Generalized Quadrangles of Order (s, s^{2}), II

J. A. Thas*
Department of Pure Mathematics and Computer Algebra, University of Ghent, Krijgslaan 281, B-9000 Ghent, Belgium
Communicated by Francis Buekenhout

Received November 26, 1996

1. INTRODUCTION

View metadata, citation and similar papers at core.ac.uk
For terminology, notation, results, etc., concerning finite generalized quadrangles and not explicitly given here, see the monograph of Payne and Thas [1984] denoted FGQ.

Let $\mathscr{S}=(P, B, \mathrm{I})$ be a (finite) generalized quadrangle (GQ) of order $(s, t), s \geqslant 1, t \geqslant 1$. So \mathscr{S} has $v=|P|=(1+s)(1+s t)$ points and $b=|B|=$ $(1+t)(1+s t)$ lines. If $s \neq 1 \neq t$, then $t \leqslant s^{2}$ and, dually, $s \leqslant t^{2}$; also $s+t$ divides $s t(1+s)(1+t)$.

There is a point-line duality for GQ (of order (s, t)) for which in any definition or theorem the words "point" and "line" are interchanged and the parameters s and t are interchanged. Normally, we assume without further notice that the dual of a given theorem or definition has also been given.

Given two (not necessarily distinct) points x, x^{\prime} of \mathscr{S}, we write $x \sim x^{\prime}$ and say that x and x^{\prime} are collinear, provided that there is some line L for which $x \mathrm{I} L \mathrm{I} x^{\prime}$; hence $x \not x x^{\prime}$ means that x and x^{\prime} are not collinear. Dually, for $L, L^{\prime} \in B$, we write $L \sim L^{\prime}$ or $L \nsim L^{\prime}$ according as L and L^{\prime} are concurrent or nonconcurrent. When $x \sim x^{\prime}$ we also say that x is orthogonal or perpendicular to x^{\prime}; similarly for $L \sim L^{\prime}$. The line incident with distinct collinear points x and x^{\prime} is denoted $x x^{\prime}$, and the point incident with distinct concurrent lines L and L^{\prime} is denoted either $L L^{\prime}$ or $L \cap L^{\prime}$.

For $x \in P$ put $x^{\perp}=\left\{x^{\prime} \in P \| x \sim x^{\prime}\right\}$, and note that $x \in x^{\perp}$. The trace of a pair $\left\{x, x^{\prime}\right\}$ of distinct points is defined to be the set $x^{\perp} \cap x^{\prime \perp}$ and is denoted either $\operatorname{tr}\left(x, x^{\prime}\right)$ or $\left\{x, x^{\prime}\right\}^{\perp}$; then $\left|\left\{x, x^{\prime}\right\}^{\perp}\right|=s+1$ or $t+1$ according as $x \sim x^{\prime}$ or $x \not x x^{\prime}$. More generally, if $A \subset P$, A "perp" is defined by

[^0]$A^{\perp}=\bigcap\left\{x^{\perp} \| x \in A\right\}$. For $x \neq x^{\prime}$, the span of the pair $\left\{x, x^{\prime}\right\}$ is $\operatorname{sp}\left(x, x^{\prime}\right)=$ $\left\{x, x^{\prime}\right\}^{\perp \perp}=\left\{u \in P \| u \in z^{\perp}\right.$ for all $\left.z \in x^{\perp} \cap x^{\prime \perp}\right\}$. When $x \nsim x^{\prime}$, then $\left\{x, x^{\prime}\right\}^{\perp \perp}$ is also called the hyperbolic line defined by x and x^{\prime}, and $\left|\left\{x, x^{\prime}\right\}^{\perp \perp}\right|=s+1$ or $\left|\left\{x, x^{\prime}\right\}^{\perp \perp}\right| \leqslant t+1$ according as $x \sim x^{\prime}$ or $x \nsim x^{\prime}$.

2. REGULARITY, DUAL NETS, AND THE AXIOM OF VEBLEN

Let $\mathscr{S}=(P, B, \mathrm{I})$ be a finite GQ of order (s, t). If $x \sim x^{\prime}, x \neq x^{\prime}$, or if $x \nsim x^{\prime}$ and $\left|\left\{x, x^{\prime}\right\}^{\perp \perp}\right|=t+1$, where $x, x^{\prime} \in P$, we say the pair $\left\{x, x^{\prime}\right\}$ is regular. The point x is regular provided $\left\{x, x^{\prime}\right\}$ is regular for all $x^{\prime} \in P, x^{\prime} \neq x$. Regularity for lines is defined dually.

A (finite) net of order $k(\geqslant 2)$ and degree $r(\geqslant 2)$ is an incidence structure $\mathcal{N}=(P, B, \mathrm{I})$ satisfying
(i) each point is incident with r lines and two distinct points are incident with at most one line;
(ii) each line is incident with k points and two distinct lines are incident with at most one point;
(iii) if x is a point and L is a line not incident with x, then there is a unique line M incident with x and not concurrent with L.

For a net of order k and degree r we have $|P|=k^{2}$ and $|B|=k r$.
Theorem 2.1 (1.3.1 of Payne and Thas [1984]). Let x be a regular point of the GQ $\mathscr{S}=(P, B, \mathrm{I})$ of order $(s, t), s>1$. Then the incidence structure with pointset $x^{\perp}-\{x\}$, with lineset the set of spans $\{y, z\}^{\perp \perp}$, where $y, z \in x^{\perp}-\{x\}, y \nsim z$, and with the natural incidence, is the dual of a net of order s and degree $t+1$. If in particular $s=t>1$, there arises a dual affine plane of order s. Also, in the case $s=t>1$ the incidence structure π_{x} with pointset x^{\perp}, with lineset the set of spans $\{y, z\}^{\perp \perp}$, where $y, z \in x^{\perp}, y \neq z$, and with the natural incidence, is a projective plane of order s.

Now we introduce the Axiom of Veblen for duals nets $\mathscr{N}^{*}=(P, B, \mathrm{I})$.
Axiom of Veblen. If $L_{1} \mathrm{I} x \mathrm{I} L_{2}, L_{1} \neq L_{2}, M_{1} \varsubsetneqq x ¥ M_{2}$, and if L_{i} is concurrent with M_{j} for all $i, j \in\{1,2\}$, then M_{1} is concurrent with M_{2}.

The only known dual net \mathscr{N}^{*} which is not a dual affine plane and which satisfies the Axiom of Veblen is the dual net $H_{q}^{n}, n>2$, which is constructed as follows: the points of H_{q}^{n} are the points of $\operatorname{PG}(n, q)$ not in a given subspace $\mathrm{PG}(n-2, q) \subset \operatorname{PG}(n, q)$, the lines of H_{q}^{n} are the lines of $\operatorname{PG}(n, q)$ which have no point in common with $\operatorname{PG}(n-2, q)$, the incidence in H_{q}^{n} is the natural one. By the following theorem these dual nets H_{q}^{n} are characterized by the Axiom of Veblen.

Theorem 2.2 (Thas and De Clerck [1977]). Let \mathscr{N}^{*} be a dual net with $s+1$ points on any line and $t+1$ lines through any point, where $t+1>s$. If \mathscr{N}^{*} satisfies the Axiom of Veblen, then $\mathcal{N}^{*} \cong H_{q}^{n}$ with $n>2$ (hence $s=q$ and $t+1=q^{n-1}$).

3. TRANSLATION GENERALIZED QUADRANGLES, PROPERTY (G), AND THE AXIOM OF VEBLEN

Let $\mathscr{S}=(P, B, \mathrm{I})$ be a GQ of order $(s, t), s \neq 1, t \neq 1$. A collineation θ of \mathscr{S} is an elation about the point p if $\theta=\mathrm{id}$ or if θ fixes all lines incident with p and fixes no point of $P-p^{\perp}$. If there is a group H of elations about p acting regularly on $P-p^{\perp}$, we say \mathscr{S} is an elation generalized quadrangle (EGQ) with elation group H and base point p. Briefly, we say that $\left(\mathscr{S}^{(p)}, H\right)$ or $\mathscr{S}^{(p)}$ is an EGQ. If the group H is abelian, then we say that the EGQ $\left(\mathscr{S}^{(p)}, H\right)$ is a translation generalized quadrangle. For any TGQ $\mathscr{S}^{(p)}$ the point p is coregular, that is, each line incident with p is regular. Hence the parameters s and t of a TGQ satisfy $s \leqslant t$; see 8.2 of FGQ. Also, by 8.5.2 of FGQ, for any TGQ with $s \neq t$ we have $s=q^{a}$ and $t=q^{a+1}$, with q a prime power and a an odd integer; if s (or t) is even then by 8.6.1(iv) of FGQ either $s=t$ or $s^{2}=t$.

In $\mathrm{PG}(2 n+m-1, q)$ consider a set $O(n, m, q)$ of $q^{m}+1(n-1)$-dimensional subspaces $\mathrm{PG}^{(0)}(n-1, q), \mathrm{PG}^{(1)}(n-1, q), \ldots, \mathrm{PG}^{\left(q^{m}\right)}(n-1, q)$, every three of which generate a $\operatorname{PG}(3 n-1, q)$ and such that each element $\mathrm{PG}^{(i)}(n-1, q)$ of $O(n, m, q)$ is contained in a $\mathrm{PG}^{(i)}(n+m-1, q)$ having no point in common with any $\mathrm{PG}^{(j)}(n-1, q)$ for $j \neq i$. It is easy to check that $\mathrm{PG}^{(i)}(n+m-1, q)$ is uniquely determined, $i=0,1, \ldots, q^{m}$. The space $\mathrm{PG}^{(i)}(n+m-1, q)$ is called the tangent space of $O(n, m, q)$ at $\mathrm{PG}^{(i)}(n-1, q)$. For $n=m$ such a set $O(n, n, q)$ is called a generalized oval or an [$n-1$]-oval of $\mathrm{PG}(3 n-1, q)$; a generalized oval of $\mathrm{PG}(2, q)$ is just an oval of $\operatorname{PG}(2, q)$. For $n \neq m$ such a set $O(n, m, q)$ is called a generalized ovoid or an [$n-1$]-ovoid or an $e g g$ of $\operatorname{PG}(2 n+m-1, q)$; a [0]-ovoid of $\operatorname{PG}(3, q)$ is just an ovoid of $\operatorname{PG}(3, q)$.

Now embed $\operatorname{PG}(2 n+m-1, q)$ in a $\operatorname{PG}(2 n+m, q)$, and construct a point-line geometry $T(n, m, q)$ as follows.

Points are of three types:
(i) the points of $\operatorname{PG}(2 n+m, q)-\operatorname{PG}(2 n+m-1, q)$;
(ii) the $(n+m)$-dimensional subspaces of $\operatorname{PG}(2 n+m, q)$ which intersect $\mathrm{PG}(2 n+m-1, q)$ in one of the $\mathrm{PG}^{(i)}(n+m-1, q)$;
(iii) the symbol (∞).

Lines are of two types:
(a) the n-dimensional subspaces of $\operatorname{PG}(2 n+m, q)$ which intersect $\operatorname{PG}(2 n+m-1, q)$ in a $\mathrm{PG}^{(i)}(n-1, q)$;
(b) the elements of $O(n, m, q)$.

Incidence in $T(n, m, q)$ is defined as follows. A point of type (i) is incident only with lines of type (a); here the incidence is that of $\operatorname{PG}(2 n+m, q)$. A point of type (ii) is incident with all lines of type (a) contained in it and with the unique element of $O(n, m, q)$ contained in it. The point (∞) is incident with no line of type (a) and with all lines of type (b).

Theorem 3.1 (8.7.1 of Payne and Thas [1984]). $\quad T(n, m, q)$ is a TGQ of order $\left(q^{n}, q^{m}\right)$ with base point (∞). Conversely, every TGQ is isomorphic to a $T(n, m, q)$. It follows that the theory of TGQ is equivalent to the theory of the sets $O(n, m, q)$.

Corollary 3.2. The following hold for any $O(n, m, q)$:
(i) $n=m$ or $n(a+1)=m a$ with a odd;
(ii) if q is even, then $n=m$ or $m=2 n$.

Let $O(n, 2 n, q)$ be an egg of $\operatorname{PG}(4 n-1, q)$. We say that $O(n, 2 n, q)$ is good at the element $\mathrm{PG}^{(i)}(n-1, q)$ of $O(n, 2 n, q)$ if any $\mathrm{PG}(3 n-1, q)$ containing $\mathrm{PG}^{(i)}(n-1, q)$ and at least two other elements of $O(n, 2 n, q)$, contains exactly $q^{n}+1$ elements of $O(n, 2 n, q)$. In such a case the corresponding TGQ $T(n, 2 n, q)$ contains at least $q^{3 n}+q^{2 n}$ translation subquadrangles of order q^{n} (see Thas [1994]).

Theorem 3.3 (Thas and Van Maldeghem [1995]). Let $\mathscr{S}^{(p)}$ be a TGQ of order $\left(s, s^{2}\right), s \neq 1$, with base point p. Then the dual net \mathcal{N}_{L}^{*} defined by the regular line L, with $p \mathrm{I} L$, satisfies the Axiom of Veblen if and only if the egg $O(n, 2 n, q)$ which corresponds to $\mathscr{S}^{(p)}$ is good at its element $\mathrm{PG}^{(i)}(n-1, q)$ which corresponds to L.

Let $O=O(n, 2 n, q)$ be an egg in $\operatorname{PG}(4 n-1, q)$. By 8.7.2 of FGQ the $q^{2 n}+1$ tangent spaces of O form an $O^{*}=O^{*}(n, 2 n, q)$ in the dual space of $\operatorname{PG}(4 n-1, q)$. So in addition to $T(n, 2 n, q)=T(O)$ there arises a TGQ $T\left(O^{*}\right)$ with the same parameters. The TGQ $T\left(O^{*}\right)$ is called the translation dual of the TGQ $T(O)$. Examples are known for which $T(O) \cong T\left(O^{*}\right)$, and examples are known for which $T(O) \nsubseteq T\left(O^{*}\right)$; see Thas [1994].

Let $\mathscr{S}=(P, B, \mathrm{I})$ be a GQ of order $\left(s, s^{2}\right), s \neq 1$. Let x_{1}, y_{1} be distinct collinear points. We say that the pair $\left\{x_{1}, y_{1}\right\}$ has Property (G), or that \mathscr{S}
has Property (G) at $\left\{x_{1}, y_{1}\right\}$, if every triple $\left\{x_{1}, x_{2}, x_{3}\right\}$ of points, with x_{1}, x_{2}, x_{3} pairwise noncollinear and $y_{1} \in\left\{x_{1}, x_{2}, x_{3}\right\}^{\perp}$, is 3-regular; for the definition of 3-regularity see 1.3 of FGQ. The GQ \mathscr{S} has Property (G) at the line L, or the line L has Property (G), if each pair of points $\{x, y\}, x \neq y$ and $x \mathrm{I} L \mathrm{I} y$, has Property (G). If (x, L) is a flag, that is, if $x \mathrm{I} L$, then we say that \mathscr{S} has Property (G) at (x, L), or that (x, L) has Property (G), if every pair $\{x, y\}, x \neq y$ and $y \mathrm{I} L$, has Property (G). Property (G) was introduced in Payne [1989] in connection with generalized quadrangles of order $\left(q^{2}, q\right)$ arising from flocks of quadratic cones in $\operatorname{PG}(3, q)$.

Theorem 3.4 (Thas and Van Maldeghem [1995]). Let $\mathscr{S}=(P, B, \mathrm{I})$ be a GQ of order $\left(s^{2}, s\right)$, s even, satisfying Property (G) at the point x. Then x is regular in \mathscr{S} and the dual net \mathcal{N}_{x}^{*} defined by x satisfies the Axiom of Veblen. Consequently $\mathscr{N}_{x}^{*} \cong H_{s}^{3}$.

Theorem 3.5 (Thas [1994]). A TGQ $T(n, 2 n, q)=T(O)$ satisfies Property (G) at $\{(\infty), \bar{\zeta}\}$, with $\bar{\zeta}$ a point of type (ii) incident with the line ζ of type (b) (or, equivalently, at the flag $((\infty), \zeta))$ if and only if for any two elements $\zeta_{i}, \zeta_{j}(i \neq j)$ of $O(n, 2 n, q)-\{\zeta\}$ the $(n-1)$-dimensional space $\operatorname{PG}(n-1, q)$ $=\tau \cap \tau_{i} \cap \tau_{j}$, with τ, τ_{i}, τ_{j} the respective tangent spaces of $O(n, 2 n, q)$ at $\zeta, \zeta_{i}, \zeta_{j}$, is contained in $q^{n}+1$ tangent spaces of $O(n, 2 n, q)$.

Theorem 3.6 (Thas and Van Maldeghem [1995]). Let $\mathscr{S}^{(p)}$ be a TGQ of order $\left(s, s^{2}\right), s \neq 1$, with base point p. Then the dual net \mathscr{N}_{L}^{*} defined by the regular line L, with $p \mathrm{I} L$, satisfies the Axiom of Veblen if and only if the translation dual $\mathscr{S}^{\prime\left(p^{\prime}\right)}$ of $\mathscr{S}^{(p)}$ satisfies Property (G) at the flag ($\left.p^{\prime}, L^{\prime}\right)$, where L^{\prime} corresponds to L; in the even case \mathcal{N}_{L}^{*} satisfies the Axiom of Veblen if and only if $\mathscr{S}^{(p)}$ satisfies Property (G) at the flag (p, L).

Theorem 3.7. Let $\mathscr{S}^{(p)}$ be a TGQ of order $\left(s, s^{2}\right)$, s odd and $s \neq 1$, with base point p. If the dual net \mathscr{N}_{L}^{*} defined by the regular line L, with $p \mathrm{I} L$, satisfies the Axiom of Veblen, then $\mathscr{S}^{(p)}$ contains at least $s^{3}+s^{2}$ classical subquadrangles $Q(4, s)$.

Proof. This follows immediately from Theorem 3.6 and Theorem 4.3.4 of Thas [1994].

4. FLOCK GENERALIZED QUADRANGLES AND THE AXIOM OF VEBLEN

Let F be a flock of the quadratic cone K with vertex x of $\operatorname{PG}(3, q)$, that is, a partition of $K-\{x\}$ into q disjoint irreducible conics. Then, by Thas
[1987], with F there corresponds a GQ $\mathscr{S}(F)$ of order $\left(q^{2}, q\right)$. In Payne [1989] it was shown that $\mathscr{S}(F)$ satisfies Property (G) at its point (∞).

Theorem 4.1 (Thas and Van Maldeghem [1995]). For any GQ $\mathscr{S}(F)$ of order $\left(q^{2}, q\right)$ arising from a flock F, the point (∞) is regular. If q is even, then the dual net $\mathscr{N}_{(\infty)}^{*}$ always satisfies the Axiom of Veblen and so $\mathscr{N}_{(\infty)}^{*} \cong$ H_{q}^{3}. If q is odd, then the dual net $\mathscr{N}_{(\infty)}^{*}$ satisfies the Axiom of Veblen if and only if F is a Kantor flock.

Corollary 4.2. Suppose that the TGQ $T(O)$, with $O=O(n, 2 n, q)$ and q odd, is a flock GQ $\mathscr{S}(F)$ where the point (∞) of $\mathscr{S}(F)$ corresponds to the line ζ of type (b) of $T(O)$. Then $T(O)$ is good at the element ζ if and only if F is a Kantor flock.

Proof. This follows immediately from Theorems 4.1 and 3.3.

5. VERONESE VARIETIES

In Section 6 we shall see that there is a strong connection between TGQ satisfying Property (G) (or, equivalently, satisfying the Axiom of Veblen) and the Veronesean \mathscr{V}_{2}^{4} of all conics of $\operatorname{PG}(2, q)$. So we include a short section on Veronese varieties; a good reference is Chapter 25 of Hirschfeld and Thas [1991].

The Veronese variety of all quadrics of $\operatorname{PG}(n, K), n \geqslant 1$ and K any commutative field, is the variety

$$
\begin{gathered}
\mathscr{V}=\left\{\left(x_{0}^{2}, x_{1}^{2}, \ldots, x_{n}^{2}, x_{0} x_{1}, x_{0} x_{2}, \ldots, x_{0} x_{n}, x_{1} x_{2}, \ldots, x_{1} x_{n}, \ldots, x_{n-1} x_{n}\right) \|\right. \\
\left.\left(x_{0}, x_{1}, \ldots, x_{n}\right) \text { is a point of } \operatorname{PG}(n, K)\right\}
\end{gathered}
$$

of $\operatorname{PG}(N, K)$ with $N=n(n+3) / 2$. The variety \mathscr{V} has dimension n and order 2^{n}; for \mathscr{V} we also write \mathscr{V}_{n} or $\mathscr{V}_{n}^{2^{n}}$. It is also called the Veronesean of quadrics of $\operatorname{PG}(n, K)$, or simply the quadric Veronesean of $\operatorname{PG}(n, K)$. It can be shown that the quadric Veronesean is absolutely irreducible and non-singular.

Let $\operatorname{PG}(n, K)$ consist of all points

$$
\left(y_{00}, y_{11}, \ldots, y_{n n}, y_{01}, y_{02}, \ldots, y_{0 n}, y_{12}, \ldots, y_{1 n}, \ldots, y_{n-1, n}\right) ;
$$

for $y_{i j}$ we also write $y_{j i}$. Let $\zeta: \operatorname{PG}(n, K) \rightarrow \operatorname{PG}(N, K)$, with $N=n(n+3) / 2$ and $n \geqslant 1$, be defined by

$$
\left(x_{0}, x_{1}, \ldots, x_{n}\right) \mapsto\left(y_{00}, y_{11}, \ldots, y_{n-1, n}\right)
$$

with $y_{i j}=x_{i} x_{j}$. Then ζ is a bijection of $\operatorname{PG}(n, K)$ onto the quadric Veronesean \mathscr{V} of $\operatorname{PG}(n, K)$. It then follows that the variety \mathscr{V} is rational.

Theorem 5.1. The quadrics of $\operatorname{PG}(n, K)$ are mapped by ζ onto all hyperplane sections of \mathscr{V}.

Corollary 5.2. No hyperplane of $\mathrm{PG}(N, K)$ contains the quadric Veronesean \mathscr{V}.

Theorem 5.3. Any two distinct points of \mathscr{V} are contained in a unique irreducible conic of \mathscr{V}.

If $K=\operatorname{GF}(q)$, then it is clear that \mathscr{V}_{n} contains $\theta(n)=q^{n}+q^{n-1}+\cdots+$ $q+1$ points. As no three points of \mathscr{V} are collinear we have the following theorem.

Theorem 5.4. The quadric Veronesean \mathscr{V}_{n} is a $\theta(n)$-cap of $\operatorname{PG}(N, q)$, $N=n(n+3) / 2$.

Let $n=2$. Then \mathscr{V} is a surface of order 4 in $\operatorname{PG}(5, K)$. Apart from the conic, the variety \mathscr{V}_{2}^{4} is the quadric Veronesean which is most studied and characterized. Assume also that $K=\mathrm{GF}(q)$. To the conics (irreducible or not) of $\operatorname{PG}(2, q)$ there correspond all hyperplane sections of \mathscr{V}_{2}^{4}. The hyperplane is uniquely determined by the conic if and only if the latter is not a single point. If the conic of $\operatorname{PG}(2, q)$ is one line, then the corresponding hyperplane of $\operatorname{PG}(5, q)$ meets \mathscr{V}_{2}^{4} in an irreducible conic; the surface \mathscr{V}_{2}^{4} contains no other irreducible conics. It follows that \mathscr{V}_{2}^{4} contains exactly $q^{2}+q+1$ irreducible conics, that any two distinct points of \mathscr{V}_{2}^{4} are contained in a unique irreducible conic, and that any two distinct irreducible conics on \mathscr{V}_{2}^{4} meet in a unique point. If the conic \mathscr{C} of $\operatorname{PG}(2, q)$ is two distinct lines, then the corresponding hyperplane $\operatorname{PG}(4, q)$ meets \mathscr{V}_{2}^{4} in two irreducible conics with exactly one point in common; if \mathscr{C} is irreducible, then $\operatorname{PG}(4, q)$ meets \mathscr{V}_{2}^{4} in a rational quartic curve. The planes of $\operatorname{PG}(5, q)$ which meet \mathscr{V}_{2}^{4} is an irreducible conic are called the conic planes of \mathscr{V}_{2}^{4}.

Theorem 5.5. Any two distinct conic planes π and π^{\prime} of \mathscr{V}_{2}^{4} have exactly one point in common, and this common point belongs to \mathscr{V}_{2}^{4}.

The tangent lines of the irreducible conics of \mathscr{V}_{2}^{4} are called the tangents or tangent lines of \mathscr{V}_{2}^{4}. Since no point of the surface \mathscr{V}_{2}^{4} is singular, all tangent lines of \mathscr{V}_{2}^{4} at the point p of \mathscr{V}_{2}^{4} are contained in a plane $\pi(p)$. This plane $\pi(p)$ is called the tangent plane of \mathscr{V}_{2}^{4} at p. Since p is contained
in exactly $q+1$ irreducible conics of \mathscr{V}_{2}^{4} and since no two conic planes through p have a line in common, the tangent plane $\pi(p)$ is the union of the $q+1$ tangent lines of \mathscr{V}_{2}^{4} through p. Also $\mathscr{V}_{2}^{4} \cap \pi(p)=\{p\}$.

Theorem 5.6. For any two distinct points p_{1} and p_{2} of \mathscr{V}_{2}^{4}, the tangent planes $\pi\left(p_{1}\right)$ and $\pi\left(p_{2}\right)$ have exactly one point in common.

Theorem 5.7. Suppose that q is odd. Then $\operatorname{PG}(5, q)$ admits a polarity which maps the set of all conic planes of \mathscr{V}_{2}^{4} onto the set of all tangent planes of \mathscr{V}_{2}^{4}.

Corollary 5.8. Suppose that q is odd. Then for any three distinct points p_{1}, p_{2}, p_{3} of \mathscr{V}_{2}^{4}, the intersection $\pi\left(p_{1}\right) \cap \pi\left(p_{2}\right) \cap \pi\left(p_{3}\right)$ of the tangent planes is empty.

Corollary 5.9. Suppose that q is odd. Then each point of $\operatorname{PG}(5, q)-$ \mathscr{V}_{2}^{4} is on 0 or 2 tangent planes of \mathscr{V}_{2}^{4}.

Theorem 5.10. Suppose that $\operatorname{PG}(4, q)$ is a hyperplane for which $\operatorname{PG}(4, q) \cap \mathscr{V}_{2}^{4}$ is a non-singular conic \mathscr{C}. Then $\operatorname{PG}(4, q)$ contains exactly $q+1$ tangent planes $\pi\left(p_{0}\right), \pi\left(p_{1}\right), \ldots, \pi\left(p_{q}\right)$. Also $\mathscr{C}=\left\{p_{0}, p_{1}, \ldots, p_{q}\right\}$, and if π is the conic plane determined by \mathscr{C}, then the intersections $\pi \cap \pi\left(p_{0}\right)$, $\pi \cap \pi\left(p_{1}\right), \ldots, \pi \cap \pi\left(p_{q}\right)$ are the tangent lines of the conic \mathscr{C}.

Proof. Let $\mathscr{C}=\left\{p_{0}, p_{1}, \ldots, p_{q}\right\}$ and consider the tangent plane $\pi\left(p_{i}\right)$. Then the plane $\pi\left(p_{i}\right)$ contains the tangent line of \mathscr{C} at p_{i}. Let π_{i} be the threedimensional space containing $\pi\left(p_{i}\right)$ and the plane π of \mathscr{C}. Considering the hyperplanes containing π_{i} we see that q of them intersect \mathscr{V}_{2}^{4} in two non-singular conics through p_{i} (one of which is \mathscr{C}) while the remaining one intersects \mathscr{V}_{2}^{4} in \mathscr{C}. So this last hyperplane is the hyperplane $\operatorname{PG}(4, q)$ of the statement of the theorem. Consequently $\operatorname{PG}(4, q)$ contains the tangent planes $\pi\left(p_{0}\right), \pi\left(p_{1}\right), \ldots, \pi\left(p_{q}\right)$. If $\pi(p)$ is any tangent plane in $\operatorname{PG}(4, q)$, then, as $\operatorname{PG}(4, q) \cap \mathscr{V}_{2}^{4}=\mathscr{C}$, it is clear that $p \in \mathscr{C}$.

Theorem 5.11. Suppose that \mathscr{C} is a non-singular conic on \mathscr{V}_{2}^{4}, that π is the plane of \mathscr{C} and that $p^{\prime} \in \mathscr{V}_{2}^{4}-\mathscr{C}$. Then $\pi\left(p^{\prime}\right) \cap \pi=\varnothing$.

Proof. Assume, by way of contradiction, that $r \in \pi\left(p^{\prime}\right) \cap \pi$. Then $r p^{\prime}$ is the tangent line at p^{\prime} of some non-singular conic \mathscr{C}^{\prime} on \mathscr{V}_{2}^{4}. Hence the plane π^{\prime} of \mathscr{C}^{\prime} and the conic plane π have a point $r \notin \mathscr{V}_{2}^{4}$ in common, contradicting Theorem 5.5.

Theorem 5.12. Suppose that q is odd and that $\operatorname{PG}(4, q)$ is a hyperplane for which $\mathrm{PG}(4, q) \cap \mathscr{V}_{2}^{4}$ is a non-singular conic \mathscr{C}. If $p^{\prime} \in \mathscr{V}_{2}^{4}-\mathscr{C}$, then the
line $\pi\left(p^{\prime}\right) \cap \operatorname{PG}(4, q)$ intersects $\pi\left(p_{i}\right), p_{i} \in \mathscr{C}$, in a point r_{i}, where r_{i} is not in the plane of \mathscr{C}.

Proof. Let r be a point of $\pi\left(p_{i}\right)-\pi$, with $p_{i} \in \mathscr{C}$ and π the plane of \mathscr{C}. By Corollary $5.9 r$ is contained in 2 tangent planes $\pi\left(p_{i}\right)$ and $\pi(u)$. Then u is not on \mathscr{C} as otherwise the unique common point r of $\pi\left(p_{i}\right)$ and $\pi(u)$ would be in π. So $u \in \mathscr{V}_{2}^{4}-\mathscr{C}$. By Corollary $5.8 r \mapsto u$ defines a bijection of $\pi\left(p_{i}\right)-\pi$ onto $\mathscr{V}_{2}^{4}-\mathscr{C}$. Hence the line $\pi\left(p^{\prime}\right) \cap \mathrm{PG}(4, q)$ in the statement of the theorem intersects the plane $\pi\left(p_{i}\right)$ in a point $r_{i} \notin \pi$.

6. TRANSLATION GENERALIZED QUADRANGLES OF ORDER $\left(s, s^{2}\right), s \neq 1$ AND s ODD, SATISFYING THE AXIOM OF VEBLEN AND VERONESE SURFACES

Consider a TGQ $T(n, 2 n, q)=T(O)$, with $O=O(n, 2 n, q)$. The egg $O(n, 2 n, q)$ is good at its element $\operatorname{PG}(n-1, q)=L$ if and only if the dual net \mathscr{N}_{L}^{*} defined by the regular line L satisfies the Axiom of Veblen if and only if the translation dual $T\left(O^{*}\right)$ of $T(O)$ satisfies Property (G) at the flag $((\infty), \tau)$, with τ the tangent space of O at $\operatorname{PG}(n-1, q)$; see Theorems 3.3 and 3.6.

Notation. If $\mathrm{GF}\left(q^{h}\right)$ is an extension of $\mathrm{GF}(q)$, then the corresponding extension of $\operatorname{PG}(m, q)$ will be denoted by $\operatorname{PG}\left(m, q^{h}\right)$ or $\overline{\mathrm{PG}(m, q)}$.

Theorem 6.1. Consider a non-classical TGQ $T(n, 2 n, q)=T(O), q$ odd, with $O=O(n, 2 n, q)=\left\{\mathrm{PG}(n-1, q), \quad \mathrm{PG}^{(1)}(n-1, q), \quad \mathrm{PG}^{(2)}(n-1, q), \ldots\right.$, $\left.\operatorname{PG}^{\left(q^{2 n}\right)}(n-1, q)\right\}$ an egg in $\mathrm{PG}(4 n-1, q)$. If O is good at $\mathrm{PG}(n-1, q)$, then one of the following two cases occurs
(a) There exists a $\operatorname{PG}\left(4, q^{n}\right)$ in $\operatorname{PG}\left(4 n-1, q^{n}\right)$ which intersects $\operatorname{PG}\left(n-1, q^{n}\right)$ in a line M and which has exactly one point r_{i} in common with any space $\mathrm{PG}^{(i)}\left(n-1, q^{n}\right), i=1,2, \ldots, q^{2 n}$.
(b) We are not in Case (a) and there exists a $\operatorname{PG}\left(5, q^{n}\right)$ in $\operatorname{PG}\left(4 n-1, q^{n}\right)$ which intersects $\operatorname{PG}\left(n-1, q^{n}\right)$ in a plane μ and which has exactly one point r_{i} in common with any space $\operatorname{PG}^{(i)}\left(n-1, q^{n}\right), i=1,2, \ldots, q^{n}$.

Proof. Consider a non-classical TGQ $T(n, 2 n, q)=T(O), q$ odd, with $O=$ $O(n, 2 n, q)=\left\{\operatorname{PG}(n-1, q), \mathrm{PG}^{(1)}(n-1, q), \mathrm{PG}^{(2)}(n-1, q), \ldots, \mathrm{PG}^{\left(q^{2 n}\right)}(n-1, q)\right\}$ an egg in $\operatorname{PG}(4 n-1, q)$, and assume that O is good at $\operatorname{PG}(n-1, q)$. Let $\operatorname{PG}(3 n-1, q)$ be a subspace of $\operatorname{PG}(4 n-1, q)$ which is skew to $\operatorname{PG}(n-1, q)$, and let $\left\langle\operatorname{PG}(n-1, q), \operatorname{PG}^{(i)}(n-1, q)\right\rangle \cap \operatorname{PG}(3 n-1, q)=$ $\pi_{i}, i=1,2, \ldots, q^{2 n}$. The tangent space τ of O at $\operatorname{PG}(n-1, q)$ intersects $\operatorname{PG}(3 n-1, q)$ in a $(2 n-1)$-dimensional space π. Clearly $\operatorname{PG}(3 n-1, q)=$ $\pi \cup \pi_{1} \cup \pi_{2} \cup \cdots \cup \pi_{q^{2 n}}$.

By the proof of Theorem 4.3.4 in Thas [1994], in $\operatorname{PG}(3 n-1, q)$ there are n planes $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$ over $\operatorname{GF}\left(q^{n}\right)$, which are conjugate with respect to the nth extension $\operatorname{GF}\left(q^{n}\right)$ of $\operatorname{GF}(q)$ and which generate $\operatorname{PG}(3 n-1, q)$, such that each plane η_{j} has just one point in common with $\bar{\pi}_{i}$ and such that η_{j} has just one line in common with $\bar{\pi}, j=1,2, \ldots, n$ and $i=1,2, \ldots, q^{2 n}$. Let $\left\langle\mathrm{PG}\left(n-1, q^{n}\right), \eta_{j}\right\rangle=\rho_{j}, j=1,2, \ldots, n$; then ρ_{j} is $(n+2)$-dimensional. The space $\bar{\pi}_{i}$ has just one point in common with η_{1}, and so $\mathrm{PG}^{(i)}\left(n-1, q^{n}\right)$ has exactly one point r_{i} in common with ρ_{1}, with $i=1,2, \ldots, q^{2 n}$. In $\operatorname{PG}(n-1, q)$ we choose a $\operatorname{PG}(n-2, q)$, and in ρ_{1} we choose a $\operatorname{PG}\left(3, q^{n}\right)=\Phi_{1}$ skew to $\operatorname{PG}\left(n-2, q^{n}\right)$. Then Φ_{1} and $\operatorname{PG}\left(n-1, q^{n}\right)$ have exactly one point s_{1} in common. Now we project the point r_{i} from $\operatorname{PG}\left(n-2, q^{n}\right)$ onto Φ_{1}, and we obtain the point $r_{i}^{\prime}, i=1,2, \ldots, q^{2 n}$. Clearly $r_{i}^{\prime} \neq s_{1}$ and if $r_{i}^{\prime}=r_{j}^{\prime}, i \neq j$, then $r_{i} r_{j}$ has a point in common with $\operatorname{PG}\left(n-1, q^{n}\right), \quad$ a contradiction as O is an egg. Hence the set $T_{1}=\left\{s_{1}, r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{q^{2 n}}^{\prime}\right\}$ contains $q^{2 n}+1$ distinct points. If $r_{i}^{\prime} r_{j}^{\prime}, i \neq j$, contains s_{1}, then $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), r_{i}, r_{j}\right\rangle$ is n-dimensional, a contradiction. Now assume, by way of contradiction, that $r_{i}^{\prime}, r_{j}^{\prime}, r_{k}^{\prime}$ are distinct collinear points of $T_{1}-\left\{s_{1}\right\}$. Then the plane $r_{i} r_{j} r_{k}=\xi$ has at least one point l in common with $\operatorname{PG}\left(n-2, q^{n}\right)$. Without loss of generality we may assume that $l \notin r_{i} r_{j}$, so $\xi=l r_{i} r_{j}$. Any space $\mathrm{PG}^{(u)}\left(n-1, q^{n}\right)$ is generated by r_{u} and its conjugates with respect to $\operatorname{GF}\left(q^{n}\right)$, hence the space $\psi=$ $\left\langle\mathrm{PG}^{(i)}\left(n-1, q^{n}\right), \mathrm{PG}^{(j)}\left(n-1, q^{n}\right), \mathrm{PG}^{(k)}\left(n-1, q^{n}\right)\right\rangle$ is generated by the plane $\xi=r_{i} r_{j} r_{k}=l r_{i} r_{j}$ and its conjugates. As l belongs to $\operatorname{PG}\left(n-2, q^{n}\right)=$ $\overline{\mathrm{PG}(n-2, q)}$, the space ψ is generated by a subspace of $\operatorname{PG}\left(n-2, q^{n}\right)$ and $\left\langle\mathrm{PG}^{(i)}\left(n-1, q^{n}\right), \mathrm{PG}^{(j)}\left(n-1, q^{n}\right)\right\rangle$. Consequently Ψ is at most $(3 n-2)-$ dimensional, a contradiction as O is an egg. So we conclude that no three points of T_{1} are collinear, that is, T_{1} is an ovoid of the space Φ_{1}.

The extension $\bar{\tau}$ of the tangent space τ of O at $\operatorname{PG}(n-1, q)$ intersects ρ_{1} in the $(n+1)$-dimensional space $\operatorname{PG}\left(n+1, q^{n}\right)=\left\langle\bar{\pi} \cap \eta_{1}, \operatorname{PG}\left(n-1, q^{n}\right)\right\rangle$. Clearly $\operatorname{PG}\left(n+1, q^{n}\right) \cap \Phi_{1}$ is a plane θ_{1}. This plane θ_{1} contains s_{1} but no one of the points $r_{1}^{\prime}, r_{2}^{\prime}, \ldots, r_{q^{2 n}}^{\prime 2}$. Hence θ_{1} is the tangent plane of the ovoid T_{1} at s_{1}.

Since q^{n} is odd, by Barlotti [1955] and Panella [1955], the ovoid T_{1} is an elliptic quadric of Φ_{1}.

Each space $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), r_{i}, r_{j}\right\rangle, i \neq j$, contains exactly q^{n} points of $\eta_{1}-\bar{\pi}$; so $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), r_{i}, r_{j}\right\rangle$ contains exactly q^{n} of the points $r_{1}, r_{2}, \ldots, r_{q^{2 n}}$, say $r_{l_{1}}, r_{l_{2}}, \ldots, r_{l_{q^{n}}}$. Let $\left\langle\mathrm{PG}(n-1, q), \quad \mathrm{PG}^{(i)}(n-1, q)\right.$, $\left.\mathrm{PG}^{(j)}(n-1, q)\right\rangle \cap \mathrm{PG}(3 n-1, q)=\mathrm{PG}(2 n-1, q)$. Then $\eta_{j} \cap \mathrm{PG}\left(2 n-1, q^{n}\right)$ is a line $L_{j}, j=1,2, \ldots, n$. Clearly the space $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), r_{i}, r_{j}\right\rangle$ intersects $\operatorname{PG}\left(2 n-1, q^{n}\right)$ in the line L_{1}. By Theorem 4.3.4 of Thas [1994] the $q^{n}+1$ spaces $\operatorname{PG}(n-1, q), \operatorname{PG}^{\left(l_{1}\right)}(n-1, q), \operatorname{PG}^{\left(l_{2}\right)}(n-1, q), \ldots$ define q^{n} TGQ $T(n, n, q)$ isomorphic to the classical GQ $Q\left(4, q^{n}\right)$; we remark that $\operatorname{PG}(n-1, q), \operatorname{PG}^{\left(l_{1}\right)}(n-1, q), \ldots$ are the elements of O in $\left\langle\operatorname{PG}\left(n-1, q^{n}\right)\right.$,
$\left.L_{1}, L_{2}, \ldots, L_{n}\right\rangle$. Now we show that $r_{l_{1}}, r_{l_{2}}, \ldots$ together with some point of $\operatorname{PG}\left(n-1, q^{n}\right)$, form a conic \mathscr{C} over $\operatorname{GF}\left(q^{n}\right)$.

Let us consider one of the q^{n} TGQ $T(n, n, q)$. Let u_{1}, u_{2} be non-collinear points of $T(n, n, q)$, with $u_{1} \nsim(\infty) \nsim u_{2}$. Further consider all grids of $T(n, n, q)$ containing u_{1}, u_{2} and two lines of type (b) of $T(n, n, q)$. As $T(n, n, q) \cong Q\left(4, q^{n}\right) \cong T\left(1,1, q^{n}\right)$ all these grids have q^{n} common points of type (i). For the sake of convenience we now simplify our notation : $\left\{\operatorname{PG}(n-1, q), \operatorname{PG}^{\left(l_{1}\right)}(n-1, q), \ldots\right\}=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{q^{n}}\right\}$. Let $\beta=\alpha_{i} \alpha_{j} \cap \alpha_{u} \alpha_{k}$, with all indices distinct. We now choose u_{1}, u_{2} in such a way that the line $u_{1} u_{2}$ (in the projective space containing $T(n, n, q)$) contains a point g of β. Then all grids of $T(n, n, q)$ containing u_{1}, u_{2} and two lines of type (b) of $T(n, n, q)$ contain all q^{n} points of $\left\langle\alpha_{i}, \alpha_{j}, u_{1}\right\rangle \cap\left\langle\alpha_{u}, \alpha_{k}, u_{1}\right\rangle$ not in $\operatorname{PG}(4 n-1, q)$; clearly $\left\langle\alpha_{i}, \alpha_{j}, u_{1}\right\rangle \cap\left\langle\alpha_{u}, \alpha_{k}, u_{1}\right\rangle \cap \operatorname{PG}(4 n-1, q)=\beta$. It easily follows that if $\alpha_{a} \alpha_{b}, a \neq b$, contains g, then it also contains β. If $\left|\left\{(\infty), u_{1}, u_{2}\right\}^{\perp}\right|=2$ in $T(n, n, q)$, then β belongs to $\left(q^{n}-1\right) / 2$ of the spaces $\alpha_{a} \alpha_{b}$ (in such a case g belongs to 2 tangent spaces of the [$n-1$]-oval $\left.O(n, n, q)=\left\{\alpha_{0}, \alpha_{1}, \ldots, \alpha_{q^{n}}\right\}\right)$; if $\left|\left\{(\infty), u_{1}, u_{2}\right\}^{\perp}\right|=0$ in $T(n, n, q)$, then β belongs to $\left(q^{n}+1\right) / 2$ of the spaces $\alpha_{a} \alpha_{b}$ (in such a case g belongs to 0 tangent spaces of the [$n-1$]-oval $O(n, n, q)$). Assume that g belongs to 2 tangent spaces $\alpha_{c_{1}}$ and $\alpha_{c_{2}}$ of $O(n, n, q)$, and let $g^{\prime} \in \beta$. Interchanging roles of g and g^{\prime}, we see that $\left\langle g^{\prime}, \alpha_{c_{1}}\right\rangle$ and $\left\langle g^{\prime}, \alpha_{c_{2}}\right\rangle$ are contained in the tangent spaces of $O(n, n, q)$ at respectively $\alpha_{c_{1}}$ and $\alpha_{c_{2}}$. Consequently the tangent spaces of $O(n, n, q)$ at $\alpha_{c_{1}}$ and $\alpha_{c_{2}}$ contain β. It now follows that all spaces $\alpha_{i} \alpha_{j} \cap \alpha_{u} \alpha_{k}$ with all indices distinct, together with the elements of $O(n, n, q)$, constitute a $(n-1)$-spread S in the space $\operatorname{PG}(3 n-1, q)$ of $O(n, n, q)$. Let β_{1}, β_{2} be distinct elements of S. Let y be a point of type (i) in $T(n, n, q)$. Then the spaces $\left\langle y, \beta_{1}\right\rangle$ and $\left\langle y, \beta_{2}\right\rangle$ correspond to lines M_{1} and M_{2} in the space $\operatorname{PG}\left(3, q^{n}\right)$ of the GQ $T\left(1,1, q^{n}\right) \cong T(n, n, q)$. Let $\left\{y^{\prime}\right\}=M_{1} \cap M_{2}$ and consider all lines $M_{1}, M_{2}, \ldots, M_{q^{n}+1}$ through y^{\prime} in the plane $\left\langle M_{1}, M_{2}\right\rangle$. In the space $\operatorname{PG}(3 n, q)$ of $T(n, n, q)$, with these $q^{n}+1$ lines there correspond $q^{n}+1 n$-dimensional spaces $\left\langle y, \beta_{1}\right\rangle=\gamma_{1},\left\langle y, \beta_{2}\right\rangle=$ $\gamma_{2}, \ldots,\left\langle y, \beta_{q^{n}+1}\right\rangle=\gamma_{q^{n}+1}$, with $\beta_{1}, \beta_{2}, \ldots, \beta_{q^{n}+1} \in S$. Let $\gamma_{1} \cup \gamma_{2} \cup \cdots \cup$ $\gamma_{q^{n}+1}=W$; then $|W|=\left(q^{2 n+1}-1\right) /(q-1)$. Let $w_{1}, w_{2} \in W, w_{1} \neq w_{2}$, with $w_{1}, w_{2} \notin \operatorname{PG}(3 n-1, q)$. Considering again $T\left(1,1, q^{n}\right)$, we see that there is a $\beta_{i}, i \in\left\{1,2, \ldots, q^{n}+1\right\}$, such that $w_{1} w_{2}$ has a point in common with β_{i} and $\left\langle w_{1}, \beta_{i}\right\rangle \subset W$ (two lines in the plane $\left\langle M_{1}, M_{2}\right\rangle$, but not in the plane $\operatorname{PG}\left(2, q^{n}\right)$ of the oval $O\left(1,1, q^{n}\right)$, which contain a common point of $\operatorname{PG}\left(2, q^{n}\right)$ define the same element of S). So $w_{1} w_{2} \subset W$. Now it easily follows that W is a $2 n$-dimensional space, hence $\beta_{1} \cup \beta_{2} \cup \cdots \cup \beta_{q^{n}+1}$ is a $(2 n-1)$-dimensional space. We conclude that in all spaces $\beta_{1} \beta_{2}$, with β_{1} and β_{2} distinct elements of S, a $(n-1)$-spread is induced by S. Consequently the spread S is geometric; see 8.2 of Thas [1995]. Hence by a theorem of Segre, see Theorem 2 in 8.2 of Thas [1995], in $\operatorname{PG}(3 n-1, q)$
there are n planes $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ over $\operatorname{GF}\left(q^{n}\right)$, which are conjugate with respect to the nth extension $\operatorname{GF}\left(q^{n}\right)$ of $\operatorname{GF}(q)$ and which generate $\operatorname{PG}(3 n-1, q)$, such that each plane δ_{i} intersects each element $\bar{\beta}$, with $\beta \in S$. In particular each such plane δ_{i} intersects $\bar{\alpha}_{0}, \bar{\alpha}_{1}, \ldots, \bar{\alpha}_{q^{n}}$. Projecting from $\operatorname{PG}\left(n-1, q^{n}\right)$ onto $\operatorname{PG}\left(2 n-1, q^{n}\right)$, the planes $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ are projected onto the lines $L_{1}, L_{2}, \ldots, L_{n}$; notations can be chosen in such a way that δ_{i} is projected onto $L_{i}, i=1,2, \ldots, n$. The space $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), L_{1}\right\rangle$ intersects $\operatorname{PG}^{\left(l_{1}\right)}\left(n-1, q^{n}\right), \quad \operatorname{PG}^{\left(l_{2}\right)}\left(n-1, q^{n}\right), \ldots$ in the points common to $\mathrm{PG}^{\left(l_{1}\right)}\left(n-1, q^{n}\right), \operatorname{PG}^{\left(l_{2}\right)}\left(n-1, q^{n}\right), \ldots$ and the plane δ_{1}. It follows that $r_{l_{1}}, r_{l_{2}}, \ldots$ belong to δ_{1}. Now it is clear that the point $\delta_{1} \cap \operatorname{PG}\left(n-1, q^{n}\right)$ together with the q^{n} points $r_{l_{1}}, r_{l_{2}}, \ldots$ form a conic \mathscr{C} over $\operatorname{GF}\left(q^{n}\right)$.

Now we choose $\Phi_{1}=\operatorname{PG}\left(3, q^{n}\right)$ in such a way that it contains δ_{1}, that is, in such a way that it contains \mathscr{C}. The point of \mathscr{C} in $\operatorname{PG}\left(n-1, q^{n}\right)$ will be denoted by s_{1}. In $\operatorname{PG}(n-1, q)$ we now choose spaces $\operatorname{PG}(n-2, q)=\varepsilon$, $\mathrm{PG}^{\prime}(n-2, q)=\varepsilon^{\prime}, \ldots$ the extensions of which to $\operatorname{GF}\left(q^{n}\right)$ do not contain s_{1}. Projecting all points $r_{l_{1}}, r_{l_{2}}, \ldots$ from the extensions $\bar{\varepsilon}, \overline{\varepsilon^{\prime}}, \ldots$ of the resp. spaces $\varepsilon, \varepsilon^{\prime}, \ldots$ onto Φ_{1}, we obtain elliptic quadrics $T_{1}, T_{1}^{\prime}, \ldots$ containing the conic \mathscr{C}. The tangent plane of $T_{1}, T_{1}^{\prime}, \ldots$ at s_{1} is the intersection of Φ_{1} with the extension $\bar{\tau}$ of the tangent space τ of O at $\operatorname{PG}(n+1, q)$. Hence the quadrics $T_{1}, T_{1}^{\prime}, \ldots$ have in common the tangent plane at s_{1}.

Consider a point $r_{k} \notin \mathscr{C}$. If the 3 -dimensional space defined by \mathscr{C} and r_{k} contains a line of $\operatorname{PG}\left(n-1, q^{n}\right)$, then by projecting $\mathscr{C} \cup\left\{r_{k}\right\}$ from $\operatorname{PG}\left(n-2, q^{n}\right)$ onto Φ_{1} there arises a plane $\left(q^{n}+2\right)$-arc, a contradiction as q is odd. Hence we may choose Φ_{1} in such a way that it contains \mathscr{C} and r_{k}. With the notations of the preceding paragraph, there arise quadrics $T_{1}, T_{1}^{\prime}, \ldots$ containing the conic \mathscr{C}, the point r_{k} and having at s_{1} a common tangent plane.

First, assume that $T_{1}, T_{1}^{\prime}, \ldots$ all coincide. By way of contradiction, let $r_{l} \notin T_{1}$, so $r_{l} \notin \Phi_{1}$. By projecting r_{l} from $\bar{\varepsilon}, \overline{\varepsilon^{\prime}}, \ldots$ onto Φ_{1}, we obtain points of T_{1} which all belong to the line $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), r_{l}\right\rangle \cap \Phi_{1}$ through s_{1}. Hence T_{1} contains at least three collinear points, a contradiction. Consequently $r_{l} \in T_{1}$, and so $T_{1}-\left\{s_{1}\right\}$ is the set of all points $r_{i}, i=1,2, \ldots, q^{2 n}$. It follows that any space $\mathrm{PG}^{(i)}\left(n-1, q^{n}\right)$ has a point in common with Φ_{1}. But then $T(n, 2 n, q) \cong T\left(1,2, q^{n}\right)$, and so $T(n, 2 n, q)$ is isomorphic to the classical GQ of order $\left(q^{n}, q^{2 n}\right)$, a contradiction. We conclude that the quadrics $T_{1}, T_{1}^{\prime}, \ldots$ do not all coincide.

Next, assume that Φ_{1} contains a point r_{l}, with $r_{l} \neq r_{k}$ and $r_{l} \notin \mathscr{C}$. Then the quadrics $T_{1}, T_{1}^{\prime}, \ldots$ all contain $\mathscr{C}, r_{l}, r_{k}$ and have at s_{1} a common tangent plane. Hence they all belong to a uniquely defined pencil of quadrics in Φ_{1}. The base \mathscr{B} of the pencil \mathscr{P}, that is, the quartic curve common to all elements of \mathscr{P}, contains \mathscr{C} as a component, contains r_{k}, and has s_{1} as multiple point. As \mathscr{P} contains elliptic quadrics, \mathscr{B} does not contain a line over $\operatorname{GF}\left(q^{n}\right)$ as component; if \mathscr{B} contains a line over $\operatorname{GF}\left(q^{2 n}\right)$ through s_{1}
as component, then also $s_{1} r_{k}$ is a component, a contradiction. Consequently, either \mathscr{B} consists of two non-singular conics $\mathscr{C}, \mathscr{C}^{\prime}$ over $G F\left(q^{n}\right)$ intersecting in distinct points s_{1} and s_{1}^{\prime}, or \mathscr{B} consists of two non-singular conics $\mathscr{C}, \mathscr{C}^{\prime}$ over $\operatorname{GF}\left(q^{n}\right)$ which are mutually tangent at s_{1}.

Assume that \mathscr{B} consists of two non-singular conics $\mathscr{C}, \mathscr{C}^{\prime}$ over $\operatorname{GF}\left(q^{n}\right)$ which intersect in distinct points s_{1} and s_{1}^{\prime}. Let $\left\langle\bar{\varepsilon}, r_{u}\right\rangle$ and $\left\langle\overline{\varepsilon^{\prime}}, r_{u}\right\rangle$, with $r_{u} \notin \Phi_{1}$, intersect Φ_{1} in r_{u}^{\prime} and $r_{u}^{\prime \prime}$. We choose ε and ε^{\prime} in such a way that $r_{u}^{\prime} \neq r_{u}^{\prime \prime}$. Then put $r_{u}^{\prime} r_{u} \cap \operatorname{PG}\left(n-1, q^{n}\right)=\left\{l_{u}^{\prime}\right\}$ and $r_{u}^{\prime \prime} r_{u} \cap \operatorname{PG}\left(n-1, q^{n}\right)=$ $\left\{l_{u}^{\prime \prime}\right\}$. The lines $r_{u}^{\prime} r_{u}^{\prime \prime}$ and $l_{u}^{\prime} l_{u}^{\prime \prime}$ have a point in common which belongs to Φ_{1} and $\operatorname{PG}\left(n-1, q^{n}\right)$. Hence $r_{u}^{\prime} r_{u}^{\prime \prime}$ contains s_{1}. Consider a point $c \in \mathscr{C}^{\prime}-$ $\left\{s_{1}, s_{1}^{\prime}\right\}$. Assume c is the projection from $\bar{\varepsilon}$ of a point r_{u} with $r_{u} \notin \Phi_{1}$; so $c=r_{u}^{\prime}$. Choose ε^{\prime} in such a way that $r_{u}^{\prime} \neq r_{u}^{\prime \prime}$. Then $s_{1}, r_{u}^{\prime}, r_{u}^{\prime \prime}$ are collinear. As they all belong to T_{1}^{\prime} we have a contradiction. Hence $\mathscr{C}^{\prime}-\left\{s_{1}\right\}$ consists of points r_{d}. It follows that $\left(\mathscr{C} \cup \mathscr{C}^{\prime}\right)-\left\{s_{1}\right\}$ is the set of all points r_{d} in Φ_{1}.

Next assume that \mathscr{B} consists of two non-singular conics $\mathscr{C}, \mathscr{C}^{\prime}$ over $\operatorname{GF}\left(q^{n}\right)$ which are mutually tangent at s_{1}. As in the previous section one shows that $\left(\mathscr{C} \cup \mathscr{C}^{\prime}\right)-\left\{s_{1}\right\}$ is the set of all points r_{d} in Φ_{1}.

Any two points r_{i} and $r_{j}, i \neq j$, define exactly one non-singular conic \mathscr{C} over $\operatorname{GF}\left(q^{n}\right)$. The tangent line U of \mathscr{C} at s_{1} is contained in the extension of the tangent space of $O(n, n, q) \subset O(n, 2 n, q)$, where $O(n, n, q)$ contains $\mathrm{PG}(n-1, q), \mathrm{PG}^{(i)}(n-1, q), \mathrm{PG}^{(j)}(n-1, q)$, at $\mathrm{PG}(n-1, q)$, so is contained in $\bar{\tau}$. Hence $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), U\right\rangle$ intersects $\operatorname{PG}\left(2 n-1, q^{n}\right)$ in the point $L_{1} \cap \bar{\tau}$. Let V be the set of all conics \mathscr{C} in $\operatorname{PG}\left(n+2, q^{n}\right)=\rho_{1}$. Any two distinct conics $\mathscr{C}, \mathscr{C}^{*} \in V$ either have a point of $\rho_{1}-\mathrm{PG}\left(n-1, q^{n}\right)$ in common, or do not have a point of $\rho_{1}-\operatorname{PG}\left(n-1, q^{n}\right)$ in common in which case $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), U\right\rangle=\left\langle\operatorname{PG}\left(n-1, q^{n}\right), U^{*}\right\rangle$, where U is the tangent line of \mathscr{C} at $s_{1}\left(\left\{s_{1}\right\}=\mathscr{C} \cap \operatorname{PG}\left(n-1, q^{n}\right)\right)$ and U^{*} is the tangent line of \mathscr{C}^{*} at $s_{1}^{*}\left(\left\{s_{1}^{*}\right\}=\mathscr{C}^{*} \cap \operatorname{PG}\left(n-1, q^{n}\right)\right)$.

Consider again the conic \mathscr{C}^{\prime}, where \mathscr{C} and \mathscr{C}^{\prime} are the components of the base \mathscr{B} of the pencil \mathscr{P} of quadrics. By projecting $\mathscr{C}^{\prime}-\left\{s_{1}\right\}$ from $\operatorname{PG}\left(n-1, q^{n}\right)$ onto η_{1} there arise q^{n} points of a line, so it is clear that also the conic \mathscr{C}^{\prime} belongs to V.

Let us now consider a point $r_{u} \in \mathscr{C}-\mathscr{C}^{\prime}$ and a point $r_{u}^{\prime} \in \mathscr{C}^{\prime}-\mathscr{C}$. The conic $\mathscr{C}^{\prime \prime}$ of V through r_{u} and $r_{u^{\prime}}$ intersects Φ_{1} exactly in the points $r_{u}, r_{u^{\prime}}$. Let Φ_{1}^{\prime} be the 4 -dimensional space containing $\mathscr{C}, \mathscr{C}^{\prime}, \mathscr{C}^{\prime \prime}$. Further, let $r_{v} \notin \mathscr{C} \cup \mathscr{C}^{\prime} \cup \mathscr{C}^{\prime \prime}$. In the plane η_{1} there correspond with $\mathscr{C}, \mathscr{C}^{\prime}, \mathscr{C}^{\prime \prime}$ distinct lines $K, K^{\prime}, K^{\prime \prime}$, and with r_{v} the point \tilde{r}_{v}. Now let $K^{\prime \prime \prime}$ be a line of η_{1} through \tilde{r}_{v} which intersects $K, K^{\prime}, K^{\prime \prime}$ in distinct points of $\eta_{1}-\bar{\tau}$. With $K^{\prime \prime \prime}$ there corresponds a conic $\mathscr{C}^{\prime \prime \prime}$ of V through r_{v} which intersects $\mathscr{C} \cup \mathscr{C}^{\prime} \cup \mathscr{C}^{\prime \prime}$ in at least three distinct points. Hence $\mathscr{C} \mathscr{C}^{\prime \prime \prime}$ belongs to Φ_{1}^{\prime}, hence r_{v} belongs to Φ_{1}^{\prime}. We conclude that the $q^{2 n}$ points r_{d} belong to Φ_{1}^{\prime}.

Still assuming that Φ_{1} contains a point r_{l}, with $r_{l} \neq r_{k}$ and $r_{l} \notin \mathscr{C}$, we now assume, by way of contradiction, that there exists a 3 -dimensional space
$\operatorname{PG}\left(3, q^{n}\right)=\Delta$ which contains $\mathscr{C}_{1} \in V$ and exactly one point $r_{d} \notin \mathscr{C}_{1}$. Suppose there is a second 3 -dimensional space Δ^{\prime} containing \mathscr{C}_{1} and exactly one point $r_{d^{\prime}} \notin \mathscr{C}_{1}$. Let $r_{t} \in \mathscr{C}_{1}$ and let $\mathscr{C}_{1}^{\prime} \neq \mathscr{C}_{1}$ be a conic of V with $r_{t} \in \mathscr{C}_{1}^{\prime}$ and $r_{d}, r_{d^{\prime}} \notin \mathscr{C}_{1}^{\prime}$. As $\mathscr{C}_{1}^{\prime} \subset \Phi_{1}^{\prime}, \mathscr{C}_{1}^{\prime} \cap \Delta \subset \mathscr{C}_{1}$ and $\mathscr{C}_{1}^{\prime} \cap \Delta^{\prime} \subset \mathscr{C}_{1}$, the conics \mathscr{C}_{1} and \mathscr{C}_{1}^{\prime} necessarily have a common tangent line at r_{t}. Hence \mathscr{C}_{1} and \mathscr{C}_{1}^{\prime} belong to a common 3 -dimensional space Δ_{1}. Now by a preceding section either $\left|\mathscr{C}_{1} \cap \mathscr{C}_{1}^{\prime}\right|=2$ or \mathscr{C}_{1} and \mathscr{C}_{1}^{\prime} are mutually tangent at some point in $\operatorname{PG}\left(n-1, q^{n}\right)$, a contradiction. Next we consider all 3-dimensional subspaces of Φ_{1}^{\prime} which contain \mathscr{C}_{1}. Any such subspace distinct from Δ either contains $2 q^{n}$ or $2 q^{n}-1$ points r_{d}. Let α be the number of such subspaces which contain $2 q^{n}-1$ points r_{d}, and let β be the number of such subspaces which contain $2 q^{n}$ points r_{d}. Then we have

$$
\alpha\left(q^{n}-1\right)+\beta q^{n}+1+q^{n}=q^{2 n}, \quad \text { and } \quad \alpha+\beta+1 \leqslant q^{n}+1 .
$$

If $\alpha+\beta+1=q^{n}+1$, then $\alpha=q^{n}+1$, so $\alpha+\beta+1>q^{n}+1$, a contradiction; if $\alpha+\beta+1 \leqslant q^{n}-1$, then $\alpha \leqslant-q^{n}+1$, also a contradiction. Hence $\alpha+\beta+1=q^{n}$, so $\alpha=1$ and $\beta=q^{n}-2$. So there arise $q^{n}-2$ conics $\mathscr{C}_{2}, \ldots, \mathscr{C}_{q^{n}-1}$, distinct from \mathscr{C}_{1}, which are tangent to \mathscr{C}_{1} at the common point s_{1} of \mathscr{C}_{1} and $\operatorname{PG}\left(n-1, q^{n}\right)$, and one conic $\mathscr{C}_{q^{n}}$ which intersects \mathscr{C}_{1} in distinct points s_{1} and r_{u}. With $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots, \mathscr{C}_{q^{n}-1}$ there correspond in η_{1} $q^{n}-1$ lines $K_{1}, K_{2}, \ldots, K_{q^{n}-1}$ through a common point on $\eta_{1} \cap \bar{\tau}$; with $\mathscr{C}_{q^{n}}$ there corresponds in η_{1} a line $K_{q^{n}}$ which intersects K_{1} in a point not on $\eta_{1} \cap \bar{\tau}$. Hence $K_{q^{n}}$ intersects \mathscr{C}_{i} in a point not on $\eta_{1} \cap \bar{\tau}, i=1,2, \ldots, q^{n}-1$. Consequently the 3 -dimensional space containing \mathscr{C}_{1} and $\mathscr{C}_{q^{n}}$, coincides with the 3 -dimensional space containing \mathscr{C}_{1} and $\mathscr{C}_{i}, i=1,2,3, \ldots, q^{n}-1$, clearly a contradiction. We conclude that there exists no 3 -dimensional space containing a conic $\mathscr{C}_{1} \in V$ and just one point $r_{d} \notin \mathscr{C}_{1}$.

From the preceding section it follows that either all 3-dimensional spaces containing any conic $\mathscr{C}_{1} \in V$ and a point $r_{d} \notin \mathscr{C}_{1}$ also contain a second point $r_{d^{\prime}} \notin \mathscr{C}_{1}$ (and then there arises a uniquely defined pencil of quadrics in any such 3-dimensional space), or no 3-dimensional space containing any conic $\mathscr{C}_{1} \in V$ contains more than one point $r_{d} \notin \mathscr{C}_{1}$.
(a) First assume that all 3-dimensional spaces containing any conic $\mathscr{C}_{1} \in V$ and a point $r_{d} \notin \mathscr{C}_{1}$ also contain a second point $r_{d^{\prime}} \notin \mathscr{C}_{1}$. Hence in each such 3-dimensional space a pencil \mathscr{P} of quadrics is defined. Let s_{1} be the common point of \mathscr{C}_{1} and $\operatorname{PG}\left(n-1, q^{n}\right)$ and let $r_{u} \notin \mathscr{C}_{1}$. Further let \mathscr{B} be the base of the pencil \mathscr{P} of quadrics defined in the 3-dimensional space containing \mathscr{C}_{1} and r_{u}. Then \mathscr{B} consists of two conics $\mathscr{C}_{1}, \mathscr{C}_{1}^{\prime}$ through s_{1}, with $r_{u} \in \mathscr{C}_{1}^{\prime}$ and $\mathscr{C}_{1}^{\prime} \in V$. Consequently any of the $q^{2 n}$ points r_{d} belongs to a conic of V through s_{1}. Now we consider all conics $\mathscr{C}_{1}, \mathscr{C}_{2}, \ldots$ of V containing the point s_{1} of $\operatorname{PG}\left(n-1, q^{n}\right)$. Let $\operatorname{PG}\left(n+1, q^{n}\right)$ be a hyperplane of ρ_{1} which does not contain s_{1} and project all points of $\mathscr{C}_{i}-\left\{s_{1}\right\}$ from s_{1} onto
$\operatorname{PG}\left(n+1, q^{n}\right)$; then there arise q^{n} points of some line R_{i}. The set of all these lines R_{i} will be denoted by \mathscr{R}. Now we project the $q^{2 n}$ points r_{i} from s_{1} onto $\operatorname{PG}\left(n+1, q^{n}\right)$; the projection of r_{i} is denoted by r_{i}^{*}. The set of all points r_{i}^{*} is denoted by B; we have $|B|=q^{2 n}$. Further, let A be the set of all intersections of $\operatorname{PG}\left(n+1, q^{n}\right)$ with the tangent lines of the conics \mathscr{C}_{i} at s_{1}. The tangent line U_{i} of \mathscr{C}_{i} at s_{1} belongs to $\bar{\tau}$, hence $\mathscr{C}_{j} \cap U_{i}=\left\{s_{1}\right\}$. It follows that $A \cap B=\varnothing$. Each line $R_{i} \in \mathscr{R}$ contains q^{n} points of B and just one point of A. Let π be the plane containing R_{i} and $r_{j}^{*}, r_{j}^{*} \notin R_{i}$. If we now take for Φ_{1} the space $\left\langle R_{i}, s_{1}, r_{j}^{*}\right\rangle$, then the base \mathscr{B} of the pencil \mathscr{P} consists of two conics \mathscr{C}_{i} and \mathscr{C}_{j} and $\left(\mathscr{C}_{i} \cup \mathscr{C}_{j}\right)-\left\{s_{1}\right\}$ is the set of all points r_{d} in Φ_{1}. It immediately follows that π contains the line R_{j}, and that π contains no line $R_{l} \in \mathscr{R}$ with $i \neq l \neq j$; also, $\pi \cap B$ consists of all points of $R_{i} \cup R_{j}$ in B.

Suppose that r_{i}^{*} and r_{j}^{*} are points of B not on a common line of \mathscr{R}. Considering all planes of $\operatorname{PG}\left(n+1, q^{n}\right)$, the previous section shows that r_{i}^{*} and r_{j}^{*} are on the same number of lines of \mathscr{R}.

Now let r_{i}^{*} and $r_{j}^{*}, i \neq j$, be points of B on a common line of \mathscr{R}. Let $t_{u}+1$ be the number of lines of \mathscr{R} containing r_{u}^{*}. By way of contradiction we assume that $t_{i} \neq t_{j}$. Let r_{l}^{*} be a point of B not on $r_{i}^{*} r_{j}^{*}$. The plane $r_{i}^{*} r_{j}^{*} r_{l}^{*}$ contains exactly one line R_{k} of \mathscr{R} through r_{i}^{*}. If $r_{i}^{*} \notin R_{k}$ and $r_{j}^{*} \notin R_{k}$, then $r_{i}^{*} r_{l}^{*} \notin \mathscr{R}$ and $r_{j}^{*} r_{l}^{*} \notin \mathscr{R}$, so $t_{i}=t_{l}=t_{j}$, a contradiction. Hence either $r_{i}^{*} \in R_{k}$ or $r_{j}^{*} \in R_{k}$, say $r_{i}^{*} \in R_{k}$. Then r_{l}^{*} is on $t_{j}+1$ lines of \mathscr{R}. Each point of $r_{i}^{*} r_{l}^{*}-\left\{r_{i}^{*}\right\}$ not in A, is on $t_{j}+1$ lines of \mathscr{R}. Also, each point of $r_{i}^{*} r_{j}^{*}-\left\{r_{i}^{*}\right\}$ not in A, is on $t_{j}+1$ lines of \mathscr{R}. Let $r_{u}^{*} \in B$ be not on $r_{i}^{*} r_{j}^{*}$ and not on $r_{i}^{*} r_{l}^{*}$. Assume, by way of contradiction that $r_{u}^{*} r_{j}^{*} \in \mathscr{R}$. As $r_{i}^{*} r_{u}^{*} \notin \mathscr{R}$, the point r_{u}^{*} is on $t_{i}+1$ lines of \mathscr{R}. For any point $r_{c}^{*} \in r_{i}^{*} r_{j}^{*}-\left\{r_{j}^{*}, r_{i}^{*}\right\}$ the line $r_{u}^{*} r_{c}^{*}$ does not belong to \mathscr{R}, and so r_{u}^{*} is on $t_{j}+1$ lines of \mathscr{R}. Hence $t_{i}=t_{j}$, a contradiction. Consequently $r_{u}^{*} r_{j}^{*} \notin \mathscr{R}$. Interchanging roles of r_{u}^{*} and r_{l}^{*}, we see that necessarily $r_{u}^{*} r_{i}^{*} \in \mathscr{R}$. It follows that all lines of \mathscr{R} contain r_{i}^{*}. Hence $t_{j}=0$. So $\left(t_{1}+1\right)\left(q^{n}-1\right)+1=|B|=q^{2 n}$, that is, $t_{1}=q^{n}$. Consequently there are $q^{n}+1$ conics in V containing s_{1}, and they all share a point r_{i}. In $\operatorname{PG}\left(n-1, q^{n}\right)$ we now consider a point $s_{2} \neq s_{1}$ on an element of V. Let \mathscr{C} be a conic of V containing r_{i} and s_{2}. Choose on \mathscr{C} a point r_{w} different from r_{i}. Then there is a conic \mathscr{C}^{\prime} in V containing r_{w} and s_{1}, and so \mathscr{C}^{\prime} contains r_{i}. Consequently V contains two distinct conics \mathscr{C} and \mathscr{C}^{\prime} through r_{i} and r_{w}, a contradiction. We conclude that the number of lines of \mathscr{R} through any point $r_{i}^{*} \in B$ is independent of the index i.

The constant number of lines of \mathscr{R} which contains $r_{i}^{*} \in B$ will be denoted by $t+1$.

Fix a line $R \in \mathscr{R}$ and count on two ways the number of ordered pairs $\left(r_{i}^{*}, R^{\prime}\right)$, with $r_{i}^{*} \in B, r_{i}^{*} \notin R, R^{\prime} \cap R \neq \varnothing$ and $r_{i}^{*} \in R^{\prime}$. We obtain

$$
q^{n} t\left(q^{n}-1\right)+\beta q^{n}=q^{2 n}-q^{n},
$$

where $\beta+1$ is the number of lines of \mathscr{R} through $R \cap A$. Hence

$$
\left(q^{n}-1\right)(t-1)+\beta=0 .
$$

$$
\begin{equation*}
t=0 \text { and } \beta=q^{n}-1 \tag{1}
\end{equation*}
$$

The q^{n} lines of \mathscr{R} through $R \cap A$ form a partition of B, and as $t=0$ the set \mathscr{R} only contains these q^{n} lines. It follows that s_{1} belongs to exactly q^{n} conics of V; also these conics are mutually tangent at s_{1}.
(2) $t=1$ and $\beta=0$.

Then \mathscr{R} contains $q^{2 n} \cdot 2 / q^{n}=2 q^{n}$ lines and $|A|=2 q^{n}$. So s_{1} belongs to exactly $q^{2 n}$ conics of V. Let $R_{d_{1}}, R_{d_{2}}, \ldots, R_{d_{q} n}$ be the q^{n} lines of \mathscr{R} which intersect R in B. The remaining q^{n} lines of \mathscr{R} necessarily intersect $R_{d_{1}}, R_{d_{2}}, \ldots, R_{d_{q^{n}}}$. So the intersections $R_{i} \cap B, R_{i} \in \mathscr{R}$, form a grid \mathscr{G} of order ($q^{n}-1,1$). Clearly \mathscr{G} is contained in a 3 -dimenional space Ψ, A consists of two distinct intersecting lines N_{1}, N_{2} minus their common point, and $\mathscr{R} \cup\left\{N_{1}, N_{2}\right\}$ is the set of all lines of a hyperbolic quadric in Ψ.

In Case (2) $A \cup B$ is contained in a 3-dimensional space Ψ, hence all points r_{i} are contained in a $\operatorname{PG}\left(4, q^{n}\right)$.

Now we consider Case (1). Let $s_{2} \neq s_{1}$ be a point of $\operatorname{PG}\left(n-1, q^{n}\right)$ on a conic $\mathscr{C} \in V$. Suppose that $\mathscr{C}^{\prime}, \mathscr{C}^{\prime \prime}$ are distinct conics of V containing s_{1}. The q^{n} elements of V through s_{1} correspond with the q^{n} lines of η_{1}, distinct from $\eta_{1}-\bar{\pi}=\eta_{1}-\bar{\tau}$ and containing a common point e on $\eta_{1} \cap \bar{\tau}$. Hence with \mathscr{C} there corresponds a line of η_{1} not containing e. So $\left|\mathscr{C} \cap \mathscr{C}^{\prime}\right|=$ $\left|\mathscr{C} \cap \mathscr{C}^{\prime \prime}\right|=1$. So \mathscr{C} belongs to the space $\operatorname{PG}\left(4, q^{n}\right)$ defined by $\mathscr{C}^{\prime}, \mathscr{C}^{\prime \prime}$ and s_{2}. It follows that all conics of V containing s_{2} belong to $\operatorname{PG}\left(4, q^{n}\right)$. Consequently all points r_{i} are contained in $\operatorname{PG}\left(4, q^{n}\right)$.

Since $\operatorname{PG}\left(4, q^{n}\right) \subset\left\langle\operatorname{PG}\left(n-1, q^{n}\right), \eta_{1}\right\rangle=\rho_{1}$ and $\operatorname{PG}^{(i)}\left(n-1, q^{n}\right)$ has exactly one point r_{i} in common with ρ_{1}, it has also one point r_{i} in common with $\mathrm{PG}\left(4, q^{n}\right)$.

As $\left\langle\operatorname{PG}\left(4, q^{n}\right), \operatorname{PG}\left(n-1, q^{n}\right)\right\rangle=\rho_{1}$, the space $\operatorname{PG}\left(4, q^{n}\right)$ intersects $\operatorname{PG}\left(n-1, q^{n}\right)$ in a line M. Consequently all the common points of $\operatorname{PG}\left(n-1, q^{n}\right)$ and the conics of V belong to M.
(b) Next assume that no 3-dimensional space containing any conic $\mathscr{C} \in V$ contains more than one point $r_{d} \notin \mathscr{C}$. Let \mathscr{W} be the set of all points r_{i}; then $|\mathscr{W}|=q^{2 n}$.

Let $\mathscr{C} \in V$ and $r_{d} \in \mathscr{W}-\mathscr{C}$. Further, let Φ_{1} be the 3-dimensional space containing \mathscr{C} and r_{d}. The common point of \mathscr{C} and $\operatorname{PG}\left(n-1, q^{n}\right)$ will be denoted by s. If $\mathscr{C}=\left\{s, r_{1}, r_{2}, \ldots, r_{q^{n}}\right\}$, then r_{j} and r_{d} are on exactly one conic \mathscr{C}_{j} of V, with $j=1,2, \ldots, q^{n}$. Let $\mathscr{C}_{j} \cap \operatorname{PG}\left(n-1, q^{n}\right)=\left\{s_{j}\right\}$, $j=1,2, \ldots, q^{n}$. If $s_{j}=s_{j^{\prime}}$, with $j \neq j^{\prime}$ and $j, j^{\prime} \in\left\{1,2, \ldots, q^{n}\right\}$, then the 3-dimensional space defined by \mathscr{C}_{j} and $r_{j^{\prime}}$, contains $\mathscr{C}_{j^{\prime}}$, so contains more than one
point $r_{d} \in \mathscr{W}-\mathscr{C}_{j}$, a contradiction. So the points $s_{1}, s_{2}, \ldots, s_{q^{n}}$ are distinct. A same argument shows that $s \neq s_{j}, j \neq 1,2, \ldots, q^{n}$. Let $\tilde{\mathscr{C}}=\left\{s, s_{1}, s_{2}, \ldots, s_{q^{n}}\right\}$.

Let Φ_{1}^{\prime} be the space generated by $\mathscr{C}, \mathscr{C}_{1}, \mathscr{C}_{2}$. Further, let $r_{d} \in \mathscr{W}-$ $\left(\mathscr{C} \cup \mathscr{C}_{1} \cup \mathscr{C}_{2}\right)$. In the plane η_{1} there correspond with $\mathscr{C}, \mathscr{C}_{1}, \mathscr{C}_{2}$ distinct lines K, K_{1}, K_{2}, and with r_{d} the point \tilde{r}_{d}. Now let K^{\prime} be a line of η_{1} through \tilde{r}_{d} which intersects K, K_{1}, K_{2} in distinct points of $\eta_{1}-\bar{\tau}$. With K^{\prime} there corresponds a conic \mathscr{C}^{\prime} of V through r_{d} which intersects $\mathscr{C} \cup \mathscr{C}_{1} \cup \mathscr{C}_{2}$ in at least three distinct points. Hence \mathscr{C}^{\prime} belongs to Φ_{1}^{\prime}, hence r_{d} belongs to Φ_{1}^{\prime}. We conclude that \mathscr{W} is a subset of Φ_{1}^{\prime}.

Clearly Φ_{1}^{\prime} is either 4 -dimensional or 5 -dimensional. If Φ_{1}^{\prime} is 4-dimensional, then considering all hyperplanes of Φ_{1}^{\prime} on \mathscr{C} we have that \mathscr{W} contains at most $2 q^{n}+1$ points, a contradiction. Consequently Φ_{1}^{\prime} is 5-dimensional.

Assume, by way of contradiction, that $\tilde{\mathscr{C}}$ is a line. Then \mathscr{W} is contained in the 4 -dimensional space generated by $\mathscr{C}, s_{1}, r_{d}$, a contradiction. So $\widetilde{\mathscr{C}}$ is not a line, hence it also follows that $\Phi_{1}^{\prime} \cap \operatorname{PG}\left(n-1, q^{n}\right)$ is at least 2-dimensional. If $\operatorname{PG}\left(5, q^{n}\right) \cap \operatorname{PG}\left(n-1, q^{n}\right)=\mu$ is at least 3-dimensional, then $\mu \cap \Phi_{1}$ is at least a line, which was shown to be impossible in the first half of the proof. It follows that μ is a plane.

Finally, since $\Phi_{1}^{\prime} \subset\left\langle\operatorname{PG}\left(n-1, q^{n}\right), \eta_{1}\right\rangle=\rho_{1}$ and $\mathrm{PG}^{(i)}\left(n-1, q^{n}\right)$ has exactly one point r_{i} in common with ρ_{1}, it has also one point r_{i} in common with Φ_{1}^{\prime}.

Let \mathscr{W} be the set of all points r_{i}; then $|\mathscr{W}|=q^{2 n}$. Assume that we are in Case (a) of Theorem 6.1. Then the set \mathscr{W} belongs to $\operatorname{PG}\left(4, q^{n}\right)$ and $\operatorname{PG}\left(4, q^{n}\right) \cap \operatorname{PG}\left(n-1, q^{n}\right)$ is a line M. The following observations are taken from the proof of Theorem 6.1. The set \mathscr{W} provided with the conics \mathscr{C} of V forms a $2-\left(q^{2 n}, q^{n}, 1\right)$ design, that is an affine plane of order q^{n}. If $r_{i} \in \mathscr{C}$, with $\mathscr{C} \in V$, and if $\left\{s_{1}\right\}=\mathscr{C} \cap \operatorname{PG}\left(n-1, q^{n}\right)$, then any point $r_{j} \in \mathscr{W}$ is on a conic of V through s_{1}. If the 3 -dimensional space Φ_{1} contains $\mathscr{C} \in V$ and a point of \mathscr{W} not on \mathscr{C}, then it contains two conics $\mathscr{C}, \mathscr{C}^{\prime}$ of V. Also $\left|\mathscr{C} \cap \mathscr{C}^{\prime}\right| \leqslant 2$ and the conics $\mathscr{C}, \mathscr{C}^{\prime}$ have a common point on M. Further, $(\mathscr{C} \cup \mathscr{C})-\left\{s_{1}\right\}=\Phi_{1} \cap \mathscr{W}$.

Let s_{1} be the common point of $\mathscr{C} \in V$ and $\operatorname{PG}\left(n-1, q^{n}\right)$. We distinguish two cases :
(1) The point s_{1} belongs to q^{n} elements of V and all these conics have a common tangent line U at s_{1}; this line U does not belong to $\operatorname{PG}\left(n-1, q^{n}\right)$.
(2) The point s_{1} belongs to $2 q^{n}$ elements of V. The set of these $2 q^{n}$ conics can be partitioned into sets \mathscr{A}_{1} and \mathscr{A}_{2}, where each conic of \mathscr{A}_{1} has two distinct points in common with each conic of \mathscr{A}_{2} and where any two distinct conics of \mathscr{A}_{i} have just s_{1} in common, $i=1,2$. The tangents at s_{1} of
all conics of \mathscr{A}_{i} are all distinct and belong to a plane $\theta_{i}, i=1,2$; also, $\theta_{1} \cap \theta_{2}$ is a line, distinct from these $2 q^{n}$ tangent lines. With the q^{n} conics of \mathscr{A}_{i} there correspond q^{n} lines of η_{1} containing a common point e_{i} of $\bar{\tau} \cap \eta_{1}, i=1$, 2 . It follows that the tangent lines of the elements of \mathscr{A}_{i} at s_{1} all belong to a n-dimensional space through $\operatorname{PG}\left(n-1, q^{n}\right)$, and so $\theta_{i} \cap \operatorname{PG}\left(n-1, q^{n}\right)$ is a line $M_{i}, i=1,2$. As $\theta_{i} \subset \operatorname{PG}\left(4, q^{n}\right)$ and $\operatorname{PG}\left(4, q^{n}\right) \cap$ $\operatorname{PG}\left(n-1, q^{n}\right)=M$ we necessarily have $M_{1}=M_{2}=M$, and so $\theta_{1} \cap \theta_{2}=M$.

Let s_{1} be the common point of $\mathscr{C} \in V$ and $\operatorname{PG}\left(n-1, q^{n}\right)$, and let s_{2} be the common point of $\mathscr{C}^{\prime} \in V$ and $\operatorname{PG}\left(n-1, q^{n}\right)$, where $s_{1} \neq s_{2}$. With \mathscr{C}, resp. \mathscr{C}^{\prime}, there corresponds a line N, resp. N^{\prime}, of η_{1}. From the preceding section follows that N and N^{\prime} intersect the line $\eta_{1} \cap \bar{\tau}$ in distinct points. As $N \cap N^{\prime}$ does not belong to $\eta_{1} \cap \bar{\tau}$, the conics \mathscr{C} and \mathscr{C}^{\prime} have exactly one point (not in $\left.\operatorname{PG}\left(n-1, q^{n}\right)\right)$ in common.

The set of all common points of M with elements of V will be denoted by \mathscr{M}.

Theorem 6.2. Consider a non-classical TGQ $T(n, 2 n, q)=T(O), q$ odd, with $O=O(n, 2 n, q)=\left\{\mathrm{PG}(n-1, q), \quad \mathrm{PG}^{(1)}(n-1, q), \quad \mathrm{PG}^{(2)}(n-1, q), \ldots\right.$, $\left.\operatorname{PG}^{\left(q^{2 n}\right)}(n-1, q)\right\}$. If O is good at $\operatorname{PG}(n-1, q)$ and if the set \mathscr{W} is contained in a $\operatorname{PG}\left(4, q^{n}\right)$, then the set $\mathscr{W} \cup \mathscr{M}$ of $\operatorname{PG}\left(4, q^{n}\right)$ is the projection of a quadric Veronesean \mathscr{V}_{2}^{4} from a point p in a conic plane onto a hyperplane $\mathrm{PG}\left(4, q^{n}\right)$.

Proof. We use the notations of Theorem 6.1 and its proof, and these of the sections preceding Theorem 6.2.

Let α_{1} be the number of points in \mathscr{M} which belong to q^{n} elements of V, and let α_{2} be the number of points in \mathscr{M} which belong to $2 q^{n}$ elements of V. Now we count on two ways the number of ordered pairs (s, \mathscr{C}), with $s \in \mathscr{M}$ and $\mathscr{C} \in V$ containing s. We obtain

$$
\alpha_{1} q^{n}+\alpha_{2}\left(2 q^{n}\right)=q^{2 n}+q^{n}
$$

that is,

$$
\alpha_{1}+2 \alpha_{2}=q^{n}+1 .
$$

It follows that α_{1} is even. We distinguish two cases.
(i) $\alpha_{1} \geqslant 2$

Let $s_{1}, s_{2}, \ldots, s_{\alpha_{1}}$ be the points of \mathscr{M} which are contained in q^{n} conics of V. All conics of V through s_{i} have a common tangent line U_{i} at s_{i}, $i=1,2, \ldots, \alpha_{1}$. As $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), U_{1}\right\rangle$ and $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), U_{2}\right\rangle$ intersect η_{1} in different points, the lines U_{1} and U_{2} do not intersect. Let \mathscr{C} be a conic
in V not containing s_{1} or s_{2}, and let s be the point of \mathscr{C} in $\operatorname{PG}\left(n-1, q^{n}\right)$. Further, let $r_{i} \in \mathscr{W}$. There is a conic $\mathscr{C}^{\prime} \in V$ containing r_{i} and s_{1}. Then \mathscr{C} and \mathscr{C}^{\prime} have a point r_{j} in common. As \mathscr{C}^{\prime} is tangent to U_{1} at s_{1}, it is contained in the plane $\left\langle U_{1}, r_{j}\right\rangle$. Hence \mathscr{C}^{\prime} belongs to the quadratic cone \mathscr{Q}_{1} with vertex U_{1} and base \mathscr{C} (as $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), U_{1}\right\rangle \cap \eta_{1}$ is not on the line of η_{1} defined by \mathscr{C}, the line U_{1} is skew to the plane σ of \mathscr{C}). Consequently \mathscr{W} belongs to \mathscr{V}_{1}. Clearly also M belongs to \mathscr{Q}_{1}. Analogously \mathscr{W}, and also M, belong to the quadratic cone \mathscr{Q}_{2} with vertex U_{2} and base \mathscr{C}.

Let ξ be the 3 -dimensional space $\left\langle U_{1}, U_{2}\right\rangle$. As $\xi \subset \bar{\tau}, \xi \subset \operatorname{PG}\left(4, q^{n}\right)$, and as $\operatorname{PG}\left(4, q^{n}\right) \not \subset \bar{\tau}$, we have $\bar{\tau} \cap \operatorname{PG}\left(4, q^{n}\right)=\xi$. Hence the tangent line U of \mathscr{C} at s is contained in the subspace ξ.

Now let us choose coordinates in $\operatorname{PG}\left(4, q^{n}\right)$. Let $s(0,0,1,0,0)$, $(0,1,0,0,0) \in \mathscr{C}$, and let $(1,0,0,0,0) \in U$ be the pole of the line $\langle(0,0,1,0,0),(0,1,0,0,0)\rangle$ with respect to \mathscr{C}. So the plane σ of \mathscr{C} has equation $X_{3}=X_{4}=0$. Further assume that $s_{1}(0,0,0,1,0)$, so M has equations $X_{0}=X_{1}=X_{4}=0$. On U_{1} we choose the point $(0,0,0,0,1)$ in such a way that the line $\langle(1,0,0,0,0),(0,0,0,0,1)\rangle$ intersects U_{2} (this is possible as U, U_{1}, U_{2} are contained in the 3 -dimensional space ξ). Then the hyperplane ξ of $\operatorname{PG}\left(4, q^{n}\right)$ has equation $X_{1}=0$. Let e^{\prime} be any point of $\mathscr{C}-\{s,(0,1,0,0,0)\}$ and let e be the intersection of the planes $U_{1} e^{\prime}$ and $\left\langle U_{2},(0,1,0,0,0)\right\rangle$. Choose e as point $(1,1,1,1,1)$. Then $\langle e,(0,1,0,0,0)\rangle$ $\cap \xi$ is the point $(1,0,1,1,1)$, and so $(1,0,1,1,1)$ is on U_{2}. It follows that $U_{2} \cap M=\{(0,0,1,1,0)\}$ and $U_{2} \cap\langle(0,0,0,0,1),(1,0,0,0,0)\rangle=$ $\{(1,0,0,0,1)\}$. Further, $U_{1} e \cap \sigma=\left\{e^{\prime}(1,1,1,0,0)\right\}$, with σ the plane of \mathscr{C}. It follows that \mathscr{C} has equations $X_{3}=X_{4}=X_{0}^{2}-X_{1} X_{2}=0$.

Consequently

$$
\begin{aligned}
& \mathscr{V}_{1}: X_{0}^{2}=X_{1} X_{2}, \\
& \mathscr{2}_{2}:\left(X_{0}-X_{4}\right)^{2}=X_{1}\left(X_{2}-X_{3}\right) .
\end{aligned}
$$

So we have

$$
\mathscr{W} \subseteq \mathscr{Q}_{1} \cap \mathscr{Q}_{2}=\mathbf{V}\left(X_{0}^{2}-X_{1} X_{2},\left(X_{0}-X_{4}\right)^{2}-X_{1}\left(X_{2}-X_{3}\right)\right) .
$$

Now we calculate the number of points of $\mathscr{\mathscr { D }}_{1} \cap \mathscr{D}_{2}$ not in ξ. So we put $x_{1}=1$. As x_{0} and x_{4} can be chosen and define uniquely x_{2} and x_{3}, we have $\left|\left(\mathscr{Q}_{1} \cap \mathscr{Q}_{2}\right)-\xi\right|=q^{2 n}=|\mathscr{W}|$. So $\mathscr{W}=\left(\mathscr{V}_{1} \cap \mathscr{V}_{2}\right)-\xi$. As $\mathscr{V}_{1} \cap \mathscr{V}_{2} \cap \xi=M$, we also have $\mathscr{W}=\left(\mathscr{D}_{1} \cap \mathscr{D}_{2}\right)-M$. Clearly $\mathscr{W}=\left\{\left(m, 1, m^{2}, 2 m n-n^{2}, n\right) \| m\right.$, $\left.n \in \operatorname{GF}\left(q^{n}\right)\right\}$.

Now we consider the quadric Veronesean \mathscr{V}_{2}^{4} in $\operatorname{PG}\left(5, q^{n}\right)$, where

$$
\mathscr{V}_{2}^{4}=\left\{\left(m l, l^{2}, m^{2}, 2 m n-n^{2}, n l, n^{2}\right) \|(l, m, n) \text { is a point of } \operatorname{PG}\left(2, q^{n}\right)\right\} .
$$

Assume that $\operatorname{PG}\left(4, q^{n}\right)$ is the hyperplane $X_{5}=0$ of $\operatorname{PG}\left(5, q^{n}\right)$. Project \mathscr{V}_{2}^{4} from $(0,0,0,0,0,1) \notin \mathscr{V}_{2}^{4}$ onto $\operatorname{PG}\left(4, q^{n}\right)$. Then we obtain the surface

$$
\Gamma=\left\{\left(m l, l^{2}, m^{2}, 2 m n-n^{2}, n l, 0\right) \|(l, m, n) \neq(0,0,0)\right\} .
$$

For $l=1$ we obtain the points ($m, 1, m^{2}, 2 m n-n^{2}, n, 0$), with $m, n \in G F\left(q^{n}\right)$. Hence $\Gamma-\xi=\mathscr{W}=\left(\mathscr{Q}_{1} \cap \mathscr{Q}_{2}\right)-M$. For $l=0$ we obtain the points $\left(0,0, m^{2}, 2 m n-n^{2}, 0,0\right)$, with $(m, n) \neq(0,0)$. So $\Gamma \cap \xi \subseteq M$ and $|\Gamma \cap \xi|=$ $\left(q^{n}+3\right) / 2$. The point $(0,0,0,0,0,1)$ from which we project is in the conic plane $\varphi: X_{0}=X_{1}=X_{4}=0$ of \mathscr{V}_{2}^{4}, and is an exterior point of the conic $\varphi \cap \mathscr{V}_{2}^{4}$.

Let $p_{1}, p_{2} \in \mathscr{W}, p_{1} \neq p_{2}$, let \mathscr{C} be the conic of V containing p_{1} and p_{2}, and let $\tilde{\mathscr{C}}$ be any non-singular conic of Γ containing p_{1} and p_{2}. Assume, by way of contradiction that $\mathscr{C} \neq \tilde{\mathscr{C}}$. If σ is the plane of \mathscr{C} and if p is a point of $\tilde{\mathscr{C}}$ not on \mathscr{C} and not in ξ, then $\Phi_{1}=\langle\sigma, p\rangle$ contains two conics \mathscr{C} and \mathscr{C}^{\prime} of V. Also $\tilde{\mathscr{C}}-\xi \subseteq\left(\mathscr{C} \cup \mathscr{C}^{\prime}\right)-\xi$. Consequently $\mathscr{C}^{\prime}=\tilde{\mathscr{C}}$, a contradiction as $\left|\left(\mathscr{C}^{\prime} \cap \mathscr{C}\right)-\xi\right| \leqslant 1$. Hence $\mathscr{C}=\widetilde{\mathscr{C}}$. Now it follows easily that V is the set of all non-singular conics on Γ, and that V is the set of the projections of all non-singular conics on \mathscr{V}_{2}^{4} but not in the plane φ.

From the preceding section it also follows that the set \mathscr{M} of all common points of M with elements of V, is the projection from $(0,0,0,0,0,1)$ onto $\operatorname{PG}\left(4, q^{n}\right)$ of the conic $\varphi \cap \mathscr{V}_{2}^{4}$. Hence $|\mathscr{M}|=\left(q^{n}+3\right) / 2$. If T_{1}, T_{2} are the tangent lines of $\varphi \cap \mathscr{V}_{2}^{4}$ through ($0,0,0,0,0,1$), then the points $T_{1} \cap M$ and $T_{2} \cap M$ are contained in q^{n} conics of V; if Z_{i} is any line of φ through $(0,0,0,0,0,1)$ which intersects $\varphi \cap \mathscr{V}_{2}^{4}$ in two distinct points, then $Z_{i} \cap M$ is contained in $2 q^{n}$ conics of V. Hence $\alpha_{1}=2$.

We conclude that $\mathscr{W} \cup \mathscr{M}$ is the projection of the quadric Veronesean \mathscr{V}_{2}^{4} from $(0,0,0,0,0,1)$ onto the space $\operatorname{PG}\left(4, q^{n}\right)$.
(ii) $\alpha_{1}=0$

In this case each point of \mathscr{M} is contained in exactly $2 q^{n}$ conics of V. Further $\alpha_{2}=|\mathscr{M}|=\left(q^{n}+1\right) / 2$.

Let $\mathscr{C}_{1}, \mathscr{C}_{2}$ be conics of V intersecting M in distinct points s_{1}, s_{2}. The tangent line of \mathscr{C}_{i} at s_{i} will be denoted by $U_{i}, i=1,2$. As $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), U_{1}\right\rangle$ and $\left\langle\operatorname{PG}\left(n-1, q^{n}\right), U_{2}\right\rangle$ intersect η_{1} in different points, the lines U_{1} and U_{2} do not intersect. Let ξ be the 3-dimensional space $\left\langle U_{1}, U_{2}\right\rangle$. As $\xi \subset \bar{\tau}, \xi \subset \operatorname{PG}\left(4, q^{n}\right)$, and as $\operatorname{PG}\left(4, q^{n}\right) \not \subset \bar{\tau}$, we have $\bar{\tau} \cap \mathrm{PG}\left(4, q^{n}\right)=\xi$. Hence the tangent line U of any conic $\mathscr{C} \in V$ at $\mathscr{C} \cap M$ is contained in the subspace ξ.

Let $\mathscr{C}, \mathscr{C}^{\prime} \in V, \mathscr{C} \neq \mathscr{C}^{\prime}$, with $M \cap \mathscr{C}=M \cap \mathscr{C}^{\prime}=\{s\}$ and assume that $\mathscr{C} \cap \mathscr{C}^{\prime}=\{s, r\}$.

Now let us choose coordinates in $\operatorname{PG}\left(4, q^{n}\right)$. Let the hyperplane ξ of $\operatorname{PG}\left(4, q^{n}\right)$ have equation $X_{1}=0$, and let the hyperplane π of $\operatorname{PG}\left(4, q^{n}\right)$
containing $\mathscr{C} \cup \mathscr{C}^{\prime}$ have equation $X_{3}=0$. Further, let $X_{0}=X_{3}=0$ be the plane σ of \mathscr{C}, and let $X_{4}=X_{3}=0$ be the plane σ^{\prime} of \mathscr{C}^{\prime}. The conics \mathscr{C} and \mathscr{C}^{\prime} define distinct lines of η_{1}, and so M is not contained in π. As M is contained in ξ and intersects $\sigma \cap \sigma^{\prime}$ we may choose M to be the line $X_{0}=X_{1}=X_{4}=0$. Then $s(0,0,1,0,0)$. Further, let $r(0,1,0,0,0)$ and let $s_{1}(0,0,0,1,0) \in \mathscr{M}$. Also, let the pole of $s r$ with respect to \mathscr{C} be the point $(0,0,0,0,1)$ and let the pole of $s r$ with respect to \mathscr{C}^{\prime} be the point $(1,0,0,0,0)$. Call t a point of $\mathscr{C}-\{s, r\}$. Now let $s_{2} \in \mathscr{M}-\left\{s_{1}, s\right\}$ and let w be the intersection of $s t$ and $\langle r,(0,0,0,0,1)\rangle$. Further, let t^{\prime} be the common point of $s_{2} w$ and s_{1}. Finally let e be a point of $\left\langle(1,0,0,0,0), t^{\prime}\right\rangle$ $-\left\{(1,0,0,0,0), t^{\prime}\right\}$, and choose e as point $(1,1,1,1,1)$. Then $t^{\prime}(0,1,1,1,1)$, $t(0,1,1,0,1), w(0,1,0,0,1), s_{2}(0,0,1,1,0)$.

Consequently,

$$
\begin{aligned}
\mathscr{C}: X_{0} & =X_{3}=X_{1} X_{2}-X_{4}^{2}=0, \\
\mathscr{C}^{\prime}: X_{3} & =X_{4}=X_{1} X_{2}-v X_{0}^{2}=0, v \neq 0 .
\end{aligned}
$$

Let ψ be the pencil of quadrics in $X_{3}=0$ with base curve $\mathscr{C} \cup \mathscr{C}^{\prime}$. Then ψ is the set of quadrics Φ_{h} with

$$
\Phi_{h}: X_{3}=2 h X_{0} X_{4}+\left(X_{1} X_{2}-v X_{0}^{2}-X_{4}^{2}\right)=0, \quad h \in \mathrm{GF}\left(q^{n}\right) \cup\{\infty\} .
$$

Clearly $\sigma \cup \sigma^{\prime}$ is an element of ψ. If γ_{1} is the number of cones (with a point vertex) in ψ, γ_{2} is the number of non-singular elliptic quadrics in ψ, and γ_{3} is the number of non-singular hyperbolic quadrics in ψ, then, counting in two ways the number of pairs $\left(p, \Phi_{h}\right)$, with p a point of π not on $\mathscr{C} \cup \mathscr{C}^{\prime}$ and $p \in \Phi_{h} \in \psi$, we obtain

$$
\begin{aligned}
\left(2 q^{2 n}+\right. & \left.q^{n}+1-2 q^{n}\right)+\gamma_{1}\left(q^{2 n}+q^{n}+1-2 q^{n}\right) \\
& +\gamma_{2}\left(q^{2 n}+1-2 q^{n}\right)+\gamma_{3}\left(\left(q^{n}+1\right)^{2}-2 q^{n}\right) \\
= & q^{3 n}+q^{2 n}+q^{n}+1-2 q^{n} .
\end{aligned}
$$

Also $\gamma_{1}+\gamma_{2}+\gamma_{3}=q^{n}$. The singular points of $\Phi_{h}, h \neq \infty$, are determined by the equations $X_{3}=h X_{4}-v X_{0}=X_{2}=X_{1}=h X_{0}-X_{4}=0$. Hence if v is a non-square then $\Phi_{h}, h \neq \infty$, is always non-singular, and if v is a square $(\neq 0)$ then for two distinct values of $h, h \neq \infty$, the quadric Φ_{h} is a quadratic cone.

So, if v is a square, then $\gamma_{1}=2, \gamma_{2}=\left(q^{n}-1\right) / 2, \gamma_{3}=\left(q^{n}-3\right) / 2$, and if v is a non-square, then $\gamma_{1}=0, \gamma_{2}=\left(q^{n}+1\right) / 2, \gamma_{3}=\left(q^{n}-1\right) / 2$.

Let s^{\prime} be any point of \mathscr{M}. Then the union of all the lines through s^{\prime} and a point of \mathscr{W}, all the tangent lines at s^{\prime} of the conics of V through s^{\prime}, and the line M, is a singular hyperbolic quadric $\mathscr{H}_{s^{\prime}}$ with vertex s^{\prime}. Clearly $\mathscr{H}_{s^{\prime}}$
contains $\mathscr{C} \cup \mathscr{C}^{\prime}$. If $s \neq s^{\prime}$, then $\mathscr{H}_{s^{\prime}} \cap \pi$ is a non-singular hyperbolic quadric of the pencil ψ; if $s=s^{\prime}$, then $\mathscr{H}_{s^{\prime}} \cap \pi=\sigma \cup \sigma^{\prime}$. Assume, by way of contradiction, that for distinct points $s^{\prime}, s^{\prime \prime}$ of \mathscr{M}, with $s^{\prime} \neq s \neq s^{\prime \prime}$, we have $\mathscr{H}_{s^{\prime}} \cap \pi=\mathscr{H}_{s^{\prime \prime}} \cap \pi$. Let $d \in\left(\mathscr{H}_{s^{\prime}} \cap \pi\right)-\left(\mathscr{C} \cup \mathscr{C}^{\prime}\right)$. Then $d \notin \mathscr{W}$. On $s^{\prime} d$ there is a point r_{i} of \mathscr{W} and on $s^{\prime \prime} d$ there is a point r_{j} of \mathscr{W}. So $r_{i} r_{j}$ intersects M, a contradiction. So $\mathscr{H}_{s^{\prime}} \cap \pi \neq \mathscr{H}_{s^{\prime \prime}} \cap \pi$. It follows that $\gamma_{3} \geqslant|\mathscr{M}|-1=$ $\left(q^{n}-1\right) / 2$. Consequently v is a non-square, $\gamma_{1}=0, \gamma_{2}=\left(q^{n}+1\right) / 2$ and $\gamma_{3}=\left(q^{n}-1\right) / 2$. Also, the $\left(q^{n}-1\right) / 2$ non-singular hyperbolic quadrics of ψ are the intersections of π with the $\left(q^{n}-1\right) / 2$ singular hyperbolic quadrics $\mathscr{H}_{s^{\prime}}$, with s^{\prime} any point of $\mathscr{M}-\{s\}$.

Let \mathscr{Q}_{1} be the singular hyperbolic quadric $\mathscr{H}_{s^{\prime}}$, with $s^{\prime}(0,0,0,1,0)$

$$
\mathscr{2}_{1}: 2 h_{1} X_{0} X_{4}+\left(X_{1} X_{2}-v X_{0}^{2}-X_{4}^{2}\right)=0, \quad \text { with } \quad h_{1}^{2}-v(\neq 0) \text { a square. }
$$

Let \mathscr{L}_{2} be the singular hyperbolic quadric $\mathscr{H}_{s^{\prime \prime}}$, with $s^{\prime \prime}(0,0,1,1,0)$
$\mathscr{2}_{2}: 2 h_{2} X_{0} X_{4}+\left(X_{1}\left(X_{2}-X_{3}\right)-v X_{0}^{2}-X_{4}^{2}\right)=0$, with $h_{2}^{2}-v(\neq 0)$ a square.
As $\mathscr{H}_{s^{\prime}} \cap \pi \neq \mathscr{H}_{s^{\prime \prime}} \cap \pi$, we have $h_{1} \neq h_{2}$. So

$$
\begin{aligned}
\mathscr{W} \subseteq \mathscr{V}_{1} \cap \mathscr{V}_{2}= & \mathbf{V}\left(2 h_{1} X_{0} X_{4}+\left(X_{1} X_{2}-v X_{0}^{2}-X_{4}^{2}\right),\right. \\
& \left.2 h_{2} X_{0} X_{4}+\left(X_{1}\left(X_{2}-X_{3}\right)-v X_{0}^{2}-X_{4}^{2}\right)\right) \\
= & \mathbf{V}\left(2 h_{1} X_{0} X_{4}+\left(X_{1} X_{2}-v X_{0}^{2}-X_{4}^{2}\right),\right. \\
& \left.2\left(h_{2}-h_{1}\right) X_{0} X_{4}-X_{1} X_{3}\right) .
\end{aligned}
$$

Now we calculate the number of points of $\mathscr{Q}_{1} \cap \mathscr{D}_{2}$ not in ξ. So we put $x_{1}=1$. As x_{0} and x_{4} can be chosen and define uniquely x_{2} and x_{3}, we have $\left|\left(\mathscr{Q}_{1} \cap \mathscr{Q}_{2}\right)-\xi\right|=q^{2 n}=|\mathscr{W}|$. So $\mathscr{W}=\left(\mathscr{Q}_{1} \cap \mathscr{V}_{2}\right)-\xi$. As $\mathscr{Q}_{1} \cap \mathscr{Z}_{2} \cap \xi=M$, we also have $\mathscr{W}=\left(\mathscr{Q}_{1} \cap \mathscr{D}_{2}\right)-M$. Clearly

$$
\mathscr{W}=\left\{\left(m, 1, v m^{2}+n^{2}-2 h_{1} m n, 2\left(h_{2}-h_{1}\right) m n, n\right) \| m, n \in \operatorname{GF}\left(q^{n}\right)\right\} .
$$

Now we consider the quadric Veronesean \mathscr{V}_{2}^{4} in $\operatorname{PG}\left(5, q^{n}\right)$, where

$$
\mathscr{V}_{2}^{4}=\left\{\left(m l, l^{2}, v m^{2}+n^{2}-2 h_{1} m n, 2\left(h_{2}-h_{1}\right) m n, n l, n^{2}\right) \|(l, m, n)\right.
$$ is a point of $\left.\operatorname{PG}\left(2, q^{n}\right)\right\}$.

Assume that $\operatorname{PG}\left(4, q^{n}\right)$ is the hyperplane $X_{5}=0$ of $\operatorname{PG}\left(5, q^{n}\right)$. Project \mathscr{V}_{2}^{4} from $(0,0,0,0,0,1) \notin \mathscr{V}_{2}^{4}$ onto $\operatorname{PG}\left(4, q^{n}\right)$. Then we obtain the surface

$$
\Gamma=\left\{\left(m l, l^{2}, v m^{2}+n^{2}-2 h_{1} m n, 2\left(h_{2}-h_{1}\right) m n, n l, 0\right) \|(l, m, n) \neq(0,0,0)\right\} .
$$

For $l=1$ we obtain the points $\left(m, 1, v m^{2}+n^{2}-2 h_{1} m n, 2\left(h_{2}-h_{1}\right) m n, n, 0\right)$, with $m, n \in \operatorname{GF}\left(q^{n}\right)$. Hence $\Gamma-\xi=\mathscr{W}=\left(\mathscr{D}_{1} \cap \mathscr{D}_{2}\right)-M$. For $l=0$ we obtain
the points $\left(0,0, v m^{2}+n^{2}-2 h_{1} m n, 2\left(h_{2}-h_{1}\right) m n, 0,0\right)$, with $(m, n) \neq(0,0)$. So $\Gamma \cap \xi \subseteq M$ and $|\Gamma \cap \xi|=\left(q^{n}+1\right) / 2$. The point $(0,0,0,0,0,1)$ from which we project is in the conic plane $\varphi: X_{0}=X_{1}=X_{4}=0$ of \mathscr{V}_{2}^{4}, and is an interior point of the conic $\varphi \cap \mathscr{V}_{2}^{4}$.

Let $p_{1}, p_{2} \in \mathscr{W}, p_{1} \neq p_{2}$, let \mathscr{C} be the conic of V containing p_{1} and p_{2}, and let $\tilde{\mathscr{C}}$ be any non-singular conic of Γ containing p_{1} and p_{2}. Assume, by way of contradiction that $\mathscr{C} \neq \widetilde{\mathscr{C}}$. If σ is the plane of \mathscr{C} and if p is a point of $\tilde{\mathscr{C}}$ not on \mathscr{C} and not in ξ, then $\Phi_{1}=\langle\sigma, p\rangle$ contains two conics \mathscr{C} and \mathscr{C}^{\prime} of V. Also $\tilde{\mathscr{C}}-\xi \subseteq\left(\mathscr{C} \cup \mathscr{C}^{\prime}\right)-\xi$. Consequently $\mathscr{C}^{\prime}=\tilde{\mathscr{C}}$, a contradiction as $\left|\left(\mathscr{C}^{\prime} \cap \mathscr{C}\right)-\xi\right| \leqslant 1$. Hence $\mathscr{C}=\tilde{\mathscr{C}}$. Now it follows easily that V is the set of all non-singular conics on Γ, and that V is the set of the projections of all non-singular conics on \mathscr{V}_{2}^{4} but not in the plane φ.

From the preceding section it also follows that the set \mathscr{M} of all common points of M with elements of V, is the projection from ($0,0,0,0,0,1$) onto $\operatorname{PG}\left(4, q^{n}\right)$ of the conic $\varphi \cap \mathscr{V}_{2}^{4}$.

We conclude that $\mathscr{W} \cup \mathscr{M}$ is the projection of the quadric Veronesean \mathscr{V}_{2}^{4} from $(0,0,0,0,0,1)$ onto the space $\operatorname{PG}\left(4, q^{n}\right)$.

Corollary 6.3. In \mathscr{M} there are either 0 or 2 points which belong to exactly q^{n} elements of V.

Proof. This follows immediately from the proof of Theorem 6.2.

Theorem 6.4. Consider a non-classical TGQ $T(n, 2 n, q)=T(O), q$ odd, with O an egg which is good at $\operatorname{PG}(n-1, q)$. Assume also that the set \mathscr{W} is contained in a $\operatorname{PG}\left(4, q^{n}\right)$. Then the set \mathscr{M} contains exactly 2 points which belong to exactly q^{n} elements of V, that is, the set \mathscr{M} is the projection of an irreducible conic \mathscr{K} from an exterior point p of \mathscr{K} onto a line M of the plane of \mathscr{K}.

Proof. We use the notations of the preceding theorems.
Let $\operatorname{PG}(n-2, q)$ be any hyperplane of $\operatorname{PG}(n-1, q)$. Assume by way of contradiction that the extension $\operatorname{PG}\left(n-2, q^{n}\right)$ of $\operatorname{PG}(n-2, q)$ contains a point s of \mathscr{M}. As s belongs to a conic \mathscr{C} of V, the point s together with its conjugates with respect to the extension $\operatorname{GF}\left(q^{n}\right)$ of $\operatorname{GF}(q)$ generate $\operatorname{PG}\left(n-1, q^{n}\right)$. But s and all its conjugates belong to $\operatorname{PG}\left(n-2, q^{n}\right)$, a contradiction. Hence $\operatorname{PG}\left(n-2, q^{n}\right) \cap \mathscr{M}=\varnothing$.

Now we dualize in $\operatorname{PG}\left(n-1, q^{n}\right)$, in such a way that the points of $\operatorname{PG}(n-1, q)$ become hyperplanes of $\operatorname{PG}(n-1, q)$. The dual of the line M containing \mathscr{M} is a $\operatorname{PG}\left(n-3, q^{n}\right)$. The dual of a hyperplane $\operatorname{PG}(n-2, q)$ of $\operatorname{PG}(n-1, q)$ is a point z of $\operatorname{PG}(n-1, q)$, and the dual of the common point of M and the hyperplane $\operatorname{PG}\left(n-2, q^{n}\right)$ which extends $\operatorname{PG}(n-2, q)$ is the hyperplane $\left\langle z, \operatorname{PG}\left(n-3, q^{n}\right)\right\rangle$. Let $\operatorname{PG}\left(1, q^{n}\right)=U$ be a line of
$\operatorname{PG}\left(n-1, q^{n}\right)$ which is skew to $\operatorname{PG}\left(n-3, q^{n}\right)$. Then there is a linear isomorphism θ of M onto U which maps the set of the intersections $M \cap \operatorname{PG}\left(n-2, q^{n}\right)$, with $\operatorname{PG}\left(n-2, q^{n}\right)=\overline{\mathrm{PG}(n-2, q)}$, onto the set of the intersections $U \cap\left\langle z, \operatorname{PG}\left(n-3, q^{n}\right)\right\rangle$, with z a point of $\operatorname{PG}(n-1, q)$.

We embed $\operatorname{PG}(n-1, q)$ in a $\operatorname{PG}(n, q)$, and in the extension $\operatorname{PG}\left(n, q^{n}\right)$ of $\operatorname{PG}(n, q)$ we choose a $\operatorname{PG}\left(2, q^{n}\right)$ with $\operatorname{PG}\left(2, q^{n}\right) \cap \operatorname{PG}\left(n-1, q^{n}\right)=U$. Now we project $\operatorname{PG}(n, q)$ from $\operatorname{PG}\left(n-3, q^{n}\right)$ onto the plane $\operatorname{PG}\left(2, q^{n}\right)$. Assume, by way of contradiction, that the points z_{1}, z_{2}, with $z_{1} \neq z_{2}$, of $\operatorname{PG}(n, q)-\operatorname{PG}(n-1, q)$ are projected onto the same point z of $\operatorname{PG}\left(2, q^{n}\right)$. Then $z_{1} z_{2}$ has a unique point in common with $\operatorname{PG}(n-1, q)$ which also belongs to $\operatorname{PG}\left(n-3, q^{n}\right)$. Hence the line M is contained in the extension $\operatorname{PG}\left(n-2, q^{n}\right)$ of a hyperplane $\operatorname{PG}(n-2, q)$ of $\operatorname{PG}(n-1, q)$, a contradiction. It follows that the q^{n} points z of $\operatorname{PG}(n, q)-\operatorname{PG}(n-1, q)$ are projected onto q^{n} distinct points z^{\prime} of $\operatorname{PG}\left(2, q^{n}\right)-U$. If $z_{1}^{\prime}, z_{2}^{\prime} \in \operatorname{PG}\left(2, q^{n}\right)-U$, with $z_{1}^{\prime} \neq z_{2}^{\prime}$, are such projections, then the set of all intersections $U \cap z_{1}^{\prime} z_{2}^{\prime}$ is exactly the set of all intersections $U \cap<z, \operatorname{PG}\left(n-3, q^{n}\right)>$, with z a point of $\operatorname{PG}(n-1, q)$.

We now embed $\operatorname{PG}\left(2, q^{n}\right)$ in a $\operatorname{PG}\left(3, q^{n}\right)$, and in $\operatorname{PG}\left(3, q^{n}\right)$ we choose a plane π in such a way that $\pi \cap \operatorname{PG}\left(2, q^{n}\right)=U$. Assume, by way of contradiction, that the set \mathscr{M} in the statement of the theorem does not contain a point which belongs to exactly q^{n} elements of V. If $\mathscr{M}^{\theta}=\tilde{\mathscr{M}}$, then there exists a non-singular conic \mathscr{C} in π, with $\mathscr{C} \cap U=\varnothing$, such that $\tilde{\mathscr{M}}$ is the set of all exterior points of \mathscr{C} on U; see Thas [1981]. Dualizing in $\operatorname{PG}\left(3, q^{n}\right)$, we see that with the q^{n} projections $z^{\prime} \in \operatorname{PG}\left(2, q^{n}\right)-U$ there correspond q^{n} planes which intersect some quadratic cone K in q^{n} mutually disjoint nonsingular conics (the points of K different from its vertex v correspond with the planes of $\operatorname{PG}\left(3, q^{n}\right)$ which intersect π in a tangent line of \mathscr{C}; the point v corresponds with the plane π). Hence there arises a flock F of K. As all points z^{\prime} are coplanar, the corresponding planes all contain a common point w. As the set of all intersections $M \cap \operatorname{PG}\left(n-2, q^{n}\right)$ is not a singleton all points z^{\prime} are not collinear, and so by Thas [1987] the point w necessarily is an exterior point of K. It follows that $\operatorname{PG}\left(2, q^{n}\right)$ contains 2 points of \mathscr{C}, that is $|U \cap \mathscr{C}|=2$, a contradiction.

We conclude that the set \mathscr{M} contains exactly 2 points which belong to exactly q^{n} elements of V.

Lemma 6.5. Consider a non-classical TGQ $T(n, 2 n, q)=T(O), q$ odd, with O an egg which is good at $\operatorname{PG}(n-1, q)$. Assume also that the set \mathscr{W} is contained in a $\operatorname{PG}\left(4, q^{n}\right)$. If s_{1}, s_{2} are the points of \mathscr{M} which belong to exactly q^{n} elements of V, then s_{1}, s_{2} are conjugate with respect to the nth extension $\operatorname{GF}\left(q^{n}\right)$ of $\mathrm{GF}(q)$, that is, s_{1}, s_{2} are in the same orbit of the group $\langle\theta\rangle$ with θ the collineation of order n of $\operatorname{PG}\left(n-1, q^{n}\right)$ which fixes $\mathrm{PG}(n-1, q)$ pointwise.

Proof. Let $s_{1}\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)$ and $s_{2}\left(y_{0}, y_{1}, \ldots, y_{n-1}\right)$ in $\operatorname{PG}\left(n-1, q^{n}\right)$. As each point $s \in \mathscr{M}$ belongs to a conic $\mathscr{C} \in V$, the space $\left\langle s, s^{\theta}, s^{\theta^{2}}, \ldots, s^{\theta^{n-1}}\right\rangle$ is $(n-1)$-dimensional. So the extension $\overline{\operatorname{PG}(n-2, q)}$ of any hyperplane $\operatorname{PG}(n-2, q)$ of $\operatorname{PG}(n-1, q)$ intersects $M=s_{1} s_{2}$ in a point not in \mathscr{M}. As \mathscr{M} is the projection onto M of a non-singular conic \mathscr{K} from an exterior point of \mathscr{K}, we have that the cross-ratio $\left\{s_{1}, s_{2} ; v, w\right\}=\square$ for any two distinct points v, w not in \mathscr{M}.

The hyperplane $X_{i}=0$ of $\operatorname{PG}\left(n-1, q^{n}\right)$ intersects M in the point

$$
v_{i}\left(x_{0} y_{i}-x_{i} y_{0}, \ldots, x_{i-1} y_{i}-x_{i} y_{i-1}, 0, x_{i+1} y_{i}-x_{i} y_{i+1}, x_{n} y_{i}-x_{i} y_{n}\right)
$$

$i=0,1, \ldots, n$. As $\left\{s_{1}, s_{2} ; v_{i}, v_{j}\right\}=\left\{(1,0),(0,1) ;\left(y_{i},-x_{i}\right),\left(y_{j},-x_{j}\right)\right\}$, we have $\left\{s_{1}, s_{2} ; v_{i}, v_{j}\right\}=\left(y_{j} x_{i}\right) /\left(y_{i} x_{j}\right)=\square$ for all $i, j=0,1, \ldots, n$ with $i \neq j$. Hence $x_{i} y_{i} x_{j} y_{j}=\square$ for all $i, j=0,1, \ldots, n$ with $i \neq j$. Next, let

$$
\delta: a_{0} X_{0}+a_{1} X_{1}+\cdots+a_{n-1} X_{n-1}=0, \quad a_{i} \in \mathrm{GF}(q),
$$

be any hyperplane of $\operatorname{PG}(n-1, q)$. If v is the common point of $\bar{\delta}$ and M, then

$$
\begin{aligned}
v= & \left(a_{0} y_{0}+a_{1} y_{1}+\cdots+a_{n-1} y_{n-1}\right) s_{1} \\
& +\left(-a_{0} x_{0}-a_{1} x_{1}-\cdots-a_{n-1} x_{n-1}\right) s_{2} .
\end{aligned}
$$

If $\delta^{\prime} \neq \delta$ is a second hyperplane of $\operatorname{PG}(n-1, q)$, with

$$
\delta^{\prime}: b_{0} X_{0}+b_{1} X_{1}+\cdots+b_{n-1} X_{n-1}=0, \quad b_{i} \in \operatorname{GF}(q),
$$

and if w is the common point of $\overline{\delta^{\prime}}$ and M, then

$$
\begin{aligned}
w= & \left(b_{0} y_{0}+b_{1} y_{1}+\cdots+b_{n-1} y_{n-1}\right) s_{1} \\
& +\left(-b_{0} x_{0}-b_{1} x_{1}-\cdots-b_{n-1} x_{n-1}\right) s_{2} .
\end{aligned}
$$

Hence

$$
\left\{s_{1}, s_{2} ; v, w\right\}=\left\{(1,0),(0,1) ;\left(\sum_{i} a_{i} y_{i},-\sum_{i} a_{i} x_{i}\right),\left(\sum_{i} b_{i} y_{i},-\sum_{i} b_{i} x_{i}\right)\right\} .
$$

Consequently

$$
\left\{s_{1}, s_{2} ; v, w\right\}=\left(\sum_{i} b_{i} y_{i} \sum_{i} a_{i} x_{i}\right) /\left(\sum_{i} b_{i} x_{i} \sum_{i} a_{i} y_{i}\right)=\square,
$$

and so

$$
\sum_{i} a_{i} x_{i} \sum_{i} a_{i} y_{i} \sum_{i} b_{i} x_{i} \sum_{i} b_{i} y_{i}=\square .
$$

As the points s_{1}, s_{2} do not belong to the hyperplane $X_{0}=0$ of $\operatorname{PG}\left(n-1, q^{n}\right)$, we may assume that $x_{0}=1=y_{0}$. Then

$$
x_{i} y_{i}=\square, \quad i=1,2, \ldots, n-1,
$$

and

$$
\begin{equation*}
\left(a_{0}+\sum_{i=1}^{n-1} a_{i} x_{i}\right)\left(a_{0}+\sum_{i=1}^{n-1} a_{i} y_{i}\right)=\square, \tag{1}
\end{equation*}
$$

with $a_{0}, a_{1}, \ldots, a_{n-1} \in \operatorname{GF}(q)$ and $\left(a_{1}, a_{2}, \ldots, a_{n-1}\right) \neq(0,0, \ldots, 0)$.
If the elements $1, x_{1}, x_{2}, \ldots, x_{n-1}$ are linearly dependent over $\operatorname{GF}(q)$, then $l_{0}+l_{1} x_{1}+l_{2} x_{2}+\cdots+l_{n-1} x_{n-1}=0$ for some $l_{0}, l_{1}, \ldots, l_{n-1} \in \operatorname{GF}(q)$ with $\left(l_{0}, l_{1}, \ldots, l_{n-1}\right) \neq(0,0, \ldots, 0)$. Hence the point s_{1} belongs to the extension of the hyperplane $l_{0} X_{0}+l_{1} X_{1}+\cdots+l_{n-1} X_{n-1}=0$ of $\operatorname{PG}(n-1, q)$, a contradiction. Consequently the elements $1, x_{1}, x_{2}, \ldots, x_{n-1}$ are linearly independent over $\mathrm{GF}(q)$. It folllows that

$$
\mathrm{GF}\left(q^{n}\right)=\left\{c_{0}+c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n-1} x_{n-1} \| c_{i} \in \mathrm{GF}(q)\right\} .
$$

Analogously,

$$
\operatorname{GF}\left(q^{n}\right)=\left\{c_{0}+c_{1} y_{1}+c_{2} y_{2}+\cdots+c_{n-1} y_{n-1} \| c_{i} \in \operatorname{GF}(q)\right\} .
$$

Now we consider the mapping φ defined by

$$
\begin{aligned}
\varphi: \mathrm{GF}\left(q^{n}\right) & \rightarrow \operatorname{GF}\left(q^{n}\right), c_{0}+c_{1} x_{1}+\cdots+c_{n-1} x_{n-1} \\
& \rightarrow c_{0}+c_{1} y_{1}+\cdots+c_{n-1} y_{n-1} .
\end{aligned}
$$

Clearly φ is a permutation of $\operatorname{GF}\left(q^{n}\right)$.
Let h, k be distinct elements of $\operatorname{GF}\left(q^{n}\right)$, with

$$
\begin{aligned}
& h=a_{0}+a_{1} x_{1}+\cdots+a_{n-1} x_{n-1} \\
& k=b_{0}+b_{1} x_{1}+\cdots+b_{n-1} x_{n-1}
\end{aligned}
$$

Then

$$
\left(h^{\varphi}-k^{\varphi}\right)(h-k)=\left(a_{0}-b_{0}+\sum_{i=1}^{n-1}\left(a_{i}-b_{i}\right) y_{i}\right)\left(a_{0}-b_{0}+\sum_{i=1}^{n-1}\left(a_{i}-b_{i}\right) x_{i}\right) .
$$

By (1) we have

$$
\left(h^{\varphi}-k^{\varphi}\right)(h-k)=\square .
$$

Also $0^{\varphi}=0$ and $1^{\varphi}=1$. Now by a theorem of Carlitz [1960]

$$
\varphi: \operatorname{GF}\left(q^{n}\right) \rightarrow \operatorname{GF}\left(q^{n}\right), \quad h \mapsto h^{p^{r}},
$$

with $q=p^{h}, p$ prime, and $1 \leqslant r \leqslant h n-1\left(r \neq 0\right.$ as $\left.s_{1} \neq s_{2}\right)$. For any $a \in \mathrm{GF}(q)$ we have

$$
a y_{1}=\left(a x_{1}\right)^{\varphi}=\left(a x_{1}\right)^{p^{r}}=a^{p^{r}} x_{1}^{p^{r}}=a^{p^{r}} x_{1}^{\varphi}=a^{p^{r}} y_{1} .
$$

As $y_{1} \neq 0$, we have

$$
a^{p^{r}}=a, \quad \text { for all } \quad a \in \mathrm{GF}(q) .
$$

It follows that $r=d h$ for some d, with $1 \leqslant d \leqslant n-1$, and so

$$
\varphi: \operatorname{GF}\left(q^{n}\right) \rightarrow \mathrm{GF}\left(q^{n}\right), \quad h \mapsto h^{q^{d}} .
$$

As

$$
\theta: \operatorname{PG}\left(n-1, q^{n}\right) \rightarrow \operatorname{PG}\left(n-1, q^{n}\right),\left(z_{0}, z_{1}, \ldots, z_{n-1}\right) \mapsto\left(z_{0}^{q}, z_{1}^{q}, \ldots, z_{n-1}^{q}\right),
$$

we have

$$
s_{2}=\left(1, y_{1}, \ldots, y_{n-1}\right)=\left(1, x_{1}^{\varphi}, \ldots, x_{n-1}^{\varphi}\right)=\left(1, x_{1}^{q^{d}}, \ldots, x_{n-1}^{q^{d}}\right)=s_{1}^{\theta^{d}} .
$$

We conclude that s_{1} and s_{2} are in the same orbit of the group $\langle\theta\rangle$.
Theorem 6.6. Consider a non-classical TGQ $T(n, 2 n, q)=T(O), q$ odd, with O an egg which is good at $\operatorname{PG}(n-1, q)$. If the set \mathscr{W} is contained in a $\operatorname{PG}\left(4, q^{n}\right)$, then the translation dual $T\left(O^{*}\right)$ of $T(O)$ is good at τ with τ the tangent space of O at $\operatorname{PG}(n-1, q)$.

Proof. We use the notations of Lemma 6.5.
The point s_{i} belongs to q^{n} elements of V and all these conics have a common tangent line U_{i} at $s_{i}, i=1,2$; this line U_{i} does not belong to $\operatorname{PG}\left(n-1, q^{n}\right), i=1,2$. The collineation of order n of $\operatorname{PG}\left(4 n-1, q^{n}\right)$ which fixes $\operatorname{PG}(4 n-1, q)$ pointwise (and so is an extension of θ), will also be denoted by θ. If $\mathscr{C} \in V$ contains s_{i}, then $\left\langle U_{i}, U_{i}^{\theta}, U_{i}^{\theta^{2}}, \ldots, U_{i}^{\theta^{n-1}}\right\rangle$ is the tangent space at $\operatorname{PG}(n-1, q)$ of the [$n-1$]-oval $O(n, n, q)$ defined by \mathscr{C}, $i \in\{1,2\}$. If $\theta^{d}=\theta^{\prime}$ then the line $U_{1}^{\theta^{\prime}}$ contains the point $s_{1}^{\theta^{\prime}}=s_{2}$, and the line $U_{2}^{\theta^{\prime}-1}$ contains the point s_{1}. If $U_{2}=U_{1}^{\theta^{\prime}}$, then the $q^{n}[n-1]$-ovals defined by the conics of V through s_{1} and the $q^{n}[n-1]$-ovals defined by the
conics of V through s_{2} all have the same tangent space at $\operatorname{PG}(n-1, q)$, a contradiction. So $U_{2} \neq U_{1}^{\theta^{\prime}}$ and $U_{2}^{\theta^{\prime-1}} \neq U_{1}$. Let $\kappa=\left\langle U_{1}, U_{2}^{\theta^{\prime-1}}\right\rangle$; then $\kappa^{\theta^{\prime}}=\left\langle U_{1}^{\theta^{\prime}}, U_{2}\right\rangle$.

Consider an element $\mathrm{PG}^{(i)}(n-1, q)$ of $O(n, 2 n, q)=O$, and the tangent space τ_{i} of O at $\mathrm{PG}^{(i)}(n-1, q)$. Let r_{i} be the point of \mathscr{W} which corresponds with $\mathrm{PG}^{(i)}(n-1, q)$, and let \mathscr{C}_{j} be the conic of V which contains r_{i} and s_{j}, $j=1,2$. Let Z_{j} be the tangent line of \mathscr{C}_{j} at $r_{i}, j=1,2$. Then $\bar{\tau}_{i}=$ $\left\langle Z_{1}, Z_{2}, Z_{1}^{\theta}, Z_{2}^{\theta}, \ldots, Z_{1}^{\theta^{n-1}}, Z_{2}^{\theta_{2}^{n-1}}\right\rangle$. If $U_{1} \cap Z_{1}=\left\{z_{1}\right\}$ and $U_{2} \cap Z_{2}=\left\{z_{2}\right\}$, then $\bar{\tau}_{i} \cap \kappa=z_{1} z_{2}^{\theta^{\prime-1}}$ and $\bar{\tau}_{i} \cap \kappa^{\theta^{\prime}}=z_{2} z_{1}^{\theta^{\prime}}$. Let $\bar{\tau}_{i} \cap \kappa=Y_{i}$; then $\bar{\tau}_{i} \cap \kappa^{\theta^{\prime}}=Y_{i}^{\theta^{\prime}}$. We have $\bar{\tau} \cap \bar{\tau}_{i}=\left\langle Y_{i}, Y_{i}^{\theta}, \ldots, Y_{i}^{\theta^{n-1}}\right\rangle$. As $\bar{\tau} \cap \bar{\tau}_{i} \neq \bar{\tau} \cap \bar{\tau}_{j}$ for $i \neq j$, there holds $Y_{i} \neq Y_{j}$ for $i \neq j$. So with the $q^{2 n}$ elements of $O-\{\operatorname{PG}(n-1, q)\}$ there correspond the $q^{2 n}$ lines of κ not through s_{1}. Let t be a point of κ, with $t \neq s_{1}$, and let $Y_{i_{1}}, Y_{i_{2}}, \ldots, Y_{i_{q} n}$ be the q^{n} lines of κ not containing s_{1}. The extensions $\mathrm{PG}^{\left(i_{1}\right)}\left(n-1, q^{n}\right), \mathrm{PG}^{(i)}\left(n-1, q^{n}\right), \ldots, \mathrm{PG}^{\left(i_{q} n\right)}\left(n-1, q^{n}\right)$ of the elements $\mathrm{PG}^{\left(i_{1}\right)}(n-1, q), \mathrm{PG}^{\left(i_{2}\right)}(n-1, q), \ldots, \mathrm{PG}^{\left(q_{q}{ }^{n}\right)}(n-1, q) \in O-\{\operatorname{PG}(n-1, q)\}$ all contain the point t, hence they all contain the $(n-1)$-dimensional space $\bar{\psi}=\left\langle t, t^{\theta}, t^{\theta^{2}}, \ldots, t^{\theta^{n-1}}>\subset \bar{\tau}\right.$. So ψ is contained in $q^{n}+1$ tangent spaces of O. Let $\mathrm{PG}^{(i)}(n-1, q), \mathrm{PG}^{(j)}(n-1, q) \in O-\{\mathrm{PG}(n-1, q)\}, i \neq j$, let τ_{i} be the tangent space of O at $\mathrm{PG}^{(i)}(n-1, q)$, and let τ_{j} be the tangent space of O at $\mathrm{PG}^{(j)}(n-1, q)$. If $\bar{\tau} \cap \bar{\tau}_{i}=Y_{1}, \bar{\tau} \cap \bar{\tau}_{j}=Y_{j}$ and $Y_{i} \cap Y_{j}=\{t\}$, then $\psi=$ $\tau \cap \tau_{i} \cap \tau_{j}$ with $\bar{\psi}=\left\langle t, t^{\theta}, t^{\theta^{2}}, \ldots, t^{\theta^{n-1}}\right\rangle$. So $\tau \cap \tau_{i} \cap \tau_{j}$ is contained in exactly $q^{n}+1$ tangent spaces of O. Hence the translation dual $T\left(O^{*}\right)$ of $T(O)$ is good at τ.

Theorem 6.7. Consider a non-classical GQ $\mathscr{S}(F)$ of order $\left(q^{2}, q\right), q$ odd, arising from the flock F and assume that the point-line dual $\widehat{\mathscr{S}(F)}$ of $\mathscr{S}(F)$ is a TGQ $T(n, 2 n, q)=T(O)$. Then the translation dual $T\left(O^{*}\right)$ is good at the tangent space τ of O at the element ζ of O, where ζ is the point (∞) of $\mathscr{S}(F)$. If the corresponding set \mathscr{W} is contained in a $\operatorname{PG}\left(4, q^{n}\right)$, then the flock F is a Kantor flock.

Proof. As $\mathscr{S}(F)$ is not classical, by 3.3 of Payne and Thas [1991] the point (∞) of $\mathscr{S}(F)$ is a line of type (b) of $T(O)$, that is, a line which is an element $\operatorname{PG}(n-1, q)=\zeta$ of O. By Section $4 T(O)$ satisfies Property (G) at $\operatorname{PG}(n-1, q)$ and then by Theorem 3.5 the translation dual $T\left(O^{*}\right)$ of $T(O)$ is good at the tangent space τ of O at $\operatorname{PG}(n-1, q)$. As for $T\left(O^{*}\right)$ the corresponding set \mathscr{W} is contained in a $\operatorname{PG}\left(4, q^{n}\right)$, by Theorem 6.6 the TGQ $T(O)$ is good at $\operatorname{PG}(n-1, q)$. Now by Corollary 4.2 the flock F is a Kantor flock.

Theorem 6.8. Consider a non-classical TGQ $T(n, 2 n, q)=T(O), q$ odd, with $O=O(n, 2 n, q)=\left\{\operatorname{PG}(n-1, q), \mathrm{PG}^{(1)}(n-1, q), \ldots, \mathrm{PG}^{\left(q^{2 n}\right)}(n-1, q)\right\}$. Assume that O is good at $\operatorname{PG}(n-1, q)$ and that the set \mathscr{W} is contained in
a $\operatorname{PG}\left(5, q^{n}\right)$, but not in a $\operatorname{PG}\left(4, q^{n}\right)$. If \mathscr{P} is the set of all common points of the plane $\mu=\operatorname{PG}\left(n-1, q^{n}\right) \cap \operatorname{PG}\left(5, q^{n}\right)$ with conics of V, then $\mathscr{W} \cup \mathscr{P}$ is a quadric Veronesean \mathscr{V}_{2}^{4} in $\operatorname{PG}\left(5, q^{n}\right)$.

Proof. Let $\mathscr{C}, \mathscr{C}^{\prime} \in V$, with $\mathscr{C} \neq \mathscr{C}^{\prime}$, and assume that $\mathscr{C} \cap \mu=\mathscr{C}^{\prime} \cap \mu$ $=\{s\}$. If $\left|\mathscr{C} \cap \mathscr{C}^{\prime}\right|=2$, then \mathscr{C} and \mathscr{C}^{\prime} are contained in a 3-dimensional space $\operatorname{PG}\left(3, q^{n}\right)$ which contains \mathscr{C} and more than one point $r_{d} \in \mathscr{W}-\mathscr{C}$, a contradiction (see section preceding (a) in the proof of Theorem 6.1). Hence $\mathscr{C} \cap \mathscr{C}^{\prime}=\{s\}$.

Consider a conic $\mathscr{C} \in V$ and all conics $\mathscr{C}^{\prime} \in V-\{\mathscr{C}\}$ containing a point of $\mathscr{C}-\mu$. As no 3 -dimensional space containing \mathscr{C} contains more than one point $r_{d} \in \mathscr{W}-\mathscr{C}$, the conics \mathscr{C} and \mathscr{C}^{\prime} generate a 4 -dimensional space. Assume, by way of contradiction, that the 4 -dimensional spaces π_{1}^{\prime} and π_{2}^{\prime}, respectively defined by $\mathscr{C}, \mathscr{C}_{1}^{\prime}$ and $\mathscr{C}, \mathscr{C}_{2}^{\prime}$ with $\mathscr{C}_{1}^{\prime}, \mathscr{C}_{2}^{\prime} \in V-\{\mathscr{C}\}$, $\left|\mathscr{C} \cap \mathscr{C}_{1}^{\prime} \cap \mathscr{W}\right| \geqslant 1,\left|\mathscr{C} \cap \mathscr{C}_{2}^{\prime} \cap \mathscr{W}\right| \geqslant 1$ and $\mathscr{C}_{1}^{\prime} \neq \mathscr{C}_{2}^{\prime}$, coincide. Let $r_{v} \notin \mathscr{C} \cup$ $\mathscr{C}_{1}^{\prime} \cup \mathscr{C}_{2}^{\prime}, r_{v} \in \mathscr{W}$. In the plane η_{1} (we still use the notations introduced at the beginning of the proof of Theorem 6.1) there correspond with $\mathscr{C}, \mathscr{C}_{1}^{\prime}, \mathscr{C}_{2}^{\prime}$ distinct lines $K, K_{1}^{\prime}, K_{2}^{\prime}$, and with r_{v} the point \tilde{r}_{v}. Now let $K^{\prime \prime}$ be a line of η_{1} through \tilde{r}_{v} which intersects $K, K_{1}^{\prime}, K_{2}^{\prime}$ in distinct points of $\eta_{1}-\bar{\tau}$. With $K^{\prime \prime}$ there corresponds a conic $\mathscr{C}^{\prime \prime}$ of V through r_{v} which intersects $\mathscr{C} \cup \mathscr{C}_{1}^{\prime} \cup \mathscr{C}_{2}^{\prime}$ in at least three distinct points. Hence $\mathscr{C}^{\prime \prime}$ belongs to π_{1}^{\prime}, and so r_{v} belongs to π_{1}^{\prime}. We conclude that $\mathscr{W} \subset \pi_{1}^{\prime}$, a contradiction. Consequently $\pi_{1}^{\prime} \neq \pi_{2}^{\prime}$, that is, the $q^{2 n}$ conics \mathscr{C}^{\prime} define $q^{2 n} 4$-dimensional spaces. Let π^{\prime} be the 4 -dimensional space generated by \mathscr{C} and \mathscr{C}^{\prime}, with $\mathscr{C}^{\prime} \in V-\{\mathscr{C}\}$ and $\left|\mathscr{C} \cap \mathscr{C}^{\prime} \cap \mathscr{W}\right| \geqslant 1$. Assume, by way of contradiction, that $\pi^{\prime} \cap \mathscr{W}$ contains a point r_{d} not in $\mathscr{C} \cup \mathscr{C}^{\prime}$. In the plane η_{1} there correspond with $\mathscr{C}, \mathscr{C}^{\prime}$ distinct lines K, K^{\prime}, and with r_{d} the point \tilde{r}_{d}. Now let $K^{\prime \prime}$ be a line of η_{1} through \tilde{r}_{d} which intersects K, K^{\prime} in distinct points of $\eta_{1}-\bar{\tau}$. With $K^{\prime \prime}$ there corresponds a conic $\mathscr{C}^{\prime \prime}$ of V through r_{d} which intersects each of $\mathscr{C}, \mathscr{C}^{\prime}$ in a point not in μ. So $\mathscr{C}^{\prime \prime}$ belongs to π^{\prime}, and consequently the 4-dimensional spaces generated by $\mathscr{C}, \mathscr{C}^{\prime}$, respectively $\mathscr{C}, \mathscr{C}^{\prime \prime}$, coincide, a contradiction. It follows that $\pi^{\prime} \cap \mathscr{W}=\left(\mathscr{C} \cup \mathscr{C}^{\prime}\right) \cap \mathscr{W}$.

Next, assume that the conics $\mathscr{C}_{1}, \mathscr{C}_{2} \in V$, with $\mathscr{C}_{1} \neq \mathscr{C}_{2}$, define lines of the plane η_{1} which intersect $\bar{\tau}$ in a common point. Suppose, by way of contradiction, that $\mathscr{C}_{1} \cap \mathscr{C}_{2}=\varnothing$. Let γ_{i} be the plane of $\mathscr{C}_{i}, i=1,2$. Assume first that $\left\langle\gamma_{1}, \gamma_{2}\right\rangle$ is 5 -dimensional. Then the $q^{2 n} 4$-dimensional spaces of the preceding section defined by \mathscr{C}_{1}, intersect γ_{2} in $q^{2 n}$ distinct lines. Hence one of these spaces, say δ, intersects \mathscr{C}_{2} in two distinct points of \mathscr{W}. If $\mathscr{C}_{1}, \mathscr{C}^{\prime}$ are the conics of V in δ, then \mathscr{C}^{\prime} contains two distinct points of $\mathscr{C}_{2} \cap \mathscr{W}$, clearly a contradiction. Consequently $\left\langle\gamma_{1}, \gamma_{2}\right\rangle$ is 4-dimensional. If $r_{i} \in \mathscr{C}_{2} \cap \mathscr{W}$, then the 3-dimensional space generated by \mathscr{C}_{1} and r_{i} contains just one point of $\mathscr{C}_{2} \cap \mathscr{W}$, hence intersects γ_{2} in the tangent line of \mathscr{C}_{2} at r_{i}. This tangent line contains the common point l of γ_{1} and γ_{2}. Consequently
q^{n} tangent lines of \mathscr{C}_{2} are concurrent, a contradiction as q is odd. So we conclude that $\left|\mathscr{C}_{1} \cap \mathscr{C}_{2}\right|=1$, that is, $\mathscr{C}_{1} \cap \mu=\mathscr{C}_{2} \cap \mu$.

From the foregoing follows that the $q^{2 n}+q^{n}$ conics of V intersect μ in exactly $q^{n}+1$ distinct points; the set of these $q^{n}+1$ points will be denoted by \mathscr{P}.

Now we will use Theorem 25.2.13 of Hirschfeld and Thas [1991] to prove that $\mathscr{P} \cup \mathscr{W}$ is a quadric Veronesean in $\operatorname{PG}\left(5, q^{n}\right)$. Call \mathscr{L} the set with as elements the plane μ and the $q^{2 n}+q^{n}$ planes of the conics of V. Any point of $\mathscr{P} \cup \mathscr{W}$ belongs to $q^{n}+1$ elements of \mathscr{L}, hence no point of $\mathscr{P} \cup \mathscr{W}$ belongs to all elements of \mathscr{L}. Relying also on the section preceding (a) in the proof of Theorem 6.1 we have : (i) if $\mathscr{C} \cap \mu=\mathscr{C}^{\prime} \cap \mu=\{s\}$, with $\mathscr{C}, \mathscr{C}^{\prime} \in V$ and $\mathscr{C} \neq \mathscr{C}^{\prime}$, then the planes of \mathscr{C} and \mathscr{C}^{\prime} have just s in common, (ii) if $\mathscr{C} \cap \mathscr{C}^{\prime} \cap \mu=\varnothing$, with $\mathscr{C}, \mathscr{C}^{\prime} \in V$ and $\mathscr{C} \neq \mathscr{C}^{\prime}$, then the common point of \mathscr{C} and \mathscr{C}^{\prime} is the unique common point of the planes of \mathscr{C} and \mathscr{C}^{\prime}, and (iii) for any $\mathscr{C} \in V$, the plane of \mathscr{C} contains exactly one point of the plane μ. It follows that any two distinct elements of \mathscr{L} have exactly one point in common. Now we consider any three distinct elements $\pi_{1}, \pi_{2}, \pi_{3}$ of \mathscr{L}. First, assume that $\pi_{i} \neq \mu$, with $i=1,2,3$. Let \mathscr{C}_{i} be the element of V in π_{i}, with $i=1,2,3$. Assume, by way of contradiction, that $\pi_{1}, \pi_{2}, \pi_{3}$ generate a $\operatorname{PG}\left(4, q^{n}\right)$. Let $r_{v} \notin \mathscr{C}_{1} \cup \mathscr{C}_{2} \cup \mathscr{C}_{3}, r_{v} \in \mathscr{W}$. In the plane η_{1} there correspond with $\mathscr{C}_{1}, \mathscr{C}_{2}, \mathscr{C}_{3}$ distinct lines K_{1}, K_{2}, K_{3} and with r_{v} the point \tilde{r}_{v}. Now let K^{\prime} be a line of η_{1} through \tilde{r}_{v} which intersects K_{1}, K_{2}, K_{3} in distinct points of $\eta_{1}-\bar{\tau}$. With K^{\prime} there corresponds a conic \mathscr{C}^{\prime} of V through r_{v} which intersects $\mathscr{C}_{1} \cup \mathscr{C}_{2} \cup \mathscr{C}_{3}$ in three distinct points. Hence \mathscr{C}^{\prime} belongs to $\operatorname{PG}\left(4, q^{n}\right)$, hence r_{v} belongs to $\mathrm{PG}\left(4, q^{n}\right)$, so $\mathscr{W} \subset \operatorname{PG}\left(4, q^{n}\right)$, a contradiction. It follows that $\left\langle\pi_{1}, \pi_{2}, \pi_{3}\right\rangle=\operatorname{PG}\left(5, q^{n}\right)$. Next, suppose that $\pi_{3}=\mu$. Let \mathscr{C}_{i} be the element of V in π_{i}, with $i=1,2$. Assume, by way of contradiction, that $\operatorname{PG}\left(4, q^{n}\right)=\left\langle\pi_{1}, \pi_{2}\right\rangle$ also contains μ. Let $r_{v} \notin \mathscr{C}_{1} \cup \mathscr{C}_{2}, r_{v} \in \mathscr{W}$. In the plane η_{1} there correspond with $\mathscr{C}_{1}, \mathscr{C}_{2}$ distinct lines K_{1}, K_{2} and with r_{v} the point \tilde{r}_{v}. Now let K^{\prime} be a line of η_{1} through \tilde{r}_{v} which intersects K_{1}, K_{2} in distinct points of $\eta_{1}-\bar{\tau}$. With K^{\prime} there corresponds a conic \mathscr{C}^{\prime} of V through r_{v} which intersects $\mathscr{C}_{1} \cup \mathscr{C}_{2}$ in two distinct points of \mathscr{W} and which contains a point of μ not on $\mathscr{C}_{1} \cup \mathscr{C}_{2}$. Hence \mathscr{C}^{\prime} belongs to $\operatorname{PG}\left(4, q^{n}\right)$, hence r_{v} belongs to $\operatorname{PG}\left(4, q^{n}\right)$, so $\mathscr{W} \subset \operatorname{PG}\left(4, q^{n}\right)$, a contradiction. Now by Theorem 25.2.13 of Hirschfeld and Thas [1991], which is a corollary of a theorem by Tallini [1958], \mathscr{L} is the set of all conic planes of a quadric Veronesean \mathscr{V}_{2}^{4} in $\operatorname{PG}\left(5, q^{n}\right)$. Also, \mathscr{V}_{2}^{4} is the set of all intersections of pairs of distinct elements of \mathscr{L}, that is, $\mathscr{V}_{2}^{4}=\mathscr{W} \cup \mathscr{P}$.

Main Theorem 6.9. Consider a TGQ $T(n, 2 n, q)=T(O), q$ odd, with $O=O(n, 2 n, q)=\left\{\mathrm{PG}(n-1, q), \mathrm{PG}^{(1)}(n-1, q), \ldots, \mathrm{PG}^{\left(q^{2 n)}\right.}(n-1, q)\right\}$. If O is good at $\operatorname{PG}(n-1, q)$, then we have one of the following.
(a) There exists a $\mathrm{PG}\left(3, q^{n}\right)$ in the extension $\operatorname{PG}\left(4 n-1, q^{n}\right)$ of the space $\operatorname{PG}(4 n-1, q)$ of $O(n, 2 n, q)$ which has exactly one point in common with each of the spaces $\operatorname{PG}\left(n-1, q^{n}\right), \mathrm{PG}^{(1)}\left(n-1, q^{n}\right), \ldots, \mathrm{PG}^{\left(q^{2 n)}\right.}\left(n-1, q^{n}\right)$. The set of these $q^{2 n}+1$ points is an elliptic quadric of $\mathrm{PG}\left(3, q^{n}\right)$ and $T(O)$ is isomorphic to the classical GQ $Q\left(5, q^{n}\right)$.
(b) We are not in Case (a) and there exists a $\operatorname{PG}\left(4, q^{n}\right)$ in $\operatorname{PG}\left(4 n-1, q^{n}\right)$ which intersects $\operatorname{PG}\left(n-1, q^{n}\right)$ in a line M and which has exactly one point r_{i} in common with any space $\mathrm{PG}^{(i)}\left(n-1, q^{n}\right)$, $i=1,2, \ldots, q^{2 n}$. Let $\mathscr{W}=\left\{r_{i} \| i=1,2, \ldots, q^{2 n}\right\}$ and let \mathscr{M} be the set of all common points of M and the conics which contain exactly q^{n} points of \mathscr{W}. Then the set $\mathscr{W} \cup \mathscr{M}$ is the projection of a quadric Veronesean \mathscr{V}_{2}^{4} from a point p in a conic plane of \mathscr{V}_{2}^{4} onto a hyperplane $\operatorname{PG}\left(4, q^{n}\right)$; the point p is an exterior point of the conic of \mathscr{V}_{2}^{4} in the conic plane. Also, if the point-line dual of the translation dual of $T(O)$ is a flock GQ $\mathscr{S}(F)$, then F is a Kantor flock.
(c) We are not in Cases (a) and (b) and there exists a $\operatorname{PG}\left(5, q^{n}\right)$ in $\operatorname{PG}\left(4 n-1, q^{n}\right)$ which intersects $\operatorname{PG}\left(n-1, q^{n}\right)$ in a plane μ and which has exactly one point r_{i} in common with any space $\operatorname{PG}^{(i)}\left(n-1, q^{n}\right)$, $i=1,2, \ldots, q^{2 n}$. Let $\mathscr{W}=\left\{r_{i} \| i=1,2, \ldots, q^{2 n}\right\}$ and let \mathscr{P} be the set of all common points of μ and the conics which contain exactly q^{n} points of \mathscr{W}. Then the set $\mathscr{W} \cup \mathscr{P}$ is a quadric Veronesean in $\operatorname{PG}\left(5, q^{n}\right)$.

Proof. In Case (a), $T(n, 2 n, q)$ is the interpretation over $\operatorname{GF}(q)$ of $T\left(1,2, q^{n}\right) \cong Q\left(5, q^{n}\right)$. If we are not in Case (a), then the theorem directly follows from Theorems 6.1, 6.2, 6.4, 6.7 and 6.8.

Remark. If we project the Veronesean \mathscr{V}_{2}^{4} in $\operatorname{PG}\left(5, q^{n}\right)$ onto some $\operatorname{PG}\left(3, q^{n}\right) \subset \operatorname{PG}\left(5, q^{n}\right)$ from a line N which intersects \mathscr{V}_{2}^{4} in two points of $\operatorname{PG}\left(5, q^{2 n}\right)-\operatorname{PG}\left(5, q^{n}\right)$ which are conjugate with respect to the extension $\operatorname{GF}\left(q^{2 n}\right)$ of $\operatorname{GF}\left(q^{n}\right)$, then we obtain an elliptic quadric of $\operatorname{PG}\left(3, q^{n}\right)$.

Conjectures. (a) In Case (c) of the Main Theorem and if the pointline dual of the translation dual of $T(O)$ is a flock GQ, then the flock GQ is a Roman GQ of Payne (see Payne [1988], [1989]). As by the Main Theorem, and also by some other results not mentioned here, we have strong information on this class of GQ, we hope to prove shortly this conjecture. This would yield the complete classification of all TGQ of order $\left(s, s^{2}\right), s$ odd and $s \neq 1$, for which the point-line dual is a flock TGQ.
(b) Any TGQ $T(O)$ of order $\left(s, s^{2}\right)$ and $s \neq 1$, with O good at some element, is the point-line dual of the translation dual of a translation flock GQ.

Final remark. For s even Johnson [1987] proves that any TGQ for which the point-line dual is a flock GQ, is the classical GQ $Q(5, s)$. We
conjecture that any TGQ $T(O)$ of order $\left(s, s^{2}\right), s$ even and $s \neq 1$, with O good at some element, is the classical GQ $Q(5, s)$.

REFERENCES

A. Barlotti, Un' estensione del teorema di Segre-Kustaanheimo, Boll. Un. Mat. Ital. 10 (1955), 96-98.
L. Carlitz, A theorem on permutations in a finite field, Proc. Amer. Math. Soc. 11 (1960), 456-459.
J. W. P. Hirschfeld and J. A. Thas, "General Galois Geometries," Oxford Univ. Press, 1991.
N. L. Johnson, Semifield flocks of quadratic cones, Simon Stevin 61 (1987), 313-326.
G. Panella, Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito, Boll. Un. Mat. Ital. 10 (1955), 507-513.
S. E. Payne, q-clans e quadrangoli generalizzati, Sem. Geom. Combin. 79 (1988), 1-16.
S. E. Payne, An essay on skew translation generalized quadrangles, Geom. Dedicata 32 (1989), 93-118.
S. E. Payne and J. A. Thas, "Finite Generalized Quadrangles," Pitman, Boston, 1984.
S. E. Payne and J. A. Thas, Conical flocks, partial flocks, derivation, and generalized quadrangles, Geom. Dedicata 38 (1991), 229-243.
G. Tallini, Una proprietà grafica caratteristica delle superficie di Veronese negli spazi finiti (Note I; II), Atti Accad. Naz. Lincei Rend. 24 (1958), 19-23; 135-138.
J. A. Thas, Some results on quadrics and a new class of partial geometries, Simon Stevin 55 (1981), 129-139.
J. A. Thas, Generalized quadrangles and flocks of cones, European J. Combin. 8 (1987), 441-452.
J. A. Thas, Generalized quadrangles of order $\left(s, s^{2}\right)$, I, J. Combin. Theory Ser. A 67 (1994), 140-160.
J. A. Thas, Projective geometry over a finite field, in "Handbook of Incidence Geometry, Buildings and Foundations" (F. Buekenhout, Ed.), Chapt. 7, pp. 295-348, Amsterdam, North-Holland, 1995.
J. A. Thas and F. De Clerck, Partial geometries satisfying the axiom of Pasch, Simon Stevin 51 (1977), 123-137.
J. A. Thas and H. Van Maldeghem, Generalized quadrangles and the axiom of Veblen, in "Geometry, Combinatorial Designs, and Related Structures," Proc. of the First Pythagorean Conference, Cambridge Univ. Press, Cambridge, 1995, to appear.

[^0]: * E-mail: jat@cage.rug.ac.be.

