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Abstract

Boliobias, B. and H.R. Hind, Graphs without large triangle free subgraphs, Discrete
Mathematics 87 (1991) 119-131.

The main aim of the paper is to show that for 2=<r <s and large enough n, there are graphs
of order n and clique number less than s in which every set of vertices, which is not too small,
spans a clique of order r. Our results extend those of Erdds and Rogers.

Consider the set of graphs of order n not containing a K*, a complete graph of
order s, as a vertex induced subgraph. What is the maximum number of vertices,
f..s(n), such that any graph in our set contains a vertex induced subgraph of order
fs(n) not containing a K" as a vertex induced subgraph?

This problem, which is essentially a problem of Ramsey Theory, was first
considered by Erd6s and Rogers [5] in 1961, when they showed that there exist
graphs of order n, not containing a K*, such that every vertex induced subgraph
of order more than n!'™%, contains a K°~!. The value of €, obtained was
€, ~1/(512s*logs) for large values of s. The main aim of this paper is to
improve this result.

The notation used will be standard (see [1]) and as is customary, the symbols
¢ ¢, ci, ... will be used to denote constants. Most of our proofs will make use of
the theory of random graphs; for an introduction to the subject see [2].

For a given graph G, define

h(G) =max{|W|: W c V(G), M(G[W]=sr—1}.

That is to say, h,(G) is the order of the largest subset of V(G) for which the
corresponding vertex-induced subgraph of G does not contain a K”. For2=<r<s
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define
fr.s(n)=min{h,(G): cl(G) =s — 1, |G| = n}.

Note that f, ,(n) is intimately connected with the Ramsey number R(s, ) (see [1,
p. 103] or for a comprehensive introduction to Ramsey Theory, see [6]). To be
precise

fo.s(N)=max{t: R(s, t) <N}

and

T. AT

£ AN = #)
2,s\UV)=ij.

R{s, t) = min{N:
The function f, ,(n) can thus be viewed as a generalized Ramsey function. The
method of proof we shall use in order to give an upper bound for f, ,(n) is similar
to that used by ErdGs [3, 4] in his attack on the Ramsey number R(s, 7).
Initially we shall be concerned with the function f; 4(n). Our lower bound for
f3.4(n) is essentially trivial.

Theorem 1. If n >4 then f; (n) = (2n)"2.

Proof. Let G be a graph of order n with cl(G) =3 and let x € V(G) be a vertex of
maximal degree, dg(x) = A(G). Define W = I';{x). It is clear that {(G[W] =2.
Therefore in proving the theorem we may assume A(G) < (2n)"?

Since n—1>(2n)? for n>4, the graph G is not a complete graph.
Furthermore, since (2rn)"?>3 for n >4, the graph G is not an odd cycle with
maximal degree at least (2n)"? — 1. Thus Brooks’ Theorem guarantees that the
graph is k-vertex-colourable for some k < (2n)"?. Let W, and W, be colour classes

in a k-vertex-colouring of G such that |W, U W,| is maximal. Then
n 12
WU W =2(7) > @2n)
and G[W, U W,] contains no K>. O

Before establishing an upper bound a few definitions are required. Let
H®(n, p) be the probability space of 3-uniform hypergraphs with vertex set

=[n]={1,2, ..., n} in which a 3-set of vertices is chosen to be a hyperedge
with probability p, and independently of the choice for any other 3-set. Let H, be
a random element of H®(n, p). To each such H = H, e H®(n, p) we associate a
graph G = Gy on vertex set V in which a vertex i/ and a vertex j are joined by an
edge if some hyperedge of H contains {i, j}. Note that two distinct hypergraphs H
and H' in H®(n, p) may have the same associated graph.

Let G®(n, p) be the probability space of graphs obtained in this way, and
write G5 for a random element of this space. Thus for every graph G, on V we
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have
P(GS") - G()) = P(H EH(3)(H, p)‘ GH = GO)

We shali later show that for any € >0 and n sufficiently large, f; ,(n) <n”%*¢
but first we give a flavour of the proofs by proving a weaker result.

Theorem 2. If n is sufficiently large, then
fr.a(n) < (nlogn)™.

Proof. For a given n, select k to be the greatest positive integer for which

2/3 |?
gk)
and calant - and n grinh that
allu dUllul © aliu l] SUlll tilat
loglogn
3logn
and
—3/2
p=n"0D-c= h
(log n)1/3

Note that if # is sufficiently large, then
k<n—|n'"?¢) and 3(nlogn)**=<(klogk)**.

We shall assume that these inequalities hold.

(i) Let Y be the random variable on G®(n, p) defined by putting Y(G) =
k4(G), i.e., Y(G) is the number of K*s contained in G. We now estimate E(Y),
the expected value of Y. What is the probability that G = G, a random element
of G®(n, p), contains a given K*, K, say, with vertex set V(K,)=W =
{x1, X2, X3, x4}? Let H=H, e H(n, p) be such that G=Gy. Then K, is a
subgraph of G if one of the following four cases occurs.

(a) W contains three distinct hyperedges of H. This occurs with probability
3

4p°.

(b) W contains two distinct hyperedges of H, say ¢ and ¢’ and the vertex pair
{x:;, x;} = 0 Ao’ is contained in a hyperedge ¢” such that 0" N W = {x;, x;}. This
occurs with probability 6p*(1 — (1 — p)*~*) = O(p*(pn)).

(c) W contains one hyperedge of H, o = {x;, x;,, x;,} say. Furthermore, letting
{x;,} = W\o, the vertex pairs {x;, x;,}, {x,, x,,} and {x;, x,} are each contained
in a distinct hyperedge of H meeting W in exactly that pair of vertices. This
occurs with probability 4p(1 — (1 — p)"™*)? = 4p(pn + O(pn?))’.

(d) Finally, the six distinct vertex pairs in W are each contained in a distinct
hyperedge of H meeting W in exactly that pair of vertices. This occurs with
probability (1 — (1 —p)**)®= O((pn)®).
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Recall that p =n~®?~< Thus the probability that G = G’ contains K, as a
subgraph is 4n7>"*€ + O(n 7%, and

E(Y)= <Z)P(K0c G) = 4n'~* + O(n'~%).

Thezn, as a consequence of Markov’s inequality, a.e. G is such that Y(G) <
n'"%.

(ii) Let Z be the random variable on H®)(n, p) whose value for H e H®(n, p)
is the number of m-sets of vertices containing no hyperedge of H, where
m = [3(nlogn)™| = [n*77].

Then

E@)=(")a-p®

< exp{m[log(Zen(”“)_") —%n(3/2)+2" +pn(3/4’+"]} se " =0(1)

if n is large enough, since

(2n —€e)logn >loglogn +1
for large n, and so

ogn+2<in™<*n
This shows (again using Markov’s inequality) that almost every H, e H®(n, p)
satisfies the condition that every m-set of vertices contains at least one hyperedge
of H,.

(iii) Finally by (i) and (i), there is an H € H®(n, p) such that k(Gy) <n'"¢
and every m-set of vertices contains at least one hyperedge of H.

Now choose U c V to be a set of n — k = |n'72¢] vertices meeting every K* in
Gy in at least one vertex. Set G = Gy \U. Then |G| = k; the graph G does not
contain a K* and hy(G)<m<i(nlogn)* =< (klogk)*, completing the
proof. [l

To obtain a better upper bound for f; 4(n), we need a little more care.
Consider H®(n, p), the probability space of 3-uniform hypergraphs with
vertex set V =[n], as described above. For each H € H¥(n, p), let
D(H)={tcV:|1|=2 and 7 < o for some o € E(H)}

and
F(H)={ucV: |u|=4 and p'® =« D(H)}.

Thus D(H) is the edge set of the graph G, and F(H) is the family of 4-sets of
vertices which induce a K* in Gy. For each H € H®)(n, p) define a function

gn:D(H)—N
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by putting
gu(t) ={p € F(H): T < pu}|.

Finally, let Z, be the random variable on H®(n, p) defined by
Z,(H) = |{r e D(H): gu(7)=k}|

i.e., Z,(H) is the number of edges of G, each of which is an edge of at least k
distinct K*’s.

Lemma 3. Let 6>0, let p=n""""° and let k=max{[8/258],3}. Then
E(Z,) = o(1).

Proof. If 6 = 5 and k = 3, the result follows simply since the expected size of the

set F(H,) is small. Therefore assume that 0<& <. Let p=n""97% and
consider the nrobability space H¢ )(n p). Suppose k = rR/’7§rﬂ For a vertex pair

SURISINNL RV pRRUATRANY spesi £ §OF &0 TiWvA paix

t={ii'}e V(2), let A, be the event that te D(H) and that there exist k sets
Bis Bas - . ., Uy € F(H) such that T < y; for each je {1, 2, ..., k}. Then

Ez)=()P(A).

Let {iy, i, ...,i}cV. Let B.(iy, . .., i) be the event that T € D(H) and that
there exist k sets u,, po, ..., ue€ F(H) such that tcy; for each je
{1,2,...,k} and U<y ;= {iy, ..., i} U{i, i’}. Without loss of generality, we
may assume that / <2k, since P(B.(i}, ..., i) =0 for I>2k. So

PAa)< 3 (';>P(B,(i1, By ).
I1=<2k

If HeB.(iy,...,i) then for each je{1,2,...,1}, both the vertex pair {i, j;}
and the vertex pair {i’, {;} must be in D(H). Furthermore, at least k vertex pairs
of the form {i;, i,,} where j, j' € {1, 2, ..., [} must be in D(H).

Let C.(i;,...,i;m) be the event that there exist exactly m  distinct
hyperedges o, . . ., 0, in E(H) of the form o = {i, i;, i} or o= {i’, i, i;.} where
Li'e{l,2,..., l}. Then noting that m <2(3), it follows that

P(B.(iy, iy, . .., i)

2(3)

= 2 P(Br(ily ey ll) | Cr(ily < ee s ll; m))P(C‘I(ll) LR ] ll; m))
2(4) 2 l

< §=:O {(pn)21+k—3m+1+o((pn)21+k—3m+1)}{< f;))l]m}

So
2(3)

P(At)sls22k< )E {(pn)21+k 3m+l+0((pn)21+k 3m+1)}{(2’(’f))pm}
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Noting that

(Pn)21+k—3m+1 m_ n(—(2/5)—6)(21+k+1)+(—(1/5)+26)m’

14

and 8 <5, this expression has a maximum when m = 0. Therefore

P(A,,) < 2 <7>{n(—(2/5)—6)(2l+k+1) + O(n(—(z/s)—a)(21+k+1))}
=2k

— O(n2k+(—(2/5)—6)(5k+1)) — O(n—(Z/S)—(5k+1)6)
Thus
E(Zk) < O(n—(2/5)—(5k+1)6n2) — O(H(S/S)_(5k+l)6).

But k = [8/256], and so E(Z,)=o0(1). O

Let p =n~797% We make the remark that if X; is the random variable on

H®(n, p) defined by
X(H)={te V?:|{oce E(H): Tc o}|=]}|,
(i.e., X;(H) is the number of vertex pairs in V®, each of which is common to
exactly j hyperedges of H) then E(X;)=o(1) for j=5. Further, if X;=Y..; X,
then E(X})=o0(1) for j =5.
Let A be the event that Z, =0 and X* =0. Let H(n, p) be the conditional

probability space for this event. For H e HY(n, p), let p;, s, ..., 4, be the
4-sets in F(H). For each ie{1,2,...,!} choose at random (independently for

each ), one of the six 7, € D(H) such that 7, c ;. Call this vertex pair 7. It is
possible that we will choose, for some i #j, vertex pairs 7, = 7. Now define a
sequence of hyperedge sets E,, E,, E,, ..., E;, by setting E,=E(H) and,
having defined E;_,, setting

E,=E,_\{o:0€E,_; and 7, c 0}.
Let H; be the sub-hypergraph of the hypergraph H with edge set E(H,) = E,. This
gives us a sequence of hypergraphs

H=H(), H], Hz, caey H1=H*.

Call H* a ‘derived hypergraph’ of H. Let H{(n, p)* be the probability space of
such hypergraphs. For H* € HY(n, p)*, define the graph G- on the vertex set V
which has an edge joining vertex i to vertex j if {i, j} is contained in a hyperedge
of H*. Clearly such a graph G- is K*-free.

For €>0, let m=n""9%< and define Y (strictly Y. ;) to be that random
variable on HY(n, p)* such that Y(H*) is the number of m-sets in V containing
no hyperedge of H*.

Lemma 4. Let 0< 8 <€ and p=n"""7% Then E(Y)=o0(1).

Proof. Consider the probability space H{(n, p). For a random hypergraph



Graphs without large triangle free subgraphs 125

H, e HY(n, p) and an edge o € E(H,), let B, be the event that the hyperedge o
is removed when creating H, (i.e., o€ E(H,)\E(H})). Each vertex pair in
D(H,) is in at most k of the K*s in G(H,); and a given hyperedge is removed
from E(H,) only if one of the three vertex pairs contained in it is removed. For
te D(H,), let C, be the event that the vertex pair 7 is not removed. If
0@ ={z, 7', 7"} then

P(CH=(1-d), P |CH=(1-3f PEC"|C.NCy=(1-H~
Thus

P(C.NCNC=((1-H(L -5 - 1)
sO

P(B,)=1-P(B,)=1-P(C,NC,. NC,)

<1-(A-Ha-Ha-Hr=c<1

Since vertex pairs are chosen in H, independently, it follows that if
{01, 02,..., 01} is a set of hyperedges of H, such that |g;N g <1 for all
i, je{l,2,...,1}, then

] 1l
P(ﬂ B(,,,) <[] PB,)=<c.
i=1 i=1

What is the corresponding probability for an arbitrary set T = {0y, 03, ..., 0,}
E(H,)? From the definition of event A, each vertex pair is in at most four
hyperedges, thus each o; meets at most nine other ¢;’s in two vertices, so there is
a set T' < T, with |T'|={;|T|, such that no two hyperedges in T’ have more
than one vertex in common. Thus
P< ﬂTBa) sP( ﬂT Ba)SC‘“". (1)

Let p,(i) be the probability that a given m-set in V contains exactly i
hyperedges. Let pg(i) be the maximum, over all set of i hyperedges, of the
probability that set of i hyperedges is removed from a hypergraph H, e H)(n, p)
to generate a derived hypergraph H,. From inequality (1) we see that
pp(l) < ci/lO.

Now consider the probability space H(n, p)*. Set M = (7). Then

50 =(2) 2 pe st

To assist the calculation, the summation is evaluated in two parts. Recall that
m=n"19%¢ and set L = n9+2¢ et

7= ()3 purntd

and

5=(") 3 puopsti

i=L+1
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In showing 7, to be small, we are essentially showing that in a random
hypergraph in H(n, p) the expected number of m-sets containing fewer than L
hyperedges is small. We thus note that pg(i) <1, so

r<(2)3

In showing T, to be small, we are essentially showing that given an m-set of
vertices containing more than L hyperedges of a hypergraph in HY(n, p), the
probability that all are removed when forming a derived hypergraph is small.
Thus noting that p,(i) <1, we get

n M
L= ( ) > i)
m/i=r+1
A 3-set is chosen to be a hyperedge of H, e H®(n, p) independently of the choice
for any other 3-set; and since P(A)=o(1) (by Lemma 3 and the remark
following it), so P(A) =1 — o(1). It follows that

Py = ("1 o1 = P14 o(1).

Thus, for sufficiently large n,

n\& M\ . .
r=<2(")3 (V)pa-pm @
m/i—o\1
Recalling that pg(i) < c¢”'°, we see that
n\ 4
T2 < < > z Cl/l()‘ (3)
m/i=r+1

The remainder of the proof involves establishing that expressions on the
right-hand sides of the inequalities (2) and (3) are both o(1).

The bound for T; givea in (2) is 2(;,)P(Sum,, <L), where Sy, is the random
variable having binomial distribution with parameters M and p. Here we have

pM = p(7110)+3e—3
and

L = n7"0)+2¢ %pM
for sufficiently large n, so from a theorem of Bollobés (see [18, p. 13, Theorem
7(i)]) with € = 5,

12 1 _
P(SM,p sL)=s P(lSM,p —pM|= ﬁpM) STTlexp{ —Ez-n(7/10)+3€ é}.

Since

(”) < (en(3/10)—6)n(7’“')+‘ — exp{nmw)ﬂ log(en(ym)_e)},
m

it follows that 7; = o(1).
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Turning to T;, and recalling that 0 < ¢ <1, it follows that
T2<<n) g: Ci/logM(n)cL/IO‘
m/i=r+1 m
Using the inequality (£) < ()",
en\™ en L
T e e
L M(m) c expim log p” 10|logc| ,
but m= n(7/10)+€ and L= n(7/10)+26’ SO
'Tz < M exp{n(7/10)-+-elog(en(3/10)—s) _ ,1_1‘)”(7/10)-4-26 |lOg Cl}.
so T, = o(1). Thus
EY)<T,+T,=o(1). O
This theorem shows that as n gets large the expected number of vertex subsets
of V of size m=n"""*< not containing a hyperedge of a derived hypergraph

tends to zero. In the following theorem we show (formally) that this implies the
existence of a graph G with h;(G) < n("10%¢

Theorem 5. For € >0 and sufficiently large n, f; 4(n) <n'0%¢,

Proof. We seek to show the existence of a 3-uniform hypergraph H* such that
each m-set of vertices contains a hyperedge and such that each 4-set of vertices
contains a pair of vertices for which there is no hyperedge in E(H*) containing
both vertices.

Let 0<8<e€ and let p=n~"?~% Consider the probability space H®(n, p)
with probability measure P. The event A is the event that Z, =0 and no vertex
pair is contained in five or more hyperedges, i.e.,

A(Z, =0)N (X5 =0).
Thus, from Lemma 3 and the subsequent remark,

PA=P(Z,=0)N(X5=0)=1-P(Z,=1)—P(X:=1)
=1-E(Z;)-E(X})=1-0(1)—0o(1)=1-0(1).

Now consider the probability space H$(n, p)* with probability measure P%.
Recall that Y was defined to be that random variable on H$(n, p)* such that
Y(H*) is the number of m-sets in V containing no hyperedge of H*. Since
P(A) =1 —0(1), it is sufficient to show that P5(Y =0)=1—o0(1).

Using the result of Lemma 4,

PLY=0)=1-P4(Y=1)=1-E(Y)=1-o().
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Thus, for sufficiently large n, it follows that there exists a hypergraph H* e
HS(n, p)* such that Y(H*) = 0. Define G* = Gy- to be the graph on V in which
a vertex I is joined to a vertex j if some hyperedge of H* contains {i, j}, Then, by
the construction of H*, the graph G* does not contain a K* and G* satisfies the
condition h;(G*) < n"'9*¢ The theorem follows. O

The results above give bounds for the function f; 4(n), however the methods of
proof used can be generalized to bound f;_, ,(n) for s = 4. The proof of Theorem
6 is an extension of the proof for Theorem 1 and provides a general lower bound
for the function f, ;(n).

Theorem 6. Let3<r<sand n=1, then

fr s(n) > nl/(s—r+1).
Proof. Let G be a graph of order # such that cI(G) <s — 1. We define a sequence
of graphs

G= G(], G], e ey Gs_,,

by putting
Gi+1=G[I(v)]

fori=0,1,2,...,s—r—1, where v, is a vertex of maximal degree in G;. As G
does not contain a K°, it follows that G; does not contain a K** for
i=1,2,...,5—r.

leta=1/(s—r+1). If

A(G) <|Gi|n™*

foranie{0,1,...,s—r—1}, then x(G;) <|G;| n~*+ 1. Choosing W; and W, to
be colour classes of a y(G;)-vertex colouring of G; such that |W; U W,| is maximal,
it follows (crudely) that |W; U W,|>n® The subgraph of G; (and thus of G)
induced by W, U W, does not contain a K>, proving the result in this case.

Thus we may assume that for eachie {0, 1,...,r—s5—1},

A(G) = |G n™~
Therefore

|Gi 41l =1Gi| n™*
foreachie{0,1,...,r—s—1}, and so

|Gs—r| = |G0|(n_ a/)(s—r).
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Since G,_, does not contain a K’, and

IGs—rl =n- n—(s—r)/(s—r+l) — nl/(s—r+1),

the result follows. O

We generalize the results of Theorem 5 to obtain an upper bound for f,_, ((n),
then the trivial fact that f, ((n) <f. (n) for 3<r </’ <s allows us to deduce an
upper bound for f, (n) for 3=r<s.

In the remainder of this paper we shall assume that s =4. Let H* V(n, p) be
the probability space of (s — 1)-uniform hypergraphs on vertex set V = [n], where
(s — 1)-sets are chosen to be hyperedges with probability p and independently of
the choice for other (s —1)-sets. Define G* “(n, p) from H“ Y(n, p) in a
manner similar to the definition of G®(n, p) from H®(n, p).

For H € H* V(n, p) define

DS D(H)={tcV:|tr|=2, T c o for some o€ E(H)}
and
FC " D(H)={ucV: |u|=s and u® c D(H)}.
Define a function g§~": D“"Y(H)— N by putting
g (v ={pue FC™O(H): T u}|
and define the random variable Z{™ on H* Y(n, p) by putting
ZgV(H)=|{ve D*V(H): g5 (1) = k}|.

Thus Z,(H) is the number of edges of Gy, each of which is an edge of at least k
distinct K*’s. Then we get the following lemma.

Lemma 7. Let 0< 8, p =n ¢ P726*D7% gng k= max{[4s/(s + 1)*(s — 2)d], 3}
then E(Z{™Y) =0(1).

Proof. (Analogous to the proof of Lemma 3.) Let us consider the probability
space H* V(n, p). For a vertex pair t={i, i’} € V®, let A, be the event that
7€ DY"V(H) and there exist k sets p;, s, . .., p € F*"D(H) such that 1<y,
foreachje{1,2,..., k}. Then

Ezg) = ()P,

Let B.(i;,...,i) be the event that 7€ D* V(H) and there exist k sets
i, By . ., e € FC"D(H) such that tcy, for each je{1,2,...,k} and

i ={iy, ..., i} U{i,i'Y. We may assume [I<(s—2)k, since
P(B.(i,,...,i))=0forl>(s —2)k; so

(s~2)k
PUA)= 3 (';)P(B,(il, by i),
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If HeB.(iy,...,i), then for each je{1,2,...,[} the vertex pairs {i, j;} and
{i", i} must be in D*"O(H). Set Ml)=0 if I=(s—2)k and A(/)=5s-3 if
(s —2)k >1. Since each vertex in {i;, i, ..., ]} is in at least one u, € F*"V(H)
(and if /<(s—2)k at least one vertex is in two u, € F¢ D(H)), at least
I(s — 3)/2 + A(l) vertex pairs of the form {i;, i;;} must be in D¢~ V(H).

Defining an event C, in a manner similar to that for in Lemma 3, we evaluate
P(B.(iy, - . ., i;) and thus P(A,) to get

n
P(A,) < z (l)n(—2/(5+1)—6)(21+l(s—3)/2+/1(1)+1).

I<(s—2)k
Thus
P(A,)= o(nk(s—2)+(—2/(s+1)—6)(2k(s—2)+k(s—2)(:—3)/2+1)
- O(n—6(k(.v+l)(x—2)/2+l)—2/(s+l))
and

E(chs—l)) - O(n—2/(s+1)—6(k(s+1)(s—2)/2+1)n2) = O(nZs'/(s+1)—6(k(s+1)(s—2)/2+1))

thus with k = [4s/(s + 1)*(s — 2)6],
E(Z Y =o0(). O

Define X~V to be the random variable on H“"(n, p) such that X{*"V(H) is
the number of vertex pairs in V® each of which is in exactly j hyperedges of H.
Then E(XF V)=o0(1) for j=s+ 1. Further, if we define X* V=%, X,
then E(X;¢"V)=0(1) for j=s + 1.

Consider the probability space H“ (n, p) and define A to be the event that
Z§¢ V=0 and X}V =0. Each random element in H* "(n, p) which is in A is
an (s — 1)-uniform hypergraph such that each vertex pair in V@ is in at most s
hyperedges. Furthermore, if H is in A, then no edge of Gy is in more than &
distinct induced subgraphs isomorphic to K°.

Let H§ V(n, p) be the conditional probability space associated with the event
A. For each H e H V(n, p), define a derived hypergraph, H*, associated with H
in a manner analogous to the definition of a derived hypergraph for a hypergraph
in HY(n, p). Let HS V(n, p)* be the probability space associated with the
derived hypergraphs.

For €>0, let m = p¢~3E=D+2E+DE-A+€ ap( define Y3 to be the random
variable on H$ (n, p)* such that Y¢;V(H*) is the number of m-sets in V not
containing a hyperedge of H*.

Lemma 8. Let0<6<e€and p=n"¢""2*D"2 Thep
E(Y¢3Y) = o(1).

Proof. The proof is essentially the same as that for Lemma 4, with the following
changes. In inequality (1) the number 10 must be replaced by (*;)(s — 1) + 1.
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The parameter

M=<srf1)’

—3)(s—2)+2(s+1)}(s—2)+€
’

where

m=n"
and the parameter

L= n(s—3)/(s—2)+2/(s+1)(s—2)+2e

It follows that
E(y(esEl)) < O(exp{_Cn(s—3)/(s——2)+2/(s+1)(s—2)+2£}) — 0(1). O

With the results of Lemmas 7 and 8 and using a simple modification of the
proof of Theorem 5, we obtain the general result.

Theorem 9. Let € >0 and n be sufficiently large, then
fios (n)sn(:—3)/(5—2)+2/(s+1)(s—2)+e
s—1.s -

Corollary 10. Let € >0 and n be sufficiently large, then if 3<r <y,

ﬁ',s(n) < n(s =3 (s-2)+2/(s+1)(s —2)+ e‘

While the results presented in this paper improve those of Erd6s and Rogers, it
is still not clear what the actual order of the function f, ;(n) is. An improvement
in the lower bound for f; ;(n) would be of particular interest.
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