Discrete Mathematics 87 (1991) 119-131 North-Holland 119

Graphs without large triangle free subgraphs

B. Bollobás and H.R. Hind*

Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill Lane, Cambridge, UK, CB2 1SB

Received 21 April 1987 Revised 25 January 1989

Abstract

Bollobás, B. and H.R. Hind, Graphs without large triangle free subgraphs, Discrete Mathematics 87 (1991) 119–131.

The main aim of the paper is to show that for $2 \le r \le s$ and large enough *n*, there are graphs of order *n* and clique number less than *s* in which every set of vertices, which is not too small, spans a clique of order *r*. Our results extend those of Erdős and Rogers.

Consider the set of graphs of order *n* not containing a K^s , a complete graph of order *s*, as a vertex induced subgraph. What is the maximum number of vertices, $f_{r,s}(n)$, such that any graph in our set contains a vertex induced subgraph of order $f_{r,s}(n)$ not containing a K^r as a vertex induced subgraph?

This problem, which is essentially a problem of Ramsey Theory, was first considered by Erdős and Rogers [5] in 1961, when they showed that there exist graphs of order *n*, not containing a K^s , such that every vertex induced subgraph of order more than $n^{1-\epsilon_s}$, contains a K^{s-1} . The value of ϵ_s obtained was $\epsilon_s \sim 1/(512s^4 \log s)$ for large values of *s*. The main aim of this paper is to improve this result.

The notation used will be standard (see [1]) and as is customary, the symbols c, c_i, c'_i, \ldots will be used to denote constants. Most of our proofs will make use of the theory of random graphs; for an introduction to the subject see [2].

For a given graph G, define

 $h_r(G) = \max\{|W|: W \subset V(G), \operatorname{cl}(G[W]) \leq r-1\}.$

That is to say, $h_r(G)$ is the order of the largest subset of V(G) for which the corresponding vertex-induced subgraph of G does not contain a K^r . For $2 \le r \le s$

* Supported by ORS grant ORS/84120 and CSIR grant 9/8/1-2019.

0012-365X/91/\$03.50 (C) 1991 - Elsevier Science Publishers B.V. (North-Holland)

define

$$f_{r,s}(n) = \min\{h_r(G): cl(G) \le s - 1, |G| = n\}$$

Note that $f_{2,s}(n)$ is intimately connected with the Ramsey number R(s, t) (see [1, p. 103] or for a comprehensive introduction to Ramsey Theory, see [6]). To be precise

$$f_{2,s}(N) = \max\{t: R(s, t) \le N\}$$

and

$$R(s, t) = \min\{N: f_{2,s}(N) \ge t\}.$$

The function $f_{r,s}(n)$ can thus be viewed as a generalized Ramsey function. The method of proof we shall use in order to give an upper bound for $f_{r,s}(n)$ is similar to that used by Erdős [3, 4] in his attack on the Ramsey number R(s, t).

Initially we shall be concerned with the function $f_{3,4}(n)$. Our lower bound for $f_{3,4}(n)$ is essentially trivial.

Theorem 1. If n > 4 then $f_{3,4}(n) \ge (2n)^{1/2}$.

Proof. Let G be a graph of order n with $cl(G) \leq 3$ and let $x \in V(G)$ be a vertex of maximal degree, $d_G(x) = \Delta(G)$. Define $W = \Gamma_G(x)$. It is clear that $cl(G[W]) \leq 2$. Therefore in proving the theorem we may assume $\Delta(G) < (2n)^{1/2}$.

Since $n-1 > (2n)^{1/2}$ for n > 4, the graph G is not a complete graph. Furthermore, since $(2n)^{1/2} > 3$ for n > 4, the graph G is not an odd cycle with maximal degree at least $(2n)^{1/2} - 1$. Thus Brooks' Theorem guarantees that the graph is k-vertex-colourable for some $k < (2n)^{1/2}$. Let W_1 and W_2 be colour classes in a k-vertex-colouring of G such that $|W_1 \cup W_2|$ is maximal. Then

$$|W_1 \cup W_2| \ge 2\left(\frac{n}{k}\right) > (2n)^{1/2}$$

and $G[W_1 \cup W_2]$ contains no K^3 .

Before establishing an upper bound a few definitions are required. Let $H^{(3)}(n, p)$ be the probability space of 3-uniform hypergraphs with vertex set $V = [n] = \{1, 2, ..., n\}$ in which a 3-set of vertices is chosen to be a hyperedge with probability p, and independently of the choice for any other 3-set. Let H_p be a random element of $H^{(3)}(n, p)$. To each such $H = H_p \in H^{(3)}(n, p)$ we associate a graph $G = G_H$ on vertex set V in which a vertex i and a vertex j are joined by an edge if some hyperedge of H contains $\{i, j\}$. Note that two distinct hypergraphs H and H' in $H^{(3)}(n, p)$ may have the same associated graph.

Let $G^{(3)}(n, p)$ be the probability space of graphs obtained in this way, and write $G_p^{(3)}$ for a random element of this space. Thus for every graph G_0 on V we

have

$$P(G_p^{(3)} = G_0) = P(H \in \boldsymbol{H}^{(3)}(n, p): G_H = G_0).$$

We shall later show that for any $\epsilon > 0$ and *n* sufficiently large, $f_{3,4}(n) \le n^{7/10+\epsilon}$, but first we give a flavour of the proofs by proving a weaker result.

Theorem 2. If n is sufficiently large, then

 $f_{3,4}(n) \leq (n \log n)^{3/4}$.

Proof. For a given n, select k to be the greatest positive integer for which

$$n \ge k + 2 \left\lfloor \frac{k}{(\log k)^{2/3}} \right\rfloor,$$

and select ϵ and p such that

$$\epsilon = \frac{\log \log n}{3 \log n}$$

and

$$p = n^{-(3/2)-\epsilon} = \frac{n^{-3/2}}{(\log n)^{1/3}}.$$

Note that if n is sufficiently large, then

$$k \le n - \lfloor n^{1-2\epsilon} \rfloor$$
 and $\frac{1}{2} (n \log n)^{3/4} \le (k \log k)^{3/4}$.

We shall assume that these inequalities hold.

(i) Let Y be the random variable on $G^{(3)}(n, p)$ defined by putting $Y(G) = k_4(G)$, i.e., Y(G) is the number of K^{4} 's contained in G. We now estimate E(Y), the expected value of Y. What is the probability that $G = G_p^{(3)}$, a random element of $G^{(3)}(n, p)$, contains a given K^4 , K_0 say, with vertex set $V(K_0) = W = \{x_1, x_2, x_3, x_4\}$? Let $H = H_p \in H^{(3)}(n, p)$ be such that $G = G_H$. Then K_0 is a subgraph of G if one of the following four cases occurs.

(a) W contains three distinct hyperedges of H. This occurs with probability $4p^3$.

(b) W contains two distinct hyperedges of H, say σ and σ' and the vertex pair $\{x_i, x_j\} = \sigma \bigtriangleup \sigma'$ is contained in a hyperedge σ'' such that $\sigma'' \cap W = \{x_i, x_j\}$. This occurs with probability $6p^2(1 - (1 - p)^{n-4}) = O(p^2(pn))$.

(c) W contains one hyperedge of H, $\sigma = \{x_{i_1}, x_{i_2}, x_{i_3}\}$ say. Furthermore, letting $\{x_{i_4}\} = W \setminus \sigma$, the vertex pairs $\{x_{i_1}, x_{i_4}\}$, $\{x_{i_2}, x_{i_4}\}$ and $\{x_{i_3}, x_{i_4}\}$ are each contained in a distinct hyperedge of H meeting W in exactly that pair of vertices. This occurs with probability $4p(1 - (1 - p)^{n-4})^3 = 4p(pn + O(p^2n^2))^3$.

(d) Finally, the six distinct vertex pairs in W are each contained in a distinct hyperedge of H meeting W in exactly that pair of vertices. This occurs with probability $(1 - (1 - p)^{n-4})^6 = O((pn)^6)$.

Recall that $p = n^{-(3/2)-\epsilon}$. Thus the probability that $G = G_p^{(3)}$ contains K_0 as a subgraph is $4n^{-3-4\epsilon} + O(n^{-3-6\epsilon})$, and

$$E(Y) = \binom{n}{4} P(K_0 \subset G_p^{(3)}) = \frac{1}{6}n^{1-4\epsilon} + O(n^{1-6\epsilon}).$$

Then, as a consequence of Markov's inequality, a.e. $G_p^{(3)}$ is such that $Y(G_p^{(3)}) \le n^{1-2\epsilon}$.

(ii) Let Z be the random variable on $H^{(3)}(n, p)$ whose value for $H \in H^{(3)}(n, p)$ is the number of *m*-sets of vertices containing no hyperedge of H, where $m = \lfloor \frac{1}{2}(n \log n)^{3/4} \rfloor = \lfloor n^{(3/4)+\eta} \rfloor$.

Then

$$E(Z) = \binom{n}{m} (1-p)^{\binom{m}{3}}$$

$$\leq \exp\left\{m\left[\log(2en^{(1/4)-\eta}) - \frac{p}{6}n^{(3/2)+2\eta} + pn^{(3/4)+\eta}\right]\right\} \leq e^{-m} = o(1)$$

if n is large enough, since

 $(2\eta - \epsilon)\log n > \log \log n + 1$

for large n, and so

 $\tfrac{1}{4}\log n+2<\tfrac{1}{6}n^{-\epsilon+2\eta}.$

This shows (again using Markov's inequality) that almost every $H_p \in \mathbf{H}^{(3)}(n, p)$ satisfies the condition that every *m*-set of vertices contains at least one hyperedge of H_p .

(iii) Finally by (i) and (ii), there is an $H \in H^{(3)}(n, p)$ such that $k_4(G_H) \leq n^{1-2\epsilon}$ and every *m*-set of vertices contains at least one hyperedge of *H*.

Now choose $U \subset V$ to be a set of $n - k \ge \lfloor n^{1-2\epsilon} \rfloor$ vertices meeting every K^4 in G_H in at least one vertex. Set $G = G_H \setminus U$. Then |G| = k; the graph G does not contain a K^4 and $h_3(G) \le m \le \frac{1}{2}(n \log n)^{3/4} \le (k \log k)^{3/4}$, completing the proof. \Box

To obtain a better upper bound for $f_{3,4}(n)$, we need a little more care.

Consider $H^{(3)}(n, p)$, the probability space of 3-uniform hypergraphs with vertex set V = [n], as described above. For each $H \in H^{(3)}(n, p)$, let

$$D(H) = \{ \tau \subset V \colon |\tau| = 2 \text{ and } \tau \subset \sigma \text{ for some } \sigma \in E(H) \}$$

and

$$F(H) = \{ \mu \subset V : |\mu| = 4 \text{ and } \mu^{(2)} \subset D(H) \}.$$

Thus D(H) is the edge set of the graph G_H and F(H) is the family of 4-sets of vertices which induce a K^4 in G_H . For each $H \in H^{(3)}(n, p)$ define a function

 $g_H: D(H) \rightarrow \mathbb{N}$

by putting

$$g_H(\tau) = |\{\mu \in F(H): \tau \subset \mu\}|.$$

Finally, let Z_k be the random variable on $H^{(3)}(n, p)$ defined by

$$Z_k(H) = |\{\tau \in D(H): g_H(\tau) \ge k\}|$$

i.e., $Z_k(H)$ is the number of edges of G_H , each of which is an edge of at least k distinct $K^{4*}s$.

Lemma 3. Let $\delta > 0$, let $p = n^{-(7/5)-\delta}$ and let $k \ge \max\{\lceil 8/25\delta \rceil, 3\}$. Then $E(Z_k) = o(1)$.

Proof. If $\delta \ge \frac{1}{10}$ and k = 3, the result follows simply since the expected size of the set $F(H_p)$ is small. Therefore assume that $0 < \delta < \frac{1}{10}$. Let $p = n^{-(7/5)-\delta}$ and consider the probability space $H^{(3)}(n, p)$. Suppose $k \ge \lceil 8/25\delta \rceil$. For a vertex pair $\tau = \{i, i'\} \in V^{(2)}$, let A_{τ} be the event that $\tau \in D(H)$ and that there exist k sets $\mu_1, \mu_k, \ldots, \mu_k \in F(H)$ such that $\tau \subset \mu_j$ for each $j \in \{1, 2, \ldots, k\}$. Then

$$E(Z_k) = \binom{n}{2} P(A_{\tau})$$

Let $\{i_1, i_2, \ldots, i_l\} \subseteq V$. Let $B_{\tau}(i_1, \ldots, i_l)$ be the event that $\tau \in D(H)$ and that there exist k sets $\mu_1, \mu_2, \ldots, \mu_k \in F(H)$ such that $\tau \subset \mu_j$ for each $j \in \{1, 2, \ldots, k\}$ and $\bigcup_{i=1}^k \mu_i = \{i_1, \ldots, i_l\} \cup \{i, i'\}$. Without loss of generality, we may assume that $l \leq 2k$, since $P(B_{\tau}(i_1, \ldots, i_l)) = 0$ for l > 2k. So

$$P(A_{\tau}) \leq \sum_{l \leq 2k} {n \choose l} P(B_{\tau}(i_1, i_2, \ldots, i_l)).$$

If $H \in B_{\tau}(i_1, \ldots, i_l)$ then for each $j \in \{1, 2, \ldots, l\}$, both the vertex pair $\{i, i_j\}$ and the vertex pair $\{i', i_j\}$ must be in D(H). Furthermore, at least k vertex pairs of the form $\{i_j, i_{j'}\}$ where $j, j' \in \{1, 2, \ldots, l\}$ must be in D(H).

Let $C_{\tau}(i_1, \ldots, i_l; m)$ be the event that there exist exactly *m* distinct hyperedges $\sigma_1, \ldots, \sigma_m$ in E(H) of the form $\sigma = \{i, i_j, i_{j'}\}$ or $\sigma = \{i', i_j, i_{j'}\}$ where $j, j' \in \{1, 2, \ldots, l\}$. Then noting that $m \leq 2\binom{l}{2}$, it follows that

$$P(B_{\tau}(i_{1}, i_{2}, ..., i_{l}))$$

$$= \sum_{m=0}^{2\binom{l}{2}} P(B_{\tau}(i_{1}, ..., i_{l}) \mid C_{\tau}(i_{1}, ..., i_{l}; m)) P(C_{\tau}(i_{1}, ..., i_{l}; m))$$

$$\leq \sum_{m=0}^{2\binom{l}{2}} \{(pn)^{2l+k-3m+1} + o((pn)^{2l+k-3m+1})\} \left\{ \binom{2\binom{l}{2}}{m} p^{m} \right\}.$$

So

$$P(A_{\tau}) \leq \sum_{l \leq 2k} {n \choose l} \sum_{m=0}^{2\binom{l}{2}} \{(pn)^{2l+k-3m+1} + o((pn)^{2l+k-3m+1})\} \left\{ {\binom{2\binom{l}{2}}{m}} p^m \right\}.$$

Noting that

$$(pn)^{2l+k-3m+1}p^m = n^{(-(2/5)-\delta)(2l+k+1)+(-(1/5)+2\delta)m},$$

and $\delta < \frac{1}{10}$, this expression has a maximum when m = 0. Therefore

$$P(A_{\tau}) \leq \sum_{l \leq 2k} {n \choose l} \{ n^{(-(2/5)-\delta)(2l+k+1)} + o(n^{(-(2/5)-\delta)(2l+k+1)}) \}$$

= $O(n^{2k+(-(2/5)-\delta)(5k+1)}) = O(n^{-(2/5)-(5k+1)\delta}).$

Thus

$$E(Z_k) \leq O(n^{-(2/5)-(5k+1)\delta}n^2) = O(n^{(8/5)-(5k+1)\delta}).$$

But $k \ge \lfloor 8/25\delta \rfloor$, and so $E(Z_k) = o(1)$. \Box

Let $p = n^{-(7/5)-\delta}$. We make the remark that if X_j is the random variable on $H^{(3)}(n, p)$ defined by

$$X_{i}(H) = |\{\tau \in V^{(2)} : |\{\sigma \in E(H) : \tau \subset \sigma\}| = j\}|,$$

(i.e., $X_j(H)$ is the number of vertex pairs in $V^{(2)}$, each of which is common to exactly *j* hyperedges of *H*) then $E(X_j) = o(1)$ for $j \ge 5$. Further, if $X_j^* = \sum_{i\ge j} X_i$, then $E(X_i^*) = o(1)$ for $j \ge 5$.

Let A be the event that $Z_k = 0$ and $X_5^* = 0$. Let $H_A^{(3)}(n, p)$ be the conditional probability space for this event. For $H \in H_A^{(3)}(n, p)$, let $\mu_1, \mu_2, \ldots, \mu_l$ be the 4-sets in F(H). For each $i \in \{1, 2, \ldots, l\}$ choose at random (independently for each μ_i), one of the six $\tau_{\mu_i} \in D(H)$ such that $\tau_{\mu_i} \subset \mu_i$. Call this vertex pair $\tau_{\mu_i}^*$. It is possible that we will choose, for some $i \neq j$, vertex pairs $\tau_{\mu_i}^* = \tau_{\mu_i}^*$. Now define a sequence of hyperedge sets $E_0, E_1, E_2, \ldots, E_l$, by setting $E_0 = E(H)$ and, having defined E_{i-1} , setting

$$E_i = E_{i-1} \setminus \{ \sigma \colon \sigma \in E_{i-1} \text{ and } \tau^*_{\mu_i} \subset \sigma \}.$$

Let H_i be the sub-hypergraph of the hypergraph H with edge set $E(H_i) = E_i$. This gives us a sequence of hypergraphs

$$H = H_0, H_1, H_2, \ldots, H_l = H^*.$$

Call H^* a 'derived hypergraph' of H. Let $H_A^{(3)}(n, p)^*$ be the probability space of such hypergraphs. For $H^* \in H_A^{(3)}(n, p)^*$, define the graph G_{H^*} on the vertex set V which has an edge joining vertex i to vertex j if $\{i, j\}$ is contained in a hyperedge of H^* . Clearly such a graph G_{H^*} is K^4 -free.

For $\epsilon > 0$, let $m = n^{(7/10)+\epsilon}$ and define Y (strictly $Y_{\epsilon,\delta}$) to be that random variable on $H_A^{(3)}(n, p)^*$ such that $Y(H^*)$ is the number of *m*-sets in V containing no hyperedge of H^* .

Lemma 4. Let $0 < \delta < \epsilon$ and $p = n^{-(7/5)-\delta}$. Then E(Y) = o(1).

Proof. Consider the probability space $H_A^{(3)}(n, p)$. For a random hypergraph

 $H_p \in H_A^{(3)}(n, p)$ and an edge $\sigma \in E(H_p)$, let B_σ be the event that the hyperedge σ is removed when creating H_p^* (i.e., $\sigma \in E(H_p) \setminus E(H_p^*)$). Each vertex pair in $D(H_p)$ is in at most k of the K^4 's in $G(H_p)$; and a given hyperedge is removed from $E(H_p)$ only if one of the three vertex pairs contained in it is removed. For $\tau \in D(H_p)$, let C_τ be the event that the vertex pair τ is not removed. If $\sigma^{(2)} = \{\tau, \tau', \tau''\}$ then

Thus

$$P(C_{\tau}) \ge (1 - \frac{1}{6})^{k}, \quad P(C_{\tau} \mid C_{\tau}) \ge (1 - \frac{1}{5})^{k}, \quad P(C_{\tau}'' \mid C_{\tau} \cap C_{\tau'}) \ge (1 - \frac{1}{4})^{k}.$$
$$P(C_{\tau} \cap C_{\tau'} \cap C_{\tau'}) \ge ((1 - \frac{1}{6})(1 - \frac{1}{5})(1 - \frac{1}{4}))^{k},$$

so

$$P(B_{\sigma}) = 1 - P(\overline{B_{\sigma}}) = 1 - P(C_{\tau} \cap C_{\tau'} \cap C_{\tau'})$$

$$\leq 1 - ((1 - \frac{1}{6})(1 - \frac{1}{5})(1 - \frac{1}{4}))^{k} = c < 1.$$

Since vertex pairs are chosen in H_p independently, it follows that if $\{\sigma_1, \sigma_2, \ldots, \sigma_l\}$ is a set of hyperedges of H_p such that $|\sigma_i \cap \sigma_j| \le 1$ for all $i, j \in \{1, 2, \ldots, l\}$, then

$$P\left(\bigcap_{i=1}^{l} B_{\sigma_i}\right) \leq \prod_{i=1}^{l} P(B_{\sigma_i}) \leq c^{l}.$$

What is the corresponding probability for an arbitrary set $T = \{\sigma_1, \sigma_2, \ldots, \sigma_t\} \subset E(H_p)$? From the definition of event A, each vertex pair is in at most four hyperedges, thus each σ_i meets at most nine other σ_j 's in two vertices, so there is a set $T' \subset T$, with $|T'| \ge \frac{1}{10} |T|$, such that no two hyperedges in T' have more than one vertex in common. Thus

$$P\left(\bigcap_{\sigma\in T} B_{\sigma}\right) \leq P\left(\bigcap_{\sigma\in T'} B_{\sigma}\right) \leq c^{t/10}.$$
(1)

Let $p_{\alpha}(i)$ be the probability that a given *m*-set in *V* contains exactly *i* hyperedges. Let $p_{\beta}(i)$ be the maximum, over all set of *i* hyperedges, of the probability that set of *i* hyperedges is removed from a hypergraph $H_p \in H_A^{(3)}(n, p)$ to generate a derived hypergraph H_p^* . From inequality (1) we see that $p_{\beta}(i) \leq c^{i/10}$.

Now consider the probability space $H_A^{(3)}(n, p)^*$. Set $M = \binom{m}{3}$. Then

$$E(Y) \leq {\binom{n}{m}} \sum_{i=0}^{M} p_{\alpha}(i) p_{\beta}(i).$$

To assist the calculation, the summation is evaluated in two parts. Recall that $m = n^{(7/10)+\epsilon}$ and set $L = n^{(7/10)+2\epsilon}$. Let

$$T_1 = \binom{n}{m} \sum_{i=0}^{L} p_{\alpha}(i) p_{\beta}(i)$$

and

$$T_2 = \binom{n}{m} \sum_{i=L+1}^{M} p_{\alpha}(i) p_{\beta}(i).$$

In showing T_1 to be small, we are essentially showing that in a random hypergraph in $H_A^{(3)}(n, p)$ the expected number of *m*-sets containing fewer than L hyperedges is small. We thus note that $p_{\beta}(i) < 1$, so

$$T_1 \leq {n \choose m} \sum_{i=0}^{L} p_{\alpha}(i).$$

In showing T_2 to be small, we are essentially showing that given an *m*-set of vertices containing more than *L* hyperedges of a hypergraph in $H_A^{(3)}(n, p)$, the probability that all are removed when forming a derived hypergraph is small. Thus noting that $p_{\alpha}(i) < 1$, we get

$$T_2 \leq \binom{n}{m} \sum_{i=L+1}^{M} p_{\beta}(i).$$

A 3-set is chosen to be a hyperedge of $H_p \in H^{(3)}(n, p)$ independently of the choice for any other 3-set; and since $P(\bar{A}) = o(1)$ (by Lemma 3 and the remark following it), so $P(A) \ge 1 - o(1)$. It follows that

$$p_{\alpha}(i) \leq \binom{M}{i} p^{i} (1-p)^{M-i} (1+o(1)).$$

Thus, for sufficiently large n,

$$T_1 \le 2\binom{n}{m} \sum_{i=0}^{L} \binom{M}{i} p^i (1-p) M^{-i}.$$
 (2)

Recalling that $p_{\beta}(i) \leq c^{i/10}$, we see that

$$T_2 \leq {n \choose m} \sum_{i=L+1}^{M} C^{i/10}.$$
 (3)

The remainder of the proof involves establishing that expressions on the right-hand sides of the inequalities (2) and (3) are both o(1).

The bound for T_1 given in (2) is $2\binom{n}{m}P(S_{M,p} \leq L)$, where $S_{M,p}$ is the random variable having binomial distribution with parameters M and p. Here we have

$$pM = n^{(7/10)+3\epsilon-\delta}$$

and

$$L = n^{(7/10) + 2\epsilon} \leq \frac{11}{12} \, pM$$

for sufficiently large *n*, so from a theorem of Bollobás (see [18, p. 13, Theorem 7(i)]) with $\epsilon = \frac{1}{12}$,

$$P(S_{M,p} \leq L) \leq P(|S_{M,p} - pM| \geq \frac{1}{12} pM) \leq \frac{12}{\sqrt{pM}} \exp\left\{-\frac{1}{432} n^{(7/10)+3\epsilon-\delta}\right\}.$$

Since

$$\binom{n}{m} \leq (en^{(3/10)-\epsilon})^{n^{(7/10)+\epsilon}} = \exp\{n^{(7/10)+\epsilon}\log(en^{(3/10)-\epsilon})\}$$

it follows that $T_1 = o(1)$.

Turning to T_2 , and recalling that $0 \le c \le 1$, it follows that

$$T_2 \leq {\binom{n}{m}} \sum_{i=L+1}^{M} c^{i/10} \leq M{\binom{n}{m}} c^{L/10}.$$

Using the inequality $\binom{a}{b} \leq \left(\frac{ea}{b}\right)^b$,

$$T_2 \leq M \left(\frac{en}{m}\right)^m c^{L/10} = M \exp\left\{m \log\left(\frac{en}{m}\right) - \frac{L}{10} |\log c|\right\},\$$

but $m = n^{(7/10)+\epsilon}$ and $L = n^{(7/10)+2\epsilon}$, so

$$T_2 \leq M \exp\{n^{(7/10)+\epsilon} \log(e^{(3/10)-\epsilon}) - \frac{1}{10}n^{(7/10)+2\epsilon} |\log c|\};$$

so $T_2 = o(1)$. Thus

$$E(Y) \leq T_1 + T_2 = o(1). \qquad \Box$$

This theorem shows that as *n* gets large the expected number of vertex subsets of *V* of size $m = n^{(7/10)+\epsilon}$ not containing a hyperedge of a derived hypergraph tends to zero. In the following theorem we show (formally) that this implies the existence of a graph *G* with $h_3(G) \le n^{(7/10)+\epsilon}$.

Theorem 5. For $\epsilon > 0$ and sufficiently large $n, f_{3,4}(n) \leq n^{(7/10)+\epsilon}$.

Proof. We seek to show the existence of a 3-uniform hypergraph H^* such that each *m*-set of vertices contains a hyperedge and such that each 4-set of vertices contains a pair of vertices for which there is no hyperedge in $E(H^*)$ containing both vertices.

Let $0 < \delta < \epsilon$ and let $p = n^{-(7/5)-\delta}$. Consider the probability space $H^{(3)}(n, p)$ with probability measure P. The event A is the event that $Z_k = 0$ and no vertex pair is contained in five or more hyperedges, i.e.,

$$A(Z_k = 0) \cap (X_5^* = 0).$$

Thus, from Lemma 3 and the subsequent remark,

$$P(A) = P((Z_k = 0) \cap (X_5^* = 0)) \ge 1 - P(Z_k \ge 1) - P(X_5^* \ge 1)$$
$$\ge 1 - E(Z_k) - E(X_5^*) = 1 - o(1) - o(1) = 1 - o(1).$$

Now consider the probability space $H_A^{(3)}(n, p)^*$ with probability measure P_A^* . Recall that Y was defined to be that random variable on $H_A^{(3)}(n, p)^*$ such that $Y(H^*)$ is the number of *m*-sets in V containing no hyperedge of H^* . Since P(A) = 1 - o(1), it is sufficient to show that $P_A^*(Y=0) = 1 - o(1)$.

Using the result of Lemma 4,

$$P_A^*(Y=0) = 1 - P_A^*(Y \ge 1) \ge 1 - E(Y) = 1 - o(1).$$

Thus, for sufficiently large n, it follows that there exists a hypergraph $H^* \in H_A^{(3)}(n, p)^*$ such that $Y(H^*) = 0$. Define $G^* = G_{H^*}$ to be the graph on V in which a vertex *i* is joined to a vertex *j* if some hyperedge of H^* contains $\{i, j\}$, Then, by the construction of H^* , the graph G^* does not contain a K^4 and G^* satisfies the condition $h_3(G^*) \leq n^{(7/10)+\epsilon}$. The theorem follows. \Box

The results above give bounds for the function $f_{3,4}(n)$, however the methods of proof used can be generalized to bound $f_{s-1,s}(n)$ for $s \ge 4$. The proof of Theorem 6 is an extension of the proof for Theorem 1 and provides a general lower bound for the function $f_{r,s}(n)$.

Theorem 6. Let $3 \le r < s$ and $n \ge 1$, then

$$f_{r,s}(n) \geq n^{1/(s-r+1)}.$$

Proof. Let G be a graph of order n such that $cl(G) \le s - 1$. We define a sequence of graphs

$$G=G_0, G_1, \ldots, G_{s-r},$$

by putting

$$G_{i+1} = G_i[\Gamma(v_i)]$$

for i = 0, 1, 2, ..., s - r - 1, where v_i is a vertex of maximal degree in G_i . As G does not contain a K^s , it follows that G_i does not contain a K^{s-i} for i = 1, 2, ..., s - r.

Let
$$\alpha = 1/(s - r + 1)$$
. If

 $\Delta(G_i) < |G_i| n^{-\alpha}$

for an $i \in \{0, 1, \ldots, s - r - 1\}$, then $\chi(G_i) < |G_i| n^{-\alpha} + 1$. Choosing W_1 and W_2 to be colour classes of a $\chi(G_i)$ -vertex colouring of G_i such that $|W_1 \cup W_2|$ is maximal, it follows (crudely) that $|W_1 \cup W_2| > n^{\alpha}$. The subgraph of G_i (and thus of G) induced by $W_1 \cup W_2$ does not contain a K^3 , proving the result in this case.

Thus we may assume that for each $i \in \{0, 1, \ldots, r-s-1\}$,

$$\Delta(G_i) \geq |G_i| n^{-\alpha}.$$

Therefore

$$|G_{i+1}| \geq |G_i| n^{-\alpha}$$

for each $i \in \{0, 1, ..., r-s-1\}$, and so

$$|G_{s-r}| \geq |G_0|(n^{-\alpha})^{(s-r)}.$$

Since G_{s-r} does not contain a K', and

$$|G_{s-r}| \ge n \cdot n^{-(s-r)/(s-r+1)} = n^{1/(s-r+1)},$$

the result follows. \Box

We generalize the results of Theorem 5 to obtain an upper bound for $f_{s-1,s}(n)$, then the trivial fact that $f_{r,s}(n) \leq f_{r',s}(n)$ for $3 \leq r \leq r' < s$ allows us to deduce an upper bound for $f_{r,s}(n)$ for $3 \leq r < s$.

In the remainder of this paper we shall assume that $s \ge 4$. Let $H^{(s-1)}(n, p)$ be the probability space of (s-1)-uniform hypergraphs on vertex set V = [n], where (s-1)-sets are chosen to be hyperedges with probability p and independently of the choice for other (s-1)-sets. Define $G^{(s-1)}(n, p)$ from $H^{(s-1)}(n, p)$ in a manner similar to the definition of $G^{(3)}(n, p)$ from $H^{(3)}(n, p)$.

For $H \in H^{(s-1)}(n, p)$ define

$$D^{(s-1)}(H) = \{\tau \subset V : |\tau| = 2, \ \tau \subset \sigma \text{ for some } \sigma \in E(H)\}$$

and

$$F^{(s-1)}(H) = \{ \mu \subset V : |\mu| = s \text{ and } \mu^{(2)} \subset D(H) \}.$$

Define a function $g_H^{(s-1)}: D^{(s-1)}(H) \to \mathbb{N}$ by putting

$$g_H^{(s-1)}(\tau) = |\{\mu \in F^{(s-1)}(H): \tau \subset \mu\}|$$

and define the random variable $Z_k^{(s-1)}$ on $H^{(s-1)}(n, p)$ by putting

$$Z_k^{(s-1)}(H) = |\{\tau \in D^{(s-1)}(H) : g_H^{(s-1)}(\tau) \ge k\}|.$$

Thus $Z_k(H)$ is the number of edges of G_H , each of which is an edge of at least k distinct K^{s} 's. Then we get the following lemma.

Lemma 7. Let $0 < \delta$, $p = n^{-(s-3)-2/(s+1)-\delta}$ and $k \ge \max\{\lfloor 4s/(s+1)^2(s-2)\delta \rfloor, 3\}$ then $E(Z_k^{(s-1)}) = o(1)$.

Proof. (Analogous to the proof of Lemma 3.) Let us consider the probability space $H^{(s-1)}(n, p)$. For a vertex pair $\tau = \{i, i'\} \in V^{(2)}$, let A_{τ} be the event that $\tau \in D^{(s-1)}(H)$ and there exist k sets $\mu_1, \mu_2, \ldots, \mu_k \in F^{(s-1)}(H)$ such that $\tau \subset \mu_j$ for each $j \in \{1, 2, \ldots, k\}$. Then

$$E(Z_k^{(s-1)}) = \binom{n}{2} P(A_\tau).$$

Let $B_{\tau}(i_1, \ldots, i_l)$ be the event that $\tau \in D^{(s-1)}(H)$ and there exist k sets $\mu_1, \mu_2, \ldots, \mu_k \in F^{(s-1)}(H)$ such that $\tau \subset \mu_j$ for each $j \in \{1, 2, \ldots, k\}$ and $\bigcup_{i=1}^k \mu_i = \{i_1, \ldots, i_l\} \cup \{i, i'\}$. We may assume $l \leq (s-2)k$, since $P(B_{\tau}(i_1, \ldots, i_l)) = 0$ for l > (s-2)k; so

$$P(A_{\tau}) \leq \sum_{l=0}^{(s-2)k} \binom{n}{l} P(B_{\tau}(i_1, i_2, \ldots, i_l)).$$

If $H \in B_{\tau}(i_1, \ldots, i_l)$, then for each $j \in \{1, 2, \ldots, l\}$ the vertex pairs $\{i, i_j\}$ and $\{i', i_j\}$ must be in $D^{(s-1)}(H)$. Set $\lambda(l) = 0$ if l = (s-2)k and $\lambda(l) = s-3$ if (s-2)k > l. Since each vertex in $\{i_1, i_2, \ldots, i_l\}$ is in at least one $\mu_t \in F^{(s-1)}(H)$ (and if l < (s-2)k at least one vertex is in two $\mu_t \in F^{(s-1)}(H)$), at least $l(s-3)/2 + \lambda(l)$ vertex pairs of the form $\{i_j, i_{j'}\}$ must be in $D^{(s-1)}(H)$.

Defining an event C_{τ} in a manner similar to that for in Lemma 3, we evaluate $P(B_{\tau}(i_1, \ldots, i_l))$ and thus $P(A_{\tau})$ to get

$$P(A_{\tau}) \leq \sum_{l \leq (s-2)k} {n \choose l} n^{(-2/(s+1)-\delta)(2l+l(s-3)/2+\lambda(l)+1)}.$$

Thus

$$P(A_{\tau}) = O(n^{k(s-2)+(-2/(s+1)-\delta)(2k(s-2)+k(s-2)(s-3)/2+1}))$$

= $O(n^{-\delta(k(s+1)(s-2)/2+1)-2/(s+1)})$

and

$$E(Z_k^{(s-1)}) = O(n^{-2/(s+1)-\delta(k(s+1)(s-2)/2+1)}n^2) = O(n^{2s/(s+1)-\delta(k(s+1)(s-2)/2+1)})$$

thus with $k \ge \lfloor 4s/(s+1)^2(s-2)\delta \rfloor$,

$$E(Z_k^{s-1}) = o(1). \qquad \Box$$

Define $X_j^{(s-1)}$ to be the random variable on $H^{(s-1)}(n, p)$ such that $X_j^{(s-1)}(H)$ is the number of vertex pairs in $V^{(2)}$ each of which is in exactly *j* hyperedges of *H*. Then $E(X_j^{(s-1)}) = o(1)$ for $j \ge s+1$. Further, if we define $X_j^{(s-1)} = \sum_{i\ge j} X_i^{(s-1)}$, then $E(X_j^{(s-1)}) = o(1)$ for $j \ge s+1$.

Consider the probability space $H^{(s-1)}(n, p)$ and define A to be the event that $Z_k^{(s-1)} = 0$ and $X_{s+1}^{*(s-1)} = 0$. Each random element in $H^{(s-1)}(n, p)$ which is in A is an (s-1)-uniform hypergraph such that each vertex pair in $V^{(2)}$ is in at most s hyperedges. Furthermore, if H is in A, then no edge of G_H is in more than k distinct induced subgraphs isomorphic to K^s .

Let $H_A^{(s-1)}(n, p)$ be the conditional probability space associated with the event A. For each $H \in H_A^{(s-1)}(n, p)$, define a derived hypergraph, H^* , associated with Hin a manner analogous to the definition of a derived hypergraph for a hypergraph in $H_A^{(3)}(n, p)$. Let $H_A^{(s-1)}(n, p)^*$ be the probability space associated with the derived hypergraphs.

For $\epsilon > 0$, let $m = n^{(s-3)/(s-2)+2/(s+1)(s-2)+\epsilon}$ and define $Y_{\epsilon,\delta}^{(s-1)}$ to be the random variable on $H_A^{(s-1)}(n, p)^*$ such that $Y_{\epsilon,\delta}^{(s-1)}(H^*)$ is the number of *m*-sets in *V* not containing a hyperedge of H^* .

Lemma 8. Let $0 < \delta < \epsilon$ and $p = n^{-(s-3)-2/(s+1)-\delta}$. Then

$$E(Y_{\epsilon,\delta}^{(s-1)}) = o(1).$$

Proof. The proof is essentially the same as that for Lemma 4, with the following changes. In inequality (1) the number 10 must be replaced by $\binom{s-1}{2}(s-1)+1$.

The parameter

$$M = \binom{m}{s-1},$$

where

$$m = n^{(s-3)/(s-2)+2/(s+1)(s-2)+\epsilon}$$

and the parameter

$$L = n^{(s-3)/(s-2)+2/(s+1)(s-2)+2\epsilon}.$$

It follows that

$$E(Y_{\epsilon,\delta}^{(s-1)}) \leq O(\exp\{-cn^{(s-3)/(s-2)+2/(s+1)(s-2)+2\epsilon}\}) = o(1). \qquad \Box$$

With the results of Lemmas 7 and 8 and using a simple modification of the proof of Theorem 5, we obtain the general result.

Theorem 9. Let $\epsilon > 0$ and n be sufficiently large, then

$$f_{s-1,s}(n) \leq n^{(s-3)/(s-2)+2/(s+1)(s-2)+\epsilon}$$
.

Corollary 10. Let $\epsilon > 0$ and n be sufficiently large, then if $3 \le r < s$,

 $f_{r,s}(n) \leq n^{(s-3)/(s-2)+2/(s+1)(s-2)+\epsilon}$

While the results presented in this paper improve those of Erdős and Rogers, it is still not clear what the actual order of the function $f_{r,s}(n)$ is. An improvement in the lower bound for $f_{r,s}(n)$ would be of particular interest.

References

- [1] B. Bollobás, Graph Theory: An Introductory Course (Springer, Berlin, 1979).
- [2] B. Bollobás, Random Graphs (Academic Press, London, 1985).
- [3] P. Erdős, Graph theory and probability, Canad. J. Math 11 (1959) 34-38.
- [4] P. Erdős, Graph theory and probability II, Canad. J. Math. 13 (1961) 346-352.
- [5] P. Erdős and C.A. Rogers, The construction of certain graphs, Canad. J. Math. 14 (1962) 702-707.
- [6] R.L. Graham, B.L. Rothschild and J.H. Spencer, Ramsey Theory (Wiley, New York, 1980).