y(G) is the number of K4’s contained in G. We now estimate E(Y), 

the expected value of Y. What is the probability that G = Gg’, a random element 

of GC3)(n, p), contains a given K4, K, say, with vertex set V(K,) = W = 
{x,, x2, x3, x4}? Let H = H, •&~)(n, p) be such that G = GH. Then K. is a 

subgraph of G if one of the following four cases occurs. 

(a) W contains three distinct hyperedges of H. This occurs with probability 

4p3. 
(b) W contains two distinct hyperedges of H, say o and u’ and the vertex pair 

{xi, xi} = aA o’ is contained in a hyperedge a” such that o” fl W = {xi, xi}. This 

occurs with probability 6p2(1 - (1 -p)“-“) = O(p2(pn)). 
(c) W contains one hyperedge of H, u = {xi,, xi*, xig} say. Furthermore, letting 

{x,,} = W \ a, th e vertex pairs {xi,, Xi4}j {xi2, Xi4} and {Xi,, xi,} are each contained 
in a distinct hyperedge of H meeting W in exactly that pair of vertices. This 
occurs with probability 4p(l- (1 -p)“-“)” = 4p(pn + 0(p2n2))3. 

(d) Finally, the six distinct vertex pairs in W are each contained in a distinct 

hyperedge of H meeting W in exactly that pair of vertices. This occurs with 
probability (1 - (1 -p)“-“)” = 0((pn)6). 



122 B. Bollobh, H.R. Hind 

Recall that p = n-(3’2)-E. Thus the probability that G = Gr’ contains KO as a 
subgraph is 4n-3-4’ + 0(n13-66), and 

E(Y) = (JP(K” c GF’) = $--4t + 0(&6’). 

Then, as a consequence of Markov’s inequality, a.e. Gf) is such that Y(Gf’) c 

n l-26 

(ii)’ Let 2 be the random variable on fi3)(n, p) whose value for H E Hc3)(n, p) 
is the number of m-sets of vertices containing no hyperedge of H, where 
m = [t(n log n)3’4] = [n(3’4)+7]. 

Then 

E(Z) = (;)(l -p)“;’ 

log(2en (i/4)--rl 

) 6n 
_ E (3/2)+2t) + pn(3/4)+11 s eern = o(l) 

if n is large enough, since 

(2n - l )log n > log log n + 1 

for large n, and so 

a log n + 2 < d nP+20. 

This shows (again using Markov’s inequality) that almost every HP E Wc3’(n, p) 
satisfies the condition that every m-set of vertices contains at least one hyperedge 
of HP. 

(iii) Finally by (i) and (ii), there is an H E Wc3)(n, p) such that k4(GH) c n1-2E 
and every m-set of vertices contains at least one hyperedge of H. 

Now choose U c V to be a set of n - k > [n1-2E] vertices meeting every K4 in 
GH in at least one vertex. Set G = G,\ U. Then IGI = k; the graph G does not 
contain a K4 and h,(G) < m G l(n log n)3’4 < (k log k)3’4, completing the 
proof. 0 

To obtain a better upper bound for fj,4(n), we need a little more care. 
Consider Hc3)(n, p), the probability space of 3-uniform hypergraphs with 

vertex set V = [n], as described above. For each H E Hc3)(n, p), let 

D(H)={tcV:~r~=2andrcaforsomea~E(H)} 
and 

F(H) = {p c V: IpI = 4 and p(2) c D(H)}. 

Thus D(H) is the edge set of the graph GH and F(H) is the family of 4-sets of 
vertices which induce a K4 in GH. For each H E Wc3)(n, p) define a function 
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by putting 

Finally, let 2, be the random variable on ti3’(n, p) defined by 

i.e., Zk(H) is the number of edges of G H, each of which is an edge of at least k 

distinct K4’s. 

Lemma 3. Let 6 > 0, let p = n-(7’5)-” and let k 3 max{ [8/2561, 3). Then 
E(Z/J = o(1). 

Proof. If 6 > & and k = 3, the result follows simply since the expected size of the 
set F(H,) is small. Therefore assume that 0 < 6 < &. Let p = n-(7’5)-6 and 
consider the probability space ti3)(n, p). Suppose k 2 [8/256]. For a vertex pair 
t= {i, i’} E v (‘) let A be the event that t E D(H) and that there exist k sets ) 

pit pk, . *. 9 pk E F(H) iuch that r c /Aj for each j E { 1, 2, . . . , k}. Then 

E(Zk) = (;)%%). 

Let {i1, i2, . . . , il} E V. Let B,(i,, . . . , i,) be the event that r E D(H) and that 
there exist k sets pl, p*, . . . , ,& E F(H) such that TV ~j for each j E 

(192, . . . 9 k} and lJf=, pj = {iI, . . . , i,} U {i, i’}. Without loss of generality, we 
may assume that 1s 2k, since P(B,(il, . . . , i,)) = 0 for 1 > 2k. So 

P(A,) s ,zk (y)P(&(i,, 4, . . . 9 4)). 

If HE B,(iI, . . . , il) then for each j E (1, 2, . . . , l}, both the vertex pair {i, ii} 
and the vertex pair {i’, ii} must be in D(H). Furthermore, at least k vertex pairs 
of the form {ii, ii*} where j, j’ E (1, 2, . . . , I} must be in D(H). 

Let C,(i,, . . . , i,; m) be the event that there exist exactly m distinct 
hyperedges q, . . . , a,,, in E(H) of the form u = {i, ii, ii,} or o = {i’, ij, ii,} where 
j,j’E{1,2,. . . , 1). Then noting that m s 2(i), it follows that 

P(&(i,, iz, . . . , 4)) 
&I 

= ~oP(&(il, . . . , 4) I C,(il, . . . , 4; m)MC,(&, . . . , 4; m)) 

2(:) 
{(pn) 21+k-3m+l + O((pn)ZI+k-3m+l 

)I( ( 2f)P”}. 

so 

P(A,) s & ( y)IfO {(pn)2’+k-3m+1 + o((pn)2”k-3m”))[ ( ‘f)pm}. 
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Noting that 

(pn) 
U+k-3m+lpm = n(-(2/5)-~)(2~+k+l)+(-(1/5)+2b)m 

9 

and 6 < &,, this expression has a maximum when m = 0. Therefore 

P(A,) < 2 ( l)(n(-(2/5)-a)(21+*+l) + o(n(-(~5)-w(2’+~+o)} 

1<2k 

= O(n 2k+(-(U5)--6)(5k+l)) = qn-(2/S)-(5k+l)“). 

Thus 

E(Zk) s O(n- 
(2W5k+l)Sn2) = +(8/5)-(5k+1)6). 

But k 2 [8/256], and SO E(&) = o(l). q 

Let p=n -(7’5)-6. We make the remark that if Xi is the random variable on 
ti3)(n, p) defined by 

xi(H)= [{r&2): I{aEE(H): tca}l=j}l, 

(i.e., Xj(H) is the number of vertex pairs in Vc2), each of which is common to 
exactly j hyperedges of H) then E(Xj) = o(1) for j 3 5. Further, if XT = &,jXi, 
then E(XT) = o(1) for j 3 5. 

Let A be the event that Zk = 0 and X: = 0. Let @‘(n, p) be the conditional 
probability space for this event. For H E Hg’(n, p), let pl, p2, . . . , ,LL, be the 
4-sets in F(H). For each i E (1, 2, . . . , l} choose at random (independently for 
each pi), one of the six r, E D(H) such that rP, c pi. Call this vertex pair rEi. It is 
possible that we will choose, for some i #j, vertex pairs r:, = rz,. Now define a 
sequence of hyperedge sets Eo, El, E2, . . . , E,, by setting E. = E(H) and, 
having defined Ei--l, setting 

Ei = E,_,\{cx u E Ei-l and r:, c o}. 

Let Hi be the sub-hypergraph of the hypergraph H with edge set E(Hi) = Ei. This 
gives us a sequence of hypergraphs 

H=H,,H,,H, ,..., H,=H*. 

Call H* a ‘derived hypergraph’ of H. Let Hg)(n, p)* be the probability space of 
such hypergraphs. For H* E I@(n, p)*, define the graph GH. on the vertex set V 

which has an edge joining vertex i to vertex j if {i, j} is contained in a hyperedge 
of H*. Clearly such a graph G,. is K4-free. 

For E > 0, let m = PZ(“~~)+’ and define Y (strictly YE,,) to be that random 
variable on HT)(n, p)* such that Y(H*) is the number of m-sets in V containing 

no hyperedge of H*. 

Lemma 4. Let 0 < 6 < E and p = n-(7’5)-“. Then E(Y) = o(1). 

Proof. Consider the probability space @(n, p). For a random hypergraph 
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HP ~@)(n, p) and an edge u E E(H,), let B, be the event that the hyperedge u 
is removed when creating H,* (i.e., u E E(H,)\E(H,*)). Each vertex pair in 
D(H,) is in at most k of the K4’s in G(H,); and a given hyperedge is removed 
from E(H,) only if one of the three vertex pairs contained in it is removed. For 
t E D(H,), let C, be the event that the vertex pair t is not removed. If 
ac2) = {t, t’, t”} then 

P(C=) 3 (1 - +)k, P(C, I C,) 2 (I- Qk, P(C,” 1 c, n C,.) 2 (1 - $)“. 
Thus 

P(Cs II c,, n CT,,) > ((1 - i)(l - +)(l- a))k, 
so - 

P(B,) = 1 - P(B,) = 1 - P(C, n C,. n C,..) 

~l-((l-~)(l-:)(l-~))k=c<l. 

Since vertex pairs are chosen in HP independently, it follows that if 

{ 6, 02, * f * , q} is a set of hyperedges of HP such that loi n ai1 G 1 for all 
i, j E { 1, 2, . . . , I}, then 

What is the corresponding probability for an arbitrary set T = { ul, u2, . . . , u,} c 
E(H,)? From the definition of event A, each vertex pair is in at most four 
hyperedges, thus each ui meets at most nine other Uj’S in two vertices, so there is 
a set T’ c T, with IT’J Z= & ITI, such that no two hyperedges in T’ have more 
than one vertex in common. Thus 

(1) 

Let p,(i) be the probability that a given m-set in V contains exactly i 
hyperedges. Let p@(i) be the maximum, over all set of i hyperedges, of the 
probability that set of i hyperedges is removed from a hypergraph HP E @)(n, p) 
to generate a derived hypergraph H,*. From inequality (1) we see that 
&(i) G ci’lO. 

Now consider the probability space J@(n, p)*. Set A4 = (y). Then 

To assist the calculation, the summation is evaluated in two parts. Recall that 
m = n(7/10)+c and set L = r~(~‘~‘)+~‘. Let 

and 
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In showing T, to be small, we are essentially showing that in a random 
hypergraph in #)(n, p) the expected number of m-sets containing fewer than L 
hyperedges is small. We thus note that p@(i) < 1, so 

In showing T2 to be small, we are essentially showing that given an m-set of 
vertices containing more than L hyperedges of a hypergraph in Hy’(n, p), the 
probability that all are removed when forming a derived hypergraph is small. 
Thus noting that p,(i) < 1, we get 

T2 s 
( > 1 i=z+, pm 

A 3-set is chosen to be a hyperedge of HP E Hc3)(n, p) independently of the choice 
for any other 3-set; and since P(A) = o(1) (by Lemma 3 and the remark 
following it), so P(A) 2 1 - o(1). It follows that 

p,(i) s (y)p’(l -p)“-‘(l + o(1)). 

Thus, for sufficiently large IZ, 

Recalling that ps(i) c ci’lO, we see that 

T2 s 

(2) 

(3) 

The remainder of the proof involves establishing that expressions on the 
right-hand sides of the inequalities (2) and (3) are both o(1). 

The bound for q give11 in (2) is 2(i)P(S,,, c L), where S,,, is the random 
variable having binomial distribution with parameters M and p. Here we have 

pM=n (7/10)+36--6 

and 
L = ,r(7110)+2c < 11 1 IZPM 

for sufficiently large n, so from a theorem of Bollobas (see [18, p. 13, Theorem 
7(i)]) with E = &, 

WM., G L) c P( IS,,, - pkfl 2 h PM) 6 - (7/10)+3c--6 

’ 
Since 

n ( > < 

m ( 
en(3/10)--)n(7”“)+~ = exp{n(7/10)+E log(en(3/‘0)-‘)}, 

it follows that Tl = o( 1). 
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Turning to T2, and recalling that 0 < c < 1, it follows that 

Using the inequality (g) < (y)b, 

T,sM L”“=Mexp(mlog(~)-&llogcl}, 

but ,,, = n(7/1'3)+E and L =n(7/10)+2e, so 

T2s M e~~{n(7"0)+Elog(en(3"0)-E)-~~(7'10)+2r Ilog cl}; 

so T2 = o( 1). Thus 

E(Y)CT,+T,=o(l). cl 

This theorem shows that as n gets large the expected number of vertex subsets 
of V of size m = n(7’10)+E not containing a hyperedge of a derived hypergraph 
tends to zero. In the following theorem we show (formally) that this implies the 
existence of a graph G with h,(G) s nC7’lo)+‘. 

Theorem 5. For E > 0 and sufficiently large n, $+,(n) S r~(~“‘)+? 

Proof. We seek to show the existence of a 3-uniform hypergraph H* such that 
each m-set of vertices contains a hyperedge and such that each 4-set of vertices 
contains a pair of vertices for which there is no hyperedge in E(H*) containing 
both vertices. 

Let 0 < 6 < E and let p = r~-(~‘~)-~. Co nsider the probability space HC3)(n, p) 
with probability measure P. The event A is the event that Zk = 0 and no vertex 
pair is contained in five or more hyperedges, i.e., 

A(Zk = 0) n (X: = 0). 

Thus, from Lemma 3 and the subsequent remark, 

P(A) = P((Zk = 0) fl (X; = 0)) 3 I- P(Zk 2 1) - P(X: 3 1) 

3 1 - E(Zk) - E(X:) = 1 -o(l) - o(1) = 1 - o(1). 

Now consider the probability space E@(n, p)* with probability measure Pi. 
Recall that Y was defined to be that random variable on Hz)(n, p)* such that 
Y(H*) is the number of m-sets in V containing no hyperedge of H*. Since 
P(A) = 1 - o(l), it is sufficient to show that P:(Y = 0) = 1 - o(1). 

Using the result of Lemma 4, 

P:(Y=o)=l-Pi(Y>l)Z-l-E(Y)=l-o(1). 
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Thus, for sufficiently large n, it follows that there exists a hypergraph H* E 
@)(n, p)* such that Y(H*) = 0. Define G* = GH. to be the graph on V in which 
a vertex i is joined to a vertex j if some hyperedge of H* contains {i, j}, Then, by 
the construction of Z-J*, the graph G* does not contain a K4 and G* satisfies the 
condition h,(G*) s n c7’10)+E The theorem follows. 0 . 

The results above give bounds for the function f3,4(n), however the methods of 
proof used can be generalized to bound fs_l,S(n) for s 3 4. The proof of Theorem 
6 is an extension of the proof for Theorem 1 and provides a general lower bound 
for the function fr,S(n). 

Theorem6. Let3cr<sandnsl, then 

Proof. Let G be a graph of order n such that cl(G) s s - 1. We define a sequence 
of graphs 

G = Go, G,, . . . , G,_,, 

by putting 

Gi+i = Gi[r(vi)l 

for i = 0, 1, 2, . . . , s - r - 1, where vi is a vertex of maximal degree in Gi. As G 
does not contain a KS, it follows that Gi does not contain a KS-’ for 
i=1,2 ,..., s-r. 

Let Ly = l/(S - r + 1). If 

A(Gi) < IGi( nea 

for an i E (0, 1, . . . , s - r - l}, then x(G,) < IGil nem + 1. Choosing WI and W, to 
be colour classes of a x( GJ-vertex colouring of Gi such that 1 WI U W,j is maximal, 
it follows (crudely) that 1 WI U W,l b- n? The subgraph of Gi (and thus of G) 
induced by WI U W, does not contain a K3, proving the result in this case. 

Thus we may assume that for each i E (0, 1, . . . , r - s - l}, 

A(Gi) 2 IGil n-7 

Therefore 

IG+Il Z= IGI nen 

foreachiE{O,l,...,r--S-l}, andso 

1G _ 13 IG,l(n-“)(“-‘). s I 
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Since G,_, does not contain a K’, and 

IG,_,l 2 ,r . n-@-r)l(s-r+l) = nll(s-r+l) > 

the result follows. 0 

We generalize the results of Theorem 5 to obtain an upper bound for fs-l,s(n), 
then the trivial fact that fi,s(n) ~fr,,~(n) for 3 c r < r’ <s allows us to deduce an 
upper bound for fr,s(n) for 3 6 r < s. 

In the remainder of this paper we shall assume that s > 4. Let H@-‘)(n, p) be 
the probability space of (s - 1)-uniform hypergraphs on vertex set V = [n], where 
(s - 1)-sets are chosen to be hyperedges with probability p and independently of 
the choice for other (s - 1)-sets. Define GCsP1)(n, p) from H@-‘)(n, p) in a 
manner similar to the definition of GC3)(n, p) from HC3)(n, p). 

For H E H(“-‘)(n, p) define 

D+‘)(H) = {t c V: ITI = 2, r c o for some o E E(H)} 
and 

P”(H) = {p C v: IpI = s and pC2) c D(H)}. 

Define a function g$-” : D’“-“(H) --, N by putting 

g%-“(t) = I{p E F’“-“(H): r C p}l 

and define the random variable Zp-l) on H’“-“(n, p) by putting 

Zp-l’(H) = I{ r E D’“_‘)(H): &l’(t) 2 k} 1. 

Thus Z,(H) is the number of edges of GH, each of which is an edge of at least k 

distinct Ps. Then we get the following lemma. 

Lemma 7. Let 0 < 6, p = n-“-3)-2’(s+1)-s and k 3 max{ [4s/(s + l)‘(s - 2)61, 3) 

then E(Zp-“) = o(1). 

Proof. (Analogous to the proof of Lemma 3.) Let us consider the probability 
space HCsP1)(n, p). For a vertex pair r = {i, i’} E Vc2), let A, be the event that 
t E DC’-‘)(H) and there exist k sets pl, p2, . . . , pk E F(‘-l)(H) such that t c pj 
for each j E {1,2, . . . , k}. Then 

E(Zf-l’) = (;)I’(&). 
Let B,(il, . . . , i,) be the event that r E D (“-‘j(H) and there exist k sets 

Pl, 112, * * . > pk E F ‘s-1’(H) such that t c pj for each j E (1, 2, . . . , k} and 
l_lf=, ~j = {il, . . . , il} U {i, i’}. We may assume 1 s (s - 2)k, since 

P(B& . . .,il))=Oforl>(s-2)k;so 

f’(Ar) 6 
6-W n 

= 0 I=0 
l W&, i2, . . . , id). 
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If HE B,(i,, . . . , il), then for each j E (1, 2, . . . , l} the vertex pairs {i, ii} and 
{i’, ii} must be in D ‘“-i’(H). Set A.(/) = 0 if I = (s - 2)k and A(/) =s - 3 if 
(s - 2)k > 1. Since each vertex in {ii, i2, . . . , i,} is in at least one ~1, E F’“-“(H) 
(and if 1 <(s - 2)k at least one vertex is in two pt E F”-“(H)), at least 
I(s - 3)/2 + A(f) vertex pairs of the form {ii, iis} must be in D’“-“(H). 

Defining an event C, in a manner similar to that for in Lemma 3, we evaluate 

W,(ii, . . . , i,) and thus P(A,) to get 

P(A) s 
n 

= 0 
n(-2/(s+l)-6)(2~+/(s-3)/2+no+l)+l) 

Is@-2)k I 

Thus 

P(A,) = O(n k(s-2)+(-2/(s+1)-6)(2k(s-2)+k(s-2)(s-3)/2+1 
) 

= O(n- 6(k(s+l)(s-2)/2+1)-U(s+l) 
1 

and 

E(2t-i’) = O(n_ 2’(s+l)-S(k(s+l)(s-2)/2+1) 2 _ 
It ) - O(n 

2d(s+l)-6(k(s+l)(s-2)/2+1) 
1 

thus with k 2 [4s/(s + l)‘(s - 2)6], 

E(Z”,-‘) = o(1). cl 

Define X,?‘) to be the random variable on w’“-“(n, p) such that X?-‘)(H) is 
the number of vertex pairs in V@) each of which is in exactly j hyperedges of H. 
Then E(Xy-l)) = o(1) for j 2,s + 1. Further, if we define Xi(s-l) = CisiXp-‘), 
then E(XT@-‘)) = o(1) for j 2 s + 1. 

Consider the probability space He-‘) (n, p) and define A to be the event that 
Zp-‘) = 0 and X:tc’) = 0. Each random element in #-‘)(n, p) which is in A is 
an (s - 1)-uniform hypergraph such that each vertex pair in Vc2) is in at most s 
hyperedges. Furthermore, if Zf is in A, then no edge of GH is in more than k 
distinct induced subgraphs isomorphic to K”. 

Let Ht-‘)(n, p) be the conditional probability space associated with the event 
A. For each H E @-‘)(n, p), define a derived hypergraph, H*, associated with H 
in a manner analogous to the definition of a derived hypergraph for a hypergraph 
in @o(n, p). Let H(,s-‘)(n, p)* be the probability space associated with the 
derived hypergraphs. 

For E > 0 let m = n”-3)‘(s-2)+u(s+1)(s-2)+E and define Y$?il) to be the random 
variable on ‘H$-‘)(n p)* such that Y$;‘)(H*) is the number of m-sets in V not 
containing a hyperedge of H*. 

Lemma 8. Let 0 < 6 < E and p = r~-(~-~)-~(~+~)-~. Then 

E(Y!“,“) = o(1). 

Proof. The proof is essentially the same as that for Lemma 4, with the following 
changes. In inequality (1) the number 10 must be replaced by (“2 *)(s - 1) + 1. 



Graphs without large triangle free subgraphs 

The parameter 

where 
m = n(~-3)I(~-2)+2!(~+l)(~-2)+~ 

, 

and the parameter 
L = n(s-3)/(s-2)+U(s+l)(s-2)+2~ 

It follows that 

E(Yt;‘)) S O(exp{ -cn (s--3)/(s-2)+2/(s+l)(s-2)+2~ })=o(l). 0 
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With the results of Lemmas 7 and 8 and using a simple modification of the 
proof of Theorem 5, we obtain the general result. 

Theorem 9. Let E > 0 and n be sufficiently large, then 

fs_l,s(n) s n(~-3)w-2)+2++l)(s-2)+~ 

Corollary 10. Let E > 0 and n be sufficiently large, then if 3 c r <s, 

f,,s(n) s n(~-3)+-2)+2a+l)(s-2)+~ 

While the results presented in this paper improve those of Erdiis and Rogers, it 

is still not clear what the actual order of the function fr,S(n) is. An improvement 
in the lower bound forf,,,(n) would be of particular interest. 
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