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1. INTRODUCTION

This is a sequel to ``Generalized quadrangles of order (s, s2), I'', J. Combin.
Theory Ser. A 67 (1994), 140�160.

For terminology, notation, results, etc., concerning finite generalized
quadrangles and not explicitly given here, see the monograph of Payne and
Thas [1984] denoted FGQ.

Let S=(P, B, I) be a (finite) generalized quadrangle (GQ) of order
(s, t), s�1, t�1. So S has v=|P|=(1+s)(1+st) points and b=|B|=
(1+t)(1+st) lines. If s{1{t, then t�s2 and, dually, s�t2; also s+t
divides st(1+s)(1+t).

There is a point-line duality for GQ (of order (s, t)) for which in any
definition or theorem the words ``point'' and ``line'' are interchanged and
the parameters s and t are interchanged. Normally, we assume without
further notice that the dual of a given theorem or definition has also been
given.

Given two (not necessarily distinct) points x, x$ of S, we write xtx$
and say that x and x$ are collinear, provided that there is some line L for
which x I L I x$; hence xt% x$ means that x and x$ are not collinear. Dually,
for L, L$ # B, we write LtL$ or Lt% L$ according as L and L$ are
concurrent or nonconcurrent. When xtx$ we also say that x is orthogonal
or perpendicular to x$; similarly for LtL$. The line incident with distinct
collinear points x and x$ is denoted xx$, and the point incident with dis-
tinct concurrent lines L and L$ is denoted either LL$ or L & L$.

For x # P put x==[x$ # P & xtx$], and note that x # x=. The trace of
a pair [x, x$] of distinct points is defined to be the set x= & x$= and is
denoted either tr(x, x$) or [x, x$]=; then |[x, x$]=|=s+1 or t+1 accord-
ing as xtx$ or xt% x$. More generally, if A/P, A ``perp'' is defined by
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A==� [x= & x # A]. For x{x$, the span of the pair [x, x$] is sp(x, x$)=
[x, x$]===[u # P & u # z= for all z # x= & x$=]. When xt% x$, then
[x, x$]== is also called the hyperbolic line defined by x and x$, and
|[x, x$]==|=s+1 or |[x, x$]==|�t+1 according as xtx$ or xt% x$.

2. REGULARITY, DUAL NETS, AND THE AXIOM OF VEBLEN

Let S=(P, B, I) be a finite GQ of order (s, t). If xtx$, x{x$, or if
xt% x$ and |[x, x$]==|=t+1, where x, x$ # P, we say the pair [x, x$] is
regular. The point x is regular provided [x, x$] is regular for all
x$ # P, x${x. Regularity for lines is defined dually.

A (finite) net of order k(�2) and degree r(�2) is an incidence structure
N=(P, B, I) satisfying

(i) each point is incident with r lines and two distinct points are
incident with at most one line;

(ii) each line is incident with k points and two distinct lines are
incident with at most one point;

(iii) if x is a point and L is a line not incident with x, then there is
a unique line M incident with x and not concurrent with L.

For a net of order k and degree r we have |P|=k2 and |B|=kr.

Theorem 2.1 (1.3.1 of Payne and Thas [1984]). Let x be a regular point
of the GQ S=(P, B, I) of order (s, t), s>1. Then the incidence structure
with pointset x=&[x], with lineset the set of spans [ y, z]==, where
y, z # x=&[x], yt% z, and with the natural incidence, is the dual of a net of
order s and degree t+1. If in particular s=t>1, there arises a dual affine
plane of order s. Also, in the case s=t>1 the incidence structure ?x with
pointset x=, with lineset the set of spans [ y, z]==, where y, z # x=, y{z, and
with the natural incidence, is a projective plane of order s.

Now we introduce the Axiom of Veblen for duals nets N*=(P, B, I).

Axiom of Veblen. If L1 I x I L2 , L1{L2 , M1 I> x I> M2 , and if Li is
concurrent with Mj for all i, j # [1, 2], then M1 is concurrent with M2 .

The only known dual net N* which is not a dual affine plane and which
satisfies the Axiom of Veblen is the dual net H n

q , n>2, which is constructed
as follows: the points of H n

q are the points of PG(n, q) not in a given
subspace PG(n&2, q)/PG(n, q), the lines of H n

q are the lines of PG(n, q)
which have no point in common with PG(n&2, q), the incidence in H n

q is
the natural one. By the following theorem these dual nets H n

q are charac-
terized by the Axiom of Veblen.
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Theorem 2.2 (Thas and De Clerck [1977]). Let N* be a dual net with
s+1 points on any line and t+1 lines through any point, where t+1>s. If
N* satisfies the Axiom of Veblen, then N*$H n

q with n>2 (hence s=q
and t+1=qn&1).

3. TRANSLATION GENERALIZED QUADRANGLES,
PROPERTY (G), AND THE AXIOM OF VEBLEN

Let S=(P, B, I) be a GQ of order (s, t), s{1, t{1. A collineation % of
S is an elation about the point p if %=id or if % fixes all lines incident with
p and fixes no point of P&p=. If there is a group H of elations about p
acting regularly on P&p=, we say S is an elation generalized quadrangle
(EGQ) with elation group H and base point p. Briefly, we say that (S( p), H)
or S( p) is an EGQ. If the group H is abelian, then we say that the EGQ
(S( p), H) is a translation generalized quadrangle. For any TGQ S( p) the
point p is coregular, that is, each line incident with p is regular. Hence the
parameters s and t of a TGQ satisfy s�t; see 8.2 of FGQ. Also, by 8.5.2
of FGQ, for any TGQ with s{t we have s=qa and t=qa+1, with q a
prime power and a an odd integer; if s (or t) is even then by 8.6.1(iv) of
FGQ either s=t or s2=t.

In PG(2n+m&1, q) consider a set O(n, m, q) of qm+1 (n&1)-dimen-
sional subspaces PG(0)(n&1, q),PG(1)(n&1, q), ..., PG(qm)(n&1, q), every
three of which generate a PG(3n&1, q) and such that each element
PG(i)(n&1, q) of O(n, m, q) is contained in a PG(i)(n+m&1, q) having
no point in common with any PG( j)(n&1, q) for j{i. It is easy to check
that PG(i)(n+m&1, q) is uniquely determined, i=0, 1, ..., qm. The space
PG(i)(n+m&1, q) is called the tangent space of O(n, m, q) at PG(i)(n&1, q).
For n=m such a set O(n, n, q) is called a generalized oval or an
[n&1]-oval of PG(3n&1, q); a generalized oval of PG(2, q) is just an oval
of PG(2, q). For n{m such a set O(n, m, q) is called a generalized ovoid or
an [n&1]-ovoid or an egg of PG(2n+m&1, q); a [0]-ovoid of PG(3, q)
is just an ovoid of PG(3, q).

Now embed PG(2n+m&1, q) in a PG(2n+m, q), and construct a
point-line geometry T(n, m, q) as follows.

Points are of three types :

(i) the points of PG(2n+m, q)&PG(2n+m&1, q);

(ii) the (n+m)-dimensional subspaces of PG(2n+m, q) which inter-
sect PG(2n+m&1, q) in one of the PG(i)(n+m&1, q);

(iii) the symbol (�).
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Lines are of two types:

(a) the n-dimensional subspaces of PG(2n+m, q) which intersect
PG(2n+m&1, q) in a PG(i)(n&1, q);

(b) the elements of O(n, m, q).

Incidence in T(n, m, q) is defined as follows. A point of type (i) is inci-
dent only with lines of type (a); here the incidence is that of PG(2n+m, q).
A point of type (ii) is incident with all lines of type (a) contained in it and
with the unique element of O(n, m, q) contained in it. The point (�) is
incident with no line of type (a) and with all lines of type (b).

Theorem 3.1 (8.7.1 of Payne and Thas [1984]). T(n, m, q) is a TGQ
of order (qn, qm) with base point (�). Conversely, every TGQ is isomorphic
to a T(n, m, q). It follows that the theory of TGQ is equivalent to the theory
of the sets O(n, m, q).

Corollary 3.2. The following hold for any O(n, m, q):

(i) n=m or n(a+1)=ma with a odd;

(ii) if q is even, then n=m or m=2n.

Let O(n, 2n, q) be an egg of PG(4n&1, q). We say that O(n, 2n, q) is
good at the element PG(i)(n&1, q) of O(n, 2n, q) if any PG(3n&1, q)
containing PG(i)(n&1, q) and at least two other elements of O(n, 2n, q),
contains exactly qn+1 elements of O(n, 2n, q). In such a case the corre-
sponding TGQ T(n, 2n, q) contains at least q3n+q2n translation sub-
quadrangles of order qn (see Thas [1994]).

Theorem 3.3 (Thas and Van Maldeghem [1995]). Let S( p) be a TGQ
of order (s, s2), s{1, with base point p. Then the dual net N*L defined by the
regular line L, with p I L, satisfies the Axiom of Veblen if and only if the egg
O(n, 2n, q) which corresponds to S( p) is good at its element PG(i)(n&1, q)
which corresponds to L.

Let O=O(n, 2n, q) be an egg in PG(4n&1, q). By 8.7.2 of FGQ
the q2n+1 tangent spaces of O form an O*=O*(n, 2n, q) in the dual space
of PG(4n&1, q). So in addition to T(n, 2n, q)=T(O) there arises a
TGQ T(O*) with the same parameters. The TGQ T(O*) is called the
translation dual of the TGQ T(O). Examples are known for which
T(O)$T(O*), and examples are known for which T(O)$3 T(O*); see Thas
[1994].

Let S=(P, B, I) be a GQ of order (s, s2), s{1. Let x1 , y1 be distinct
collinear points. We say that the pair [x1 , y1] has Property (G), or that S
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has Property (G) at [x1 , y1], if every triple [x1 , x2 , x3] of points, with
x1 , x2 , x3 pairwise noncollinear and y1 # [x1 , x2 , x3]=, is 3-regular; for the
definition of 3-regularity see 1.3 of FGQ. The GQ S has Property (G) at
the line L, or the line L has Property (G), if each pair of points
[x, y], x{y and x I L I y, has Property (G). If (x, L) is a flag, that is,
if x I L, then we say that S has Property (G) at (x, L), or that (x, L)
has Property (G), if every pair [x, y], x{y and y I L, has Property (G).
Property (G) was introduced in Payne [1989] in connection with general-
ized quadrangles of order (q2, q) arising from flocks of quadratic cones in
PG(3, q).

Theorem 3.4 (Thas and Van Maldeghem [1995]). Let S=(P, B, I)
be a GQ of order (s2, s), s even, satisfying Property (G) at the point x. Then
x is regular in S and the dual net Nx* defined by x satisfies the Axiom of
Veblen. Consequently Nx*$H 3

s .

Theorem 3.5 (Thas [1994]). A TGQ T(n, 2n, q)=T(O) satisfies Property
(G) at [(�), �̀ ], with �̀ a point of type (ii) incident with the line ` of type
(b) (or, equivalently, at the flag ((�), `)) if and only if for any two elements
`i , `j (i{j) of O(n, 2n, q)&[`] the (n&1)-dimensional space PG(n&1, q)
={ & {i & {j , with {, {i , {j the respective tangent spaces of O(n, 2n, q) at
`, `i , `j , is contained in qn+1 tangent spaces of O(n, 2n, q).

Theorem 3.6 (Thas and Van Maldeghem [1995]). Let S ( p) be a TGQ
of order (s, s2), s{1, with base point p. Then the dual net N*L defined by the
regular line L, with p I L, satisfies the Axiom of Veblen if and only if the
translation dual S$( p$) of S( p) satisfies Property (G) at the flag ( p$, L$),
where L$ corresponds to L; in the even case N*L satisfies the Axiom of
Veblen if and only if S( p) satisfies Property (G) at the flag ( p, L).

Theorem 3.7. Let S( p) be a TGQ of order (s, s2), s odd and s{1, with
base point p. If the dual net N*L defined by the regular line L, with p I L,
satisfies the Axiom of Veblen, then S( p) contains at least s3+s2 classical
subquadrangles Q(4, s).

Proof. This follows immediately from Theorem 3.6 and Theorem 4.3.4
of Thas [1994]. K

4. FLOCK GENERALIZED QUADRANGLES AND THE
AXIOM OF VEBLEN

Let F be a flock of the quadratic cone K with vertex x of PG(3, q), that
is, a partition of K&[x] into q disjoint irreducible conics. Then, by Thas
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[1987], with F there corresponds a GQ S(F ) of order (q2, q). In Payne
[1989] it was shown that S(F ) satisfies Property (G) at its point (�).

Theorem 4.1 (Thas and Van Maldeghem [1995]). For any GQ S(F )
of order (q2, q) arising from a flock F, the point (�) is regular. If q is even,
then the dual net N*(�) always satisfies the Axiom of Veblen and so N*(�)$
H 3

q . If q is odd, then the dual net N*(�) satisfies the Axiom of Veblen if and
only if F is a Kantor flock.

Corollary 4.2. Suppose that the TGQ T(O), with O=O(n, 2n, q) and
q odd, is a flock GQ S(F ) where the point (�) of S(F ) corresponds to the
line ` of type (b) of T(O). Then T(O) is good at the element ` if and only
if F is a Kantor flock.

Proof. This follows immediately from Theorems 4.1 and 3.3. K

5. VERONESE VARIETIES

In Section 6 we shall see that there is a strong connection between TGQ
satisfying Property (G) (or, equivalently, satisfying the Axiom of Veblen)
and the Veronesean V4

2 of all conics of PG(2, q). So we include a short
section on Veronese varieties; a good reference is Chapter 25 of Hirschfeld
and Thas [1991].

The Veronese variety of all quadrics of PG(n, K), n�1 and K any
commutative field, is the variety

V=[(x2
0 , x2

1 , ..., x2
n , x0x1 , x0x2 , ..., x0xn , x1x2 , ..., x1xn , ..., xn&1xn) &

(x0 , x1 , ..., xn) is a point of PG(n, K)]

of PG(N, K) with N=n(n+3)�2. The variety V has dimension n and order
2n; for V we also write Vn or V 2n

n . It is also called the Veronesean of
quadrics of PG(n, K), or simply the quadric Veronesean of PG(n, K). It
can be shown that the quadric Veronesean is absolutely irreducible and
non-singular.

Let PG(n, K) consist of all points

( y00 , y11 , ..., ynn , y01 , y02 , ..., y0n , y12 , ..., y1n , ..., yn&1, n);

for yij we also write yji . Let `: PG(n, K) � PG(N, K), with N=n(n+3)�2
and n�1, be defined by

(x0 , x1 , ..., xn) [ ( y00 , y11 , ..., yn&1, n),

228 J. A. THAS
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with yij=xi xj . Then ` is a bijection of PG(n, K) onto the quadric
Veronesean V of PG(n, K). It then follows that the variety V is rational.

Theorem 5.1. The quadrics of PG(n, K) are mapped by ` onto all hyper-
plane sections of V.

Corollary 5.2. No hyperplane of PG(N, K) contains the quadric
Veronesean V.

Theorem 5.3. Any two distinct points of V are contained in a unique
irreducible conic of V.

If K=GF(q), then it is clear that Vn contains %(n)=qn+qn&1+ } } } +
q+1 points. As no three points of V are collinear we have the following
theorem.

Theorem 5.4. The quadric Veronesean Vn is a %(n)-cap of PG(N, q),
N=n(n+3)�2.

Let n=2. Then V is a surface of order 4 in PG(5, K). Apart from the
conic, the variety V4

2 is the quadric Veronesean which is most studied and
characterized. Assume also that K=GF(q). To the conics (irreducible or
not) of PG(2, q) there correspond all hyperplane sections of V4

2 . The
hyperplane is uniquely determined by the conic if and only if the latter is
not a single point. If the conic of PG(2, q) is one line, then the corre-
sponding hyperplane of PG(5, q) meets V4

2 in an irreducible conic; the sur-
face V4

2 contains no other irreducible conics. It follows that V4
2 contains

exactly q2+q+1 irreducible conics, that any two distinct points of V 4
2 are

contained in a unique irreducible conic, and that any two distinct
irreducible conics on V 4

2 meet in a unique point. If the conic C of PG(2, q)
is two distinct lines, then the corresponding hyperplane PG(4, q) meets V 4

2

in two irreducible conics with exactly one point in common; if C is
irreducible, then PG(4, q) meets V4

2 in a rational quartic curve. The planes
of PG(5, q) which meet V4

2 is an irreducible conic are called the conic
planes of V4

2 .

Theorem 5.5. Any two distinct conic planes ? and ?$ of V4
2 have exactly

one point in common, and this common point belongs to V 4
2 .

The tangent lines of the irreducible conics of V 4
2 are called the tangents

or tangent lines of V 4
2 . Since no point of the surface V4

2 is singular, all
tangent lines of V 4

2 at the point p of V4
2 are contained in a plane ?( p).

This plane ?( p) is called the tangent plane of V4
2 at p. Since p is contained

229GENERALIZED QUADRANGLES OF ORDER (s, s2)
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in exactly q+1 irreducible conics of V4
2 and since no two conic planes

through p have a line in common, the tangent plane ?( p) is the union of
the q+1 tangent lines of V4

2 through p. Also V4
2 & ?( p)=[ p].

Theorem 5.6. For any two distinct points p1 and p2 of V4
2 , the tangent

planes ?( p1) and ?( p2) have exactly one point in common.

Theorem 5.7. Suppose that q is odd. Then PG(5, q) admits a polarity
which maps the set of all conic planes of V4

2 onto the set of all tangent planes
of V4

2 .

Corollary 5.8. Suppose that q is odd. Then for any three distinct points
p1 , p2 , p3 of V4

2 , the intersection ?( p1) & ?( p2) & ?( p3) of the tangent planes
is empty.

Corollary 5.9. Suppose that q is odd. Then each point of PG(5, q)&
V 4

2 is on 0 or 2 tangent planes of V 4
2 .

Theorem 5.10. Suppose that PG(4, q) is a hyperplane for which
PG(4, q) & V 4

2 is a non-singular conic C. Then PG(4, q) contains exactly
q+1 tangent planes ?( p0), ?( p1), ..., ?( pq). Also C=[ p0 , p1 , ..., pq], and if
? is the conic plane determined by C, then the intersections ? & ?( p0),
? & ?( p1), ..., ? & ?( pq) are the tangent lines of the conic C.

Proof. Let C=[ p0 , p1 , ..., pq] and consider the tangent plane ?( pi).
Then the plane ?( pi) contains the tangent line of C at pi . Let ?i be the
threedimensional space containing ?( pi) and the plane ? of C. Considering
the hyperplanes containing ?i we see that q of them intersect V4

2 in two
non-singular conics through pi (one of which is C) while the remaining one
intersects V 4

2 in C. So this last hyperplane is the hyperplane PG(4, q) of
the statement of the theorem. Consequently PG(4, q) contains the tangent
planes ?( p0), ?( p1), ..., ?( pq). If ?( p) is any tangent plane in PG(4, q), then,
as PG(4, q) & V 4

2=C, it is clear that p # C. K

Theorem 5.11. Suppose that C is a non-singular conic on V 4
2 , that ? is

the plane of C and that p$ # V 4
2&C. Then ?( p$) & ?=<.

Proof. Assume, by way of contradiction, that r # ?( p$) & ?. Then rp$ is
the tangent line at p$ of some non-singular conic C$ on V 4

2 . Hence the
plane ?$ of C$ and the conic plane ? have a point r � V 4

2 in common,
contradicting Theorem 5.5. K

Theorem 5.12. Suppose that q is odd and that PG(4, q) is a hyperplane
for which PG(4, q) & V 4

2 is a non-singular conic C. If p$ # V 4
2&C, then the
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line ?( p$) & PG(4, q) intersects ?( pi), pi # C, in a point ri , where ri is not in
the plane of C.

Proof. Let r be a point of ?( pi)&?, with pi # C and ? the plane of C.
By Corollary 5.9 r is contained in 2 tangent planes ?( pi) and ?(u). Then
u is not on C as otherwise the unique common point r of ?( pi) and ?(u)
would be in ?. So u # V 4

2&C. By Corollary 5.8 r [ u defines a bijection of
?( pi)&? onto V4

2&C. Hence the line ?( p$) & PG(4, q) in the statement of
the theorem intersects the plane ?( pi) in a point ri � ?. K

6. TRANSLATION GENERALIZED QUADRANGLES OF ORDER
(s, s2), s{1 AND s ODD, SATISFYING THE AXIOM

OF VEBLEN AND VERONESE SURFACES

Consider a TGQ T(n, 2n, q)=T(O), with O=O(n, 2n, q). The egg
O(n, 2n, q) is good at its element PG(n&1, q)=L if and only if the dual
net N*L defined by the regular line L satisfies the Axiom of Veblen if and
only if the translation dual T(O*) of T(O) satisfies Property (G) at the flag
((�), {), with { the tangent space of O at PG(n&1, q); see Theorems 3.3
and 3.6.

Notation. If GF(qh) is an extension of GF(q), then the corresponding
extension of PG(m, q) will be denoted by PG(m, qh) or PG(m, q).

Theorem 6.1. Consider a non-classical TGQ T(n, 2n, q)=T(O), q odd,
with O=O(n, 2n, q)=[PG(n&1, q), PG(1)(n&1, q), PG(2)(n&1, q), ...,
PG(q2n)(n&1, q)] an egg in PG(4n&1, q). If O is good at PG(n&1, q), then
one of the following two cases occurs

(a) There exists a PG(4, qn) in PG(4n&1, qn) which intersects
PG(n&1, qn) in a line M and which has exactly one point ri in common with
any space PG(i)(n&1, qn), i=1, 2, ..., q2n.

(b) We are not in Case (a) and there exists a PG(5, qn) in
PG(4n&1, qn) which intersects PG(n&1, qn) in a plane + and which has
exactly one point ri in common with any space PG(i)(n&1, qn), i=1, 2, ..., qn.

Proof. Consider a non-classical TGQ T(n, 2n, q)=T(O), q odd, with O=
O(n, 2n, q)=[PG(n&1, q), PG(1)(n&1, q), PG(2)(n&1, q), ..., PG(q2n)(n&1, q)]
an egg in PG(4n&1, q), and assume that O is good at PG(n&1, q).
Let PG(3n&1, q) be a subspace of PG(4n&1, q) which is skew to
PG(n&1, q), and let (PG(n&1, q), PG(i)(n&1, q)) & PG(3n&1, q)=
?i , i=1, 2, ..., q2n. The tangent space { of O at PG(n&1, q) intersects
PG(3n&1, q) in a (2n&1)-dimensional space ?. Clearly PG(3n&1, q)=
? _ ?1 _ ?2 _ } } } _ ?q2n .
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By the proof of Theorem 4.3.4 in Thas [1994], in PG(3n&1, q) there are
n planes '1 , '2 , ..., 'n over GF(qn), which are conjugate with respect to the
nth extension GF(qn) of GF(q) and which generate PG(3n&1, q), such
that each plane 'j has just one point in common with ?� i and such that 'j

has just one line in common with ?� , j=1, 2, ..., n and i=1, 2, ..., q2n. Let
(PG(n&1, qn), 'j)=\j , j=1, 2, ..., n; then \j is (n+2)-dimensional. The
space ?� i has just one point in common with '1 , and so PG(i)(n&1, qn)
has exactly one point ri in common with \1 , with i=1, 2, ..., q2n.
In PG(n&1, q) we choose a PG(n&2, q), and in \1 we choose a
PG(3, qn)=81 skew to PG(n&2, qn). Then 81 and PG(n&1, qn) have
exactly one point s1 in common. Now we project the point ri from
PG(n&2, qn) onto 81 , and we obtain the point ri$ , i=1, 2, ..., q2n.
Clearly ri${s1 and if ri$=rj$ , i{j, then ri rj has a point in common with
PG(n&1, qn), a contradiction as O is an egg. Hence the set
T1=[s1 , r$1 , r$2 , ..., r$q2n] contains q2n+1 distinct points. If ri$rj$ , i{j,
contains s1 , then (PG(n&1, qn), ri , rj) is n-dimensional, a contradiction.
Now assume, by way of contradiction, that ri$ , rj$ , r$k are distinct collinear
points of T1&[s1]. Then the plane ri rj rk=! has at least one point l in
common with PG(n&2, qn). Without loss of generality we may assume
that l � ri rj , so !=lri rj . Any space PG(u)(n&1, qn) is generated by ru

and its conjugates with respect to GF(qn), hence the space �=
(PG(i)(n&1, qn), PG( j)(n&1, qn), PG(k)(n&1, qn)) is generated by the
plane !=rirj rk=lrirj and its conjugates. As l belongs to PG(n&2, qn)=
PG(n&2, q), the space � is generated by a subspace of PG(n&2, qn) and
(PG(i)(n&1, qn), PG( j)(n&1, qn)). Consequently 9 is at most (3n&2)-
dimensional, a contradiction as O is an egg. So we conclude that no three
points of T1 are collinear, that is, T1 is an ovoid of the space 81 .

The extension {� of the tangent space { of O at PG(n&1, q) intersects \1

in the (n+1)-dimensional space PG(n+1, qn)=(?� & '1 ,PG(n&1, qn)).
Clearly PG(n+1, qn) & 81 is a plane %1 . This plane %1 contains s1 but no
one of the points r$1 , r$2 , ..., r$q2n . Hence %1 is the tangent plane of the ovoid
T1 at s1 .

Since qn is odd, by Barlotti [1955] and Panella [1955], the ovoid T1 is
an elliptic quadric of 81 .

Each space (PG(n&1, qn), ri , rj) , i{j, contains exactly qn points of
'1&?� ; so (PG(n&1, qn), ri , rj) contains exactly qn of the points
r1 , r2 , ..., rq2n , say rl1 , rl2 , ..., rlqn . Let (PG(n&1, q), PG(i)(n&1, q),
PG( j)(n&1, q)) & PG(3n&1, q)=PG(2n&1, q). Then 'j & PG(2n&1, qn)
is a line Lj , j=1, 2, ..., n. Clearly the space (PG(n&1, qn), ri , rj) intersects
PG(2n&1, qn) in the line L1 . By Theorem 4.3.4 of Thas [1994] the qn+1
spaces PG(n&1, q), PG(l1)(n&1, q), PG(l2)(n&1, q), ... define qn TGQ
T(n, n, q) isomorphic to the classical GQ Q(4, qn); we remark that
PG(n&1, q), PG(l1)(n&1, q), ... are the elements of O in (PG(n&1, qn),
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L1 , L2 , ..., Ln) . Now we show that rl1 , rl2 , ... together with some point of
PG(n&1, qn), form a conic C over GF(qn).

Let us consider one of the qn TGQ T(n, n, q). Let u1 , u2 be non-collinear
points of T(n, n, q), with u1t% (�)t% u2 . Further consider all grids of
T(n, n, q) containing u1 , u2 and two lines of type (b) of T(n, n, q). As
T(n, n, q)$Q(4, qn)$T(1, 1, qn) all these grids have qn common points of
type (i). For the sake of convenience we now simplify our notation :
[PG(n&1, q), PG(l1)(n&1, q), ...]=[:0 , :1 , ..., :qn]. Let ;=:i:j & :u:k ,
with all indices distinct. We now choose u1 , u2 in such a way that the line
u1 u2 (in the projective space containing T(n, n, q)) contains a point g of ;.
Then all grids of T(n, n, q) containing u1 , u2 and two lines of type (b) of
T(n, n, q) contain all qn points of (:i , :j , u1) & (:u , :k , u1) not in
PG(4n&1, q); clearly (:i , :j , u1) & (:u , :k , u1) & PG(4n&1, q)=;. It
easily follows that if :a :b , a{b, contains g, then it also contains ;. If
|[(�), u1 , u2]=|=2 in T(n, n, q), then ; belongs to (qn&1)�2 of the spaces
:a :b (in such a case g belongs to 2 tangent spaces of the [n&1]-oval
O(n, n, q)=[:0 , :1 , ..., :qn]); if |[(�), u1 , u2]=|=0 in T(n, n, q), then ;
belongs to (qn+1)�2 of the spaces :a :b (in such a case g belongs to 0
tangent spaces of the [n&1]-oval O(n, n, q)). Assume that g belongs to 2
tangent spaces :c1

and :c2
of O(n, n, q), and let g$ # ;. Interchanging roles

of g and g$, we see that (g$, :c1
) and ( g$, :c2

) are contained in the tangent
spaces of O(n, n, q) at respectively :c1

and :c2
. Consequently the tangent

spaces of O(n, n, q) at :c1
and :c2

contain ;. It now follows that all spaces
:i :j & :u:k with all indices distinct, together with the elements of O(n, n, q),
constitute a (n&1)-spread S in the space PG(3n&1, q) of O(n, n, q). Let
;1 , ;2 be distinct elements of S. Let y be a point of type (i) in T(n, n, q).
Then the spaces ( y, ;1) and ( y, ;2) correspond to lines M1 and M2 in
the space PG(3, qn) of the GQ T(1, 1, qn)$T(n, n, q). Let [ y$]=M1 & M2

and consider all lines M1 , M2 , ..., Mqn+1 through y$ in the plane
(M1 , M2). In the space PG(3n, q) of T(n, n, q), with these qn+1 lines
there correspond qn+1 n-dimensional spaces ( y, ;1)=#1 , ( y, ;2) =
#2 , ..., ( y, ;qn+1) =#qn+1 , with ;1 , ;2 , ..., ;qn+1 # S. Let #1 _ #2 _ } } } _
#qn+1=W; then |W|=(q2n+1&1)�(q&1). Let w1 , w2 # W, w1{w2 , with
w1 , w2 � PG(3n&1, q). Considering again T(1, 1, qn), we see that there is a
;i , i # [1, 2, ..., qn+1], such that w1 w2 has a point in common with ;i and
(w1 , ;i) /W (two lines in the plane (M1 , M2) , but not in the plane
PG(2, qn) of the oval O(1, 1, qn), which contain a common point of
PG(2, qn) define the same element of S). So w1 w2/W. Now it easily
follows that W is a 2n-dimensional space, hence ;1 _ ;2 _ } } } _ ;qn+1 is a
(2n&1)-dimensional space. We conclude that in all spaces ;1;2 , with ;1

and ;2 distinct elements of S, a (n&1)-spread is induced by S. Conse-
quently the spread S is geometric; see 8.2 of Thas [1995]. Hence by a
theorem of Segre, see Theorem 2 in 8.2 of Thas [1995], in PG(3n&1, q)
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there are n planes $1 , $2 , ..., $n over GF(qn), which are conjugate with
respect to the nth extension GF(qn) of GF(q) and which generate
PG(3n&1, q), such that each plane $i intersects each element ;� , with ; # S.
In particular each such plane $i intersects :� 0 , :� 1 , ..., :� qn . Projecting from
PG(n&1, qn) onto PG(2n&1, qn), the planes $1 , $2 , ..., $n are projected
onto the lines L1 , L2 , ..., Ln ; notations can be chosen in such a way that $i

is projected onto Li , i=1, 2, ..., n. The space (PG(n&1, qn), L1) inter-
sects PG(l1)(n&1, qn), PG(l2)(n&1, qn), ... in the points common to
PG(l1)(n&1, qn), PG(l2)(n&1, qn), ... and the plane $1 . It follows that
rl1 , rl2 , ... belong to $1 . Now it is clear that the point $1 & PG(n&1, qn)
together with the qn points rl1 , rl2 , ... form a conic C over GF(qn).

Now we choose 81=PG(3, qn) in such a way that it contains $1 , that
is, in such a way that it contains C. The point of C in PG(n&1, qn) will
be denoted by s1 . In PG(n&1, q) we now choose spaces PG(n&2, q)==,
PG$(n&2, q)==$, ... the extensions of which to GF(qn) do not contain s1 .
Projecting all points rl1 , rl2 , ... from the extensions =� , =$, ... of the resp. spaces
=, =$, ... onto 81 , we obtain elliptic quadrics T1 , T $1 , ... containing the conic
C. The tangent plane of T1 , T $1 , ... at s1 is the intersection of 81 with the
extension {� of the tangent space { of O at PG(n+1, q). Hence the quadrics
T1 , T $1 , ... have in common the tangent plane at s1 .

Consider a point rk � C. If the 3-dimensional space defined by C and rk

contains a line of PG(n&1, qn), then by projecting C _ [rk] from
PG(n&2, qn) onto 81 there arises a plane (qn+2)-arc, a contradiction as
q is odd. Hence we may choose 81 in such a way that it contains C and
rk . With the notations of the preceding paragraph, there arise quadrics
T1 , T $1 , ... containing the conic C, the point rk and having at s1 a common
tangent plane.

First, assume that T1 , T $1 , ... all coincide. By way of contradiction, let
rl � T1 , so rl � 81 . By projecting rl from =� , =$, ... onto 81 , we obtain points
of T1 which all belong to the line (PG(n&1, qn), rl) & 81 through s1 .
Hence T1 contains at least three collinear points, a contradiction. Conse-
quently rl # T1 , and so T1&[s1] is the set of all points ri , i=1, 2, ..., q2n. It
follows that any space PG(i)(n&1, qn) has a point in common with 81 . But
then T(n, 2n, q)$T(1, 2, qn), and so T(n, 2n, q) is isomorphic to the classi-
cal GQ of order (qn, q2n), a contradiction. We conclude that the quadrics
T1 , T $1 , ... do not all coincide.

Next, assume that 81 contains a point rl , with rl{rk and rl � C. Then
the quadrics T1 , T $1 , ... all contain C, rl , rk and have at s1 a common
tangent plane. Hence they all belong to a uniquely defined pencil of quad-
rics in 81 . The base B of the pencil P, that is, the quartic curve common
to all elements of P, contains C as a component, contains rk , and has s1

as multiple point. As P contains elliptic quadrics, B does not contain a line
over GF(qn) as component; if B contains a line over GF(q2n) through s1
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as component, then also s1rk is a component, a contradiction. Conse-
quently, either B consists of two non-singular conics C, C$ over GF(qn)
intersecting in distinct points s1 and s$1 , or B consists of two non-singular
conics C, C$ over GF(qn) which are mutually tangent at s1 .

Assume that B consists of two non-singular conics C, C$ over GF(qn)
which intersect in distinct points s1 and s$1 . Let (=� , ru) and (=$, ru) , with
ru � 81 , intersect 81 in r$u and r"u . We choose = and =$ in such a way that
r$u{r"u . Then put r$uru & PG(n&1, qn)=[l $u] and r"uru & PG(n&1, qn)=
[l"u]. The lines r$u r"u and l $ul"u have a point in common which belongs to
81 and PG(n&1, qn). Hence r$ur"u contains s1 . Consider a point c # C$&
[s1 , s$1]. Assume c is the projection from =� of a point ru with ru � 81 ; so
c=r$u . Choose =$ in such a way that r$u{r"u . Then s1 , r$u , r"u are collinear. As
they all belong to T $1 we have a contradiction. Hence C$&[s1] consists of
points rd . It follows that (C _ C$)&[s1] is the set of all points rd in 81 .

Next assume that B consists of two non-singular conics C, C$ over
GF(qn) which are mutually tangent at s1 . As in the previous section one
shows that (C _ C$)&[s1] is the set of all points rd in 81 .

Any two points ri and rj , i{j, define exactly one non-singular conic C

over GF(qn). The tangent line U of C at s1 is contained in the extension
of the tangent space of O(n, n, q)/O(n, 2n, q), where O(n, n, q) contains
PG(n&1, q), PG(i)(n&1, q), PG( j)(n&1, q), at PG(n&1, q), so is con-
tained in {� . Hence (PG(n&1, qn), U) intersects PG(2n&1, qn) in the
point L1 & {� . Let V be the set of all conics C in PG(n+2, qn)=\1 . Any
two distinct conics C, C* # V either have a point of \1&PG(n&1, qn) in
common, or do not have a point of \1&PG(n&1, qn) in common in which
case (PG(n&1, qn), U) =(PG(n&1, qn), U*) , where U is the tangent
line of C at s1 ([s1]=C & PG(n&1, qn)) and U* is the tangent line of C*
at s1* ([s1*]=C* & PG(n&1, qn)).

Consider again the conic C$, where C and C$ are the components of
the base B of the pencil P of quadrics. By projecting C$&[s1] from
PG(n&1, qn) onto '1 there arise qn points of a line, so it is clear that also
the conic C$ belongs to V.

Let us now consider a point ru # C&C$ and a point r$u # C$&C. The
conic C" of V through ru and ru$ intersects 81 exactly in the points ru , ru$ .
Let 8$1 be the 4-dimensional space containing C, C$, C". Further, let
rv � C _ C$ _ C". In the plane '1 there correspond with C, C$, C" distinct
lines K, K$, K", and with rv the point r~ v . Now let K$$$ be a line of '1 through
r~ v which intersects K, K$, K" in distinct points of '1&{� . With K$$$ there
corresponds a conic C$$$ of V through rv which intersects C _ C$ _ C" in at
least three distinct points. Hence C$$$ belongs to 8$1 , hence rv belongs to 8$1 .
We conclude that the q2n points rd belong to 8$1 .

Still assuming that 81 contains a point rl , with rl{rk and rl � C, we now
assume, by way of contradiction, that there exists a 3-dimensional space
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PG(3, qn)=2 which contains C1 # V and exactly one point rd � C1 . Suppose
there is a second 3-dimensional space 2$ containing C1 and exactly one
point rd $ � C1 . Let rt # C1 and let C$1{C1 be a conic of V with rt # C$1 and
rd , rd $ � C$1 . As C$1/8$1 , C$1 & 2/C1 and C$1 & 2$/C1 , the conics C1 and
C$1 necessarily have a common tangent line at rt . Hence C1 and C$1 belong
to a common 3-dimensional space 21 . Now by a preceding section either
|C1 & C$1 |=2 or C1 and C$1 are mutually tangent at some point in
PG(n&1, qn), a contradiction. Next we consider all 3-dimensional sub-
spaces of 8$1 which contain C1 . Any such subspace distinct from 2 either
contains 2qn or 2qn&1 points rd . Let : be the number of such subspaces
which contain 2qn&1 points rd , and let ; be the number of such subspaces
which contain 2qn points rd . Then we have

:(qn&1)+;qn+1+qn=q2n, and :+;+1�qn+1.

If :+;+1=qn+1, then :=qn+1, so :+;+1>qn+1, a contradiction;
if :+;+1�qn&1, then :� &qn+1, also a contradiction. Hence
:+;+1=qn, so :=1 and ;=qn&2. So there arise qn&2 conics
C2 , ..., Cqn&1, distinct from C1 , which are tangent to C1 at the common
point s1 of C1 and PG(n&1, qn), and one conic Cqn which intersects C1 in
distinct points s1 and ru . With C1 , C2 , ..., Cqn&1 there correspond in '1

qn&1 lines K1 , K2 , ..., Kqn&1 through a common point on '1 & {� ; with Cqn

there corresponds in '1 a line Kqn which intersects K1 in a point not on
'1 & {� . Hence Kqn intersects Ci in a point not on '1 & {� , i=1, 2, ..., qn&1.
Consequently the 3-dimensional space containing C1 and Cqn , coincides
with the 3-dimensional space containing C1 and Ci , i=1, 2, 3, ..., qn&1,
clearly a contradiction. We conclude that there exists no 3-dimensional
space containing a conic C1 # V and just one point rd � C1 .

From the preceding section it follows that either all 3-dimensional spaces
containing any conic C1 # V and a point rd � C1 also contain a second point
rd $ � C1 (and then there arises a uniquely defined pencil of quadrics in any
such 3-dimensional space), or no 3-dimensional space containing any conic
C1 # V contains more than one point rd � C1 .

(a) First assume that all 3-dimensional spaces containing any conic
C1 # V and a point rd � C1 also contain a second point rd $ � C1 . Hence in
each such 3-dimensional space a pencil P of quadrics is defined. Let s1 be
the common point of C1 and PG(n&1, qn) and let ru � C1 . Further let B

be the base of the pencil P of quadrics defined in the 3-dimensional space
containing C1 and ru . Then B consists of two conics C1 , C$1 through s1 ,
with ru # C$1 and C$1 # V. Consequently any of the q2n points rd belongs to
a conic of V through s1 . Now we consider all conics C1 , C2 , ... of V contain-
ing the point s1 of PG(n&1, qn). Let PG(n+1, qn) be a hyperplane of \1

which does not contain s1 and project all points of Ci&[s1] from s1 onto
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PG(n+1, qn); then there arise qn points of some line Ri . The set of all these
lines Ri will be denoted by R. Now we project the q2n points ri from s1

onto PG(n+1, qn); the projection of ri is denoted by ri*. The set of all
points ri* is denoted by B; we have |B|=q2n. Further, let A be the set of
all intersections of PG(n+1, qn) with the tangent lines of the conics Ci

at s1 . The tangent line Ui of C i at s1 belongs to {� , hence Cj & Ui=[s1]. It
follows that A & B=<. Each line Ri # R contains qn points of B and just
one point of A. Let ? be the plane containing Ri and rj* , rj* � Ri . If we now
take for 81 the space (Ri , s1 , rj*) , then the base B of the pencil P consists
of two conics Ci and Cj and (Ci _ Cj)&[s1] is the set of all points rd

in 81 . It immediately follows that ? contains the line Rj , and that ?
contains no line Rl # R with i{l{j; also, ? & B consists of all points of
Ri _ Rj in B.

Suppose that ri* and rj* are points of B not on a common line of R.
Considering all planes of PG(n+1, qn), the previous section shows that ri*
and rj* are on the same number of lines of R.

Now let ri* and rj*, i{j, be points of B on a common line of R. Let
tu+1 be the number of lines of R containing ru*. By way of contradiction
we assume that ti{tj . Let rl* be a point of B not on ri*rj*. The plane
ri*rj*rl* contains exactly one line Rk of R through rl*. If ri* � Rk and
rj* � Rk , then ri*rl* � R and rj*rl* � R, so ti=tl=tj , a contradiction. Hence
either ri* # Rk or rj* # Rk , say ri* # Rk . Then rl* is on tj+1 lines of R. Each
point of ri*rl*&[ri*] not in A, is on tj+1 lines of R. Also, each point of
ri*rj*&[ri*] not in A, is on tj+1 lines of R. Let ru* # B be not on ri*rj* and
not on ri*rl*. Assume, by way of contradiction that ru*rj* # R. As ri*ru* � R,
the point ru* is on ti+1 lines of R. For any point rc* # ri*rj*&[rj*, ri*] the
line ru*rc* does not belong to R, and so ru* is on tj+1 lines of R. Hence
ti=tj , a contradiction. Consequently ru*rj* � R. Interchanging roles of ru*
and rl*, we see that necessarily ru*ri* # R. It follows that all lines of R

contain ri*. Hence tj=0. So (t1+1)(qn&1)+1=|B|=q2n, that is, t1=qn.
Consequently there are qn+1 conics in V containing s1 , and they all share
a point ri . In PG(n&1, qn) we now consider a point s2{s1 on an element
of V. Let C be a conic of V containing ri and s2 . Choose on C a point rw

different from ri . Then there is a conic C$ in V containing rw and s1 , and
so C$ contains ri . Consequently V contains two distinct conics C and C$
through ri and rw , a contradiction. We conclude that the number of lines
of R through any point ri* # B is independent of the index i.

The constant number of lines of R which contains ri* # B will be denoted
by t+1.

Fix a line R # R and count on two ways the number of ordered pairs
(ri*, R$), with ri* # B, ri* � R, R$ & R{< and ri* # R$. We obtain

qnt(qn&1)+;qn=q2n&qn,

237GENERALIZED QUADRANGLES OF ORDER (s, s2)



File: 582A 277916 . By:CV . Date:17:07:01 . Time:08:01 LOP8M. V8.0. Page 01:01
Codes: 3213 Signs: 2319 . Length: 45 pic 0 pts, 190 mm

where ;+1 is the number of lines of R through R & A. Hence

(qn&1)(t&1)+;=0.

(1) t=0 and ;=qn&1.

The qn lines of R through R & A form a partition of B, and as t=0 the set
R only contains these qn lines. It follows that s1 belongs to exactly qn

conics of V; also these conics are mutually tangent at s1 .

(2) t=1 and ;=0.

Then R contains q2n } 2�qn=2qn lines and |A|=2qn. So s1 belongs to
exactly q2n conics of V. Let Rd1

, Rd2
, ..., Rdqn be the qn lines of R which

intersect R in B. The remaining qn lines of R necessarily intersect
Rd1

, Rd2
, ..., Rdqn . So the intersections Ri & B, Ri # R, form a grid G of order

(qn&1, 1). Clearly G is contained in a 3-dimenional space 9, A consists of
two distinct intersecting lines N1 , N2 minus their common point, and
R _ [N1 , N2] is the set of all lines of a hyperbolic quadric in 9.

In Case (2) A _ B is contained in a 3-dimensional space 9, hence all
points ri are contained in a PG(4, qn).

Now we consider Case (1). Let s2{s1 be a point of PG(n&1, qn) on a
conic C # V. Suppose that C$, C$$ are distinct conics of V containing s1 .
The qn elements of V through s1 correspond with the qn lines of '1 , distinct
from '1&?� ='1&{� and containing a common point e on '1 & {� . Hence
with C there corresponds a line of '1 not containing e. So |C & C$|=
|C & C"|=1. So C belongs to the space PG(4, qn) defined by C$, C"
and s2 . It follows that all conics of V containing s2 belong to PG(4, qn).
Consequently all points ri are contained in PG(4, qn).

Since PG(4, qn)/(PG(n&1, qn), '1)=\1 and PG(i)(n&1, qn) has
exactly one point ri in common with \1 , it has also one point ri in common
with PG(4, qn).

As (PG(4, qn),PG(n&1, qn)) =\1 , the space PG(4, qn) intersects
PG(n&1, qn) in a line M. Consequently all the common points of
PG(n&1, qn) and the conics of V belong to M.

(b) Next assume that no 3-dimensional space containing any conic
C # V contains more than one point rd � C. Let W be the set of all points
ri ; then |W|=q2n.

Let C # V and rd # W&C. Further, let 81 be the 3-dimensional space
containing C and rd . The common point of C and PG(n&1, qn) will
be denoted by s. If C=[s, r1 , r2 , ..., rqn], then rj and rd are on exactly
one conic Cj of V, with j=1, 2, ..., qn. Let Cj & PG(n&1, qn)=[sj],
j=1, 2, ..., qn. If sj=sj $ , with j{j $ and j, j $ # [1, 2, ..., qn], then the 3-dimen-
sional space defined by Cj and rj $ , contains Cj $ , so contains more than one
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point rd # W&Cj , a contradiction. So the points s1 , s2 , ..., sqn are distinct.
A same argument shows that s{sj , j{1, 2, ..., qn. Let C� =[s, s1 , s2 , ..., sqn].

Let 8$1 be the space generated by C, C1 , C2 . Further, let rd # W&
(C _ C1 _ C2). In the plane '1 there correspond with C, C1 , C2 distinct lines
K, K1 , K2 , and with rd the point r~ d . Now let K$ be a line of '1 through r~ d
which intersects K, K1 , K2 in distinct points of '1&{� . With K$ there
corresponds a conic C$ of V through rd which intersects C _ C1 _ C2 in at
least three distinct points. Hence C$ belongs to 8$1 , hence rd belongs to 8$1 .
We conclude that W is a subset of 8$1 .

Clearly 8$1 is either 4-dimensional or 5-dimensional. If 8$1 is 4-dimen-
sional, then considering all hyperplanes of 8$1 on C we have that W

contains at most 2qn+1 points, a contradiction. Consequently 8$1 is
5-dimensional.

Assume, by way of contradiction, that C� is a line. Then W is contained
in the 4-dimensional space generated by C, s1 , rd , a contradiction. So C� is
not a line, hence it also follows that 8$1 & PG(n&1, qn) is at least 2-dimen-
sional. If PG(5, qn) & PG(n&1, qn)=+ is at least 3-dimensional, then
+ & 81 is at least a line, which was shown to be impossible in the first half
of the proof. It follows that + is a plane.

Finally, since 8$1/(PG(n&1, qn), '1) =\1 and PG(i)(n&1, qn) has
exactly one point ri in common with \1 , it has also one point ri in common
with 8$1 . K

Let W be the set of all points ri ; then |W|=q2n. Assume that we are in
Case (a) of Theorem 6.1. Then the set W belongs to PG(4, qn) and
PG(4, qn) & PG(n&1, qn) is a line M. The following observations are
taken from the proof of Theorem 6.1. The set W provided with the conics
C of V forms a 2&(q2n, qn, 1) design, that is an affine plane of order qn. If
ri # C, with C # V, and if [s1]=C & PG(n&1, qn), then any point rj # W is
on a conic of V through s1 . If the 3-dimensional space 81 contains C # V
and a point of W not on C, then it contains two conics C, C$ of V. Also
|C & C$|�2 and the conics C, C$ have a common point on M. Further,
(C$ _ C)&[s1]=81 & W.

Let s1 be the common point of C # V and PG(n&1, qn). We distinguish
two cases :

(1) The point s1 belongs to qn elements of V and all these conics
have a common tangent line U at s1 ; this line U does not belong to
PG(n&1, qn).

(2) The point s1 belongs to 2qn elements of V. The set of these 2qn

conics can be partitioned into sets A1 and A2 , where each conic of A1 has
two distinct points in common with each conic of A2 and where any two
distinct conics of Ai have just s1 in common, i=1, 2. The tangents at s1 of
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all conics of Ai are all distinct and belong to a plane %i , i=1, 2; also,
%1 & %2 is a line, distinct from these 2qn tangent lines. With the qn conics of
Ai there correspond qn lines of '1 containing a common point ei of
{� & '1 , i=1, 2. It follows that the tangent lines of the elements of Ai at s1

all belong to a n-dimensional space through PG(n&1, qn), and so
%i & PG(n&1, qn) is a line Mi , i=1, 2. As %i/PG(4, qn) and PG(4, qn) &
PG(n&1, qn)=M we necessarily have M1=M2=M, and so %1 & %2=M.

Let s1 be the common point of C # V and PG(n&1, qn), and let s2 be the
common point of C$ # V and PG(n&1, qn), where s1{s2 . With C, resp. C$,
there corresponds a line N, resp. N$, of '1 . From the preceding section
follows that N and N$ intersect the line '1 & {� in distinct points. As N & N$
does not belong to '1 & {� , the conics C and C$ have exactly one point (not
in PG(n&1, qn)) in common.

The set of all common points of M with elements of V will be denoted
by M.

Theorem 6.2. Consider a non-classical TGQ T(n, 2n, q)=T(O), q odd,
with O=O(n, 2n, q)=[PG(n&1, q), PG(1)(n&1, q), PG(2)(n&1, q), ...,
PG(q2n)(n&1, q)]. If O is good at PG(n&1, q) and if the set W is contained
in a PG(4, qn), then the set W _ M of PG(4, qn) is the projection of a
quadric Veronesean V 4

2 from a point p in a conic plane onto a hyperplane
PG(4, qn).

Proof. We use the notations of Theorem 6.1 and its proof, and these of
the sections preceding Theorem 6.2.

Let :1 be the number of points in M which belong to qn elements of V,
and let :2 be the number of points in M which belong to 2qn elements of
V. Now we count on two ways the number of ordered pairs (s, C), with
s # M and C # V containing s. We obtain

:1 qn+:2(2qn)=q2n+qn,

that is,

:1+2:2=qn+1.

It follows that :1 is even. We distinguish two cases.

(i) :1�2

Let s1 , s2 , ..., s:1
be the points of M which are contained in qn conics

of V. All conics of V through si have a common tangent line Ui at si ,
i=1, 2, ..., :1 . As (PG(n&1, qn), U1) and (PG(n&1, qn), U2) intersect '1

in different points, the lines U1 and U2 do not intersect. Let C be a conic
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in V not containing s1 or s2 , and let s be the point of C in PG(n&1, qn).
Further, let ri # W. There is a conic C$ # V containing ri and s1 . Then C

and C$ have a point rj in common. As C$ is tangent to U1 at s1 , it is con-
tained in the plane (U1 , rj). Hence C$ belongs to the quadratic cone Q1

with vertex U1 and base C (as (PG(n&1, qn), U1) & '1 is not on the line
of '1 defined by C, the line U1 is skew to the plane _ of C). Consequently
W belongs to Q1 . Clearly also M belongs to Q1 . Analogously W, and also
M, belong to the quadratic cone Q2 with vertex U2 and base C.

Let ! be the 3-dimensional space (U1 , U2) . As !/{� , !/PG(4, qn), and
as PG(4, qn)/3 {� , we have {� & PG(4, qn)=!. Hence the tangent line U of C

at s is contained in the subspace !.
Now let us choose coordinates in PG(4, qn). Let s(0, 0, 1, 0, 0),

(0, 1, 0, 0, 0) # C, and let (1, 0, 0, 0, 0) # U be the pole of the line
( (0, 0, 1, 0, 0), (0, 1, 0, 0, 0)) with respect to C. So the plane _ of C has
equation X3=X4=0. Further assume that s1(0, 0, 0, 1, 0), so M has equa-
tions X0=X1=X4=0. On U1 we choose the point (0, 0, 0, 0, 1) in such a
way that the line ( (1, 0, 0, 0, 0), (0, 0, 0, 0, 1)) intersects U2 (this is
possible as U, U1 , U2 are contained in the 3-dimensional space !). Then the
hyperplane ! of PG(4, qn) has equation X1=0. Let e$ be any point of
C&[s, (0, 1, 0, 0, 0)] and let e be the intersection of the planes U1e$ and
(U2 , (0, 1, 0, 0, 0)). Choose e as point (1, 1, 1, 1, 1). Then (e, (0, 1, 0, 0, 0))
& ! is the point (1, 0, 1, 1, 1), and so (1, 0, 1, 1, 1) is on U2 . It follows
that U2 & M = [(0, 0, 1, 1, 0)] and U2 & ( (0, 0, 0, 0, 1), (1, 0, 0, 0, 0)) =
[(1, 0, 0, 0, 1)]. Further, U1e & _=[e$(1, 1, 1, 0, 0)], with _ the plane of C.
It follows that C has equations X3=X4=X 2

0&X1 X2=0.
Consequently

Q1 : X 2
0=X1X2 ,

Q2 : (X0&X4)2=X1(X2&X3).

So we have

W�Q1 & Q2=V(X 2
0&X1X2 , (X0&X4)2&X1(X2&X3)).

Now we calculate the number of points of Q1 & Q2 not in !. So we put
x1=1. As x0 and x4 can be chosen and define uniquely x2 and x3 , we have
|(Q1 & Q2)&!|=q2n=|W|. So W=(Q1 & Q2)&!. As Q1 & Q2 & !=M, we
also have W=(Q1 & Q2)&M. Clearly W=[(m, 1, m2, 2mn&n2, n) & m,
n # GF(qn)].

Now we consider the quadric Veronesean V 4
2 in PG(5, qn), where

V 4
2=[(ml, l 2, m2, 2mn&n2, nl, n2) & (l, m, n) is a point of PG(2, qn)].
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Assume that PG(4, qn) is the hyperplane X5=0 of PG(5, qn). Project V 4
2

from (0, 0, 0, 0, 0, 1) � V 4
2 onto PG(4, qn). Then we obtain the surface

1=[(ml, l 2, m2, 2mn&n2, nl, 0) & (l, m, n){(0, 0, 0)].

For l=1 we obtain the points (m, 1, m2, 2mn&n2, n, 0), with m, n # GF(qn).
Hence 1&!=W=(Q1 & Q2)&M. For l=0 we obtain the points
(0, 0, m2, 2mn&n2, 0, 0), with (m, n){(0, 0). So 1 & !�M and |1 & !|=
(qn+3)�2. The point (0, 0, 0, 0, 0, 1) from which we project is in the conic
plane .: X0=X1=X4=0 of V4

2, and is an exterior point of the conic
. & V 4

2 .
Let p1 , p2 # W, p1{p2 , let C be the conic of V containing p1 and p2 , and

let C� be any non-singular conic of 1 containing p1 and p2 . Assume, by way
of contradiction that C{C� . If _ is the plane of C and if p is a point of C�
not on C and not in !, then 81=(_, p) contains two conics C and C$
of V. Also C� &!�(C _ C$)&!. Consequently C$=C� , a contradiction as
|(C$ & C)&!|�1. Hence C=C� . Now it follows easily that V is the set of
all non-singular conics on 1, and that V is the set of the projections of all
non-singular conics on V 4

2 but not in the plane ..
From the preceding section it also follows that the set M of all common

points of M with elements of V, is the projection from (0, 0, 0, 0, 0, 1) onto
PG(4, qn) of the conic . & V 4

2 . Hence |M|=(qn+3)�2. If T1 , T2 are the
tangent lines of . & V 4

2 through (0, 0, 0, 0, 0, 1), then the points T1 & M
and T2 & M are contained in qn conics of V; if Zi is any line of . through
(0, 0, 0, 0, 0, 1) which intersects . & V 4

2 in two distinct points, then Zi & M
is contained in 2qn conics of V. Hence :1=2.

We conclude that W _ M is the projection of the quadric Veronesean
V 4

2 from (0, 0, 0, 0, 0, 1) onto the space PG(4, qn).

(ii) :1=0

In this case each point of M is contained in exactly 2qn conics of V.
Further :2=|M|=(qn+1)�2.

Let C1 , C2 be conics of V intersecting M in distinct points s1 , s2 .
The tangent line of Ci at si will be denoted by Ui , i=1, 2. As
(PG(n&1, qn), U1) and (PG(n&1, qn), U2) intersect '1 in different
points, the lines U1 and U2 do not intersect. Let ! be the 3-dimensional
space (U1 , U2). As !/{� , !/PG(4, qn), and as PG(4, qn)/3 {� , we have
{� & PG(4, qn)=!. Hence the tangent line U of any conic C # V at C & M is
contained in the subspace !.

Let C, C$ # V, C{C$, with M & C=M & C$=[s] and assume that
C & C$=[s, r].

Now let us choose coordinates in PG(4, qn). Let the hyperplane ! of
PG(4, qn) have equation X1=0, and let the hyperplane ? of PG(4, qn)
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containing C _ C$ have equation X3=0. Further, let X0=X3=0 be the
plane _ of C, and let X4=X3=0 be the plane _$ of C$. The conics C

and C$ define distinct lines of '1 , and so M is not contained in ?. As M
is contained in ! and intersects _ & _$ we may choose M to be the line
X0=X1=X4=0. Then s(0, 0, 1, 0, 0). Further, let r(0, 1, 0, 0, 0) and let
s1(0, 0, 0, 1, 0) # M. Also, let the pole of sr with respect to C be the point
(0, 0, 0, 0, 1) and let the pole of sr with respect to C$ be the point
(1, 0, 0, 0, 0). Call t a point of C&[s, r]. Now let s2 # M&[s1 , s] and let
w be the intersection of st and (r, (0, 0, 0, 0, 1)). Further, let t$ be the com-
mon point of s2 w and s1 t. Finally let e be a point of ( (1, 0, 0, 0, 0), t$)
&[(1, 0, 0, 0, 0), t$], and choose e as point (1, 1, 1, 1, 1). Then t$(0, 1, 1, 1, 1),
t(0, 1, 1, 0, 1), w(0, 1, 0, 0, 1), s2(0, 0, 1, 1, 0).

Consequently,

C: X0=X3=X1X2&X4
2=0,

C$: X3=X4=X1X2&&X0
2=0, &{0.

Let � be the pencil of quadrics in X3=0 with base curve C _ C$. Then
� is the set of quadrics 8h with

8h : X3=2hX0X4+(X1X2&&X 2
0&X 2

4)=0, h # GF(qn) _ [�].

Clearly _ _ _$ is an element of �. If #1 is the number of cones (with a point
vertex) in �, #2 is the number of non-singular elliptic quadrics in �, and #3

is the number of non-singular hyperbolic quadrics in �, then, counting in
two ways the number of pairs ( p, 8h), with p a point of ? not on C _ C$
and p # 8h # �, we obtain

(2q2n+qn+1&2qn)+#1(q2n+qn+1&2qn)

+#2(q2n+1&2qn)+#3((qn+1)2&2qn)

=q3n+q2n+qn+1&2qn.

Also #1+#2+#3=qn. The singular points of 8h , h{�, are determined by
the equations X3=hX4&&X0=X2=X1=hX0&X4=0. Hence if & is a
non-square then 8h , h{�, is always non-singular, and if & is a square
({0) then for two distinct values of h, h{�, the quadric 8h is a quadratic
cone.

So, if & is a square, then #1=2, #2=(qn&1)�2, #3=(qn&3)�2, and if & is
a non-square, then #1=0, #2=(qn+1)�2, #3=(qn&1)�2.

Let s$ be any point of M. Then the union of all the lines through s$ and
a point of W, all the tangent lines at s$ of the conics of V through s$, and
the line M, is a singular hyperbolic quadric Hs$ with vertex s$. Clearly Hs$
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contains C _ C$. If s{s$, then Hs$ & ? is a non-singular hyperbolic quadric
of the pencil �; if s=s$, then Hs$ & ?=_ _ _$. Assume, by way of contra-
diction, that for distinct points s$, s" of M, with s${s{s", we have
Hs$ & ?=Hs" & ?. Let d # (Hs$ & ?)&(C _ C$). Then d � W. On s$d there is
a point ri of W and on s"d there is a point rj of W. So ri rj intersects M,
a contradiction. So Hs$ & ?{Hs" & ?. It follows that #3�|M|&1=
(qn&1)�2. Consequently & is a non-square, #1=0, #2=(qn+1)�2 and
#3=(qn&1)�2. Also, the (qn&1)�2 non-singular hyperbolic quadrics of �
are the intersections of ? with the (qn&1)�2 singular hyperbolic quadrics
Hs$ , with s$ any point of M&[s].

Let Q1 be the singular hyperbolic quadric Hs$ , with s$(0, 0, 0, 1, 0)

Q1 : 2h1 X0X4+(X1X2&&X 2
0&X 2

4)=0, with h2
1&&({0) a square.

Let Q2 be the singular hyperbolic quadric Hs" , with s"(0, 0, 1, 1, 0)

Q2 : 2h2 X0 X4+(X1(X2&X3)&&X 2
0&X 2

4)=0, with h2
2&&({0) a square.

As Hs$ & ?{Hs" & ?, we have h1{h2 . So

W�Q1 & Q2=V(2h1X0X4+(X1 X2&&X 2
0&X 2

4),

2h2X0X4+(X1(X2&X3)&&X 2
0&X 2

4))

=V(2h1 X0X4+(X1X2&&X 2
0&X 2

4),

2(h2&h1) X0X4&X1X3).

Now we calculate the number of points of Q1 & Q2 not in !. So we put
x1=1. As x0 and x4 can be chosen and define uniquely x2 and x3 , we have
|(Q1 & Q2)&!|=q2n=|W|. So W=(Q1 & Q2)&!. As Q1 & Q2 & !=M, we
also have W=(Q1 & Q2)&M. Clearly

W=[(m, 1, &m2+n2&2h1 mn, 2(h2&h1)mn, n) & m, n # GF(qn)].

Now we consider the quadric Veronesean V 4
2 in PG(5, qn), where

V 4
2=[(ml, l 2, &m2+n2&2h1mn, 2(h2&h1)mn, nl, n2) & (l, m, n)

is a point of PG(2, qn)].

Assume that PG(4, qn) is the hyperplane X5=0 of PG(5, qn). Project V 4
2

from (0, 0, 0, 0, 0, 1) � V 4
2 onto PG(4, qn). Then we obtain the surface

1=[(ml, l 2, &m2+n2&2h1 mn, 2(h2&h1)mn, nl, 0) & (l, m, n){(0, 0, 0)].

For l=1 we obtain the points (m, 1, &m2+n2&2h1mn, 2(h2&h1)mn, n, 0),
with m, n # GF(qn). Hence 1&!=W=(Q1 & Q2)&M. For l=0 we obtain
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the points (0, 0, &m2+n2&2h1mn, 2(h2&h1)mn, 0, 0), with (m, n){(0, 0).
So 1 & !�M and |1 & !|=(qn+1)�2. The point (0, 0, 0, 0, 0, 1) from
which we project is in the conic plane .: X0=X1=X4=0 of V 4

2 , and is an
interior point of the conic . & V 4

2 .
Let p1 , p2 # W, p1{p2 , let C be the conic of V containing p1 and p2 , and

let C� be any non-singular conic of 1 containing p1 and p2 . Assume, by way
of contradiction that C{C� . If _ is the plane of C and if p is a point of C�
not on C and not in !, then 81=(_, p) contains two conics C and C$ of
V. Also C� &!�(C _ C$)&!. Consequently C$=C� , a contradiction as
|(C$ & C)&!|�1. Hence C=C� . Now it follows easily that V is the set of
all non-singular conics on 1, and that V is the set of the projections of all
non-singular conics on V 4

2 but not in the plane ..
From the preceding section it also follows that the set M of all common

points of M with elements of V, is the projection from (0, 0, 0, 0, 0, 1) onto
PG(4, qn) of the conic . & V 4

2 .
We conclude that W _ M is the projection of the quadric Veronesean

V 4
2 from (0, 0, 0, 0, 0, 1) onto the space PG(4, qn). K

Corollary 6.3. In M there are either 0 or 2 points which belong to
exactly qn elements of V.

Proof. This follows immediately from the proof of Theorem 6.2. K

Theorem 6.4. Consider a non-classical TGQ T(n, 2n, q)=T(O), q odd,
with O an egg which is good at PG(n&1, q). Assume also that the set W is
contained in a PG(4, qn). Then the set M contains exactly 2 points which
belong to exactly qn elements of V, that is, the set M is the projection of an
irreducible conic K from an exterior point p of K onto a line M of the plane
of K.

Proof. We use the notations of the preceding theorems.
Let PG(n&2, q) be any hyperplane of PG(n&1, q). Assume by way of

contradiction that the extension PG(n&2, qn) of PG(n&2, q) contains a
point s of M. As s belongs to a conic C of V, the point s together with its
conjugates with respect to the extension GF(qn) of GF(q) generate
PG(n&1, qn). But s and all its conjugates belong to PG(n&2, qn), a con-
tradiction. Hence PG(n&2, qn) & M=<.

Now we dualize in PG(n&1, qn), in such a way that the points of
PG(n&1, q) become hyperplanes of PG(n&1, q). The dual of the line M
containing M is a PG(n&3, qn). The dual of a hyperplane PG(n&2, q) of
PG(n&1, q) is a point z of PG(n&1, q), and the dual of the common
point of M and the hyperplane PG(n&2, qn) which extends PG(n&2, q)
is the hyperplane (z, PG(n&3, qn)) . Let PG(1, qn)=U be a line of
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PG(n&1, qn) which is skew to PG(n&3, qn). Then there is a linear
isomorphism % of M onto U which maps the set of the intersections
M & PG(n&2, qn), with PG(n&2, qn)=PG(n&2, q), onto the set of the
intersections U & (z, PG(n&3, qn)) , with z a point of PG(n&1, q).

We embed PG(n&1, q) in a PG(n, q), and in the extension PG(n, qn)
of PG(n, q) we choose a PG(2, qn) with PG(2, qn) & PG(n&1, qn)=U.
Now we project PG(n, q) from PG(n&3, qn) onto the plane PG(2, qn).
Assume, by way of contradiction, that the points z1 , z2 , with z1{z2 , of
PG(n, q)&PG(n&1, q) are projected onto the same point z of PG(2, qn).
Then z1z2 has a unique point in common with PG(n&1, q) which also
belongs to PG(n&3, qn). Hence the line M is contained in the extension
PG(n&2, qn) of a hyperplane PG(n&2, q) of PG(n&1, q), a contradic-
tion. It follows that the qn points z of PG(n, q)&PG(n&1, q) are projected
onto qn distinct points z$ of PG(2, qn)&U. If z$1 , z$2 # PG(2, qn)&U, with
z$1{z$2 , are such projections, then the set of all intersections U & z$1z$2 is
exactly the set of all intersections U & <z, PG(n&3, qn)>, with z a point
of PG(n&1, q).

We now embed PG(2, qn) in a PG(3, qn), and in PG(3, qn) we choose a
plane ? in such a way that ? & PG(2, qn)=U. Assume, by way of con-
tradiction, that the set M in the statement of the theorem does not contain
a point which belongs to exactly qn elements of V. If M %=M� , then there
exists a non-singular conic C in ?, with C & U=<, such that M� is the set
of all exterior points of C on U; see Thas [1981]. Dualizing in PG(3, qn),
we see that with the qn projections z$ # PG(2, qn)&U there correspond qn

planes which intersect some quadratic cone K in qn mutually disjoint non-
singular conics (the points of K different from its vertex v correspond with
the planes of PG(3, qn) which intersect ? in a tangent line of C; the point
v corresponds with the plane ?). Hence there arises a flock F of K. As all
points z$ are coplanar, the corresponding planes all contain a common
point w. As the set of all intersections M & PG(n&2, qn) is not a singleton
all points z$ are not collinear, and so by Thas [1987] the point w
necessarily is an exterior point of K. It follows that PG(2, qn) contains 2
points of C, that is |U & C|=2, a contradiction.

We conclude that the set M contains exactly 2 points which belong to
exactly qn elements of V. K

Lemma 6.5. Consider a non-classical TGQ T(n, 2n, q)=T(O), q odd,
with O an egg which is good at PG(n&1, q). Assume also that the set W is
contained in a PG(4, qn). If s1 , s2 are the points of M which belong to
exactly qn elements of V, then s1 , s2 are conjugate with respect to the nth
extension GF(qn) of GF(q), that is, s1 , s2 are in the same orbit of the group
(%) with % the collineation of order n of PG(n&1, qn) which fixes
PG(n&1, q) pointwise.
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Proof. Let s1(x0 , x1 , ..., xn&1) and s2( y0 , y1 , ..., yn&1) in PG(n&1, qn).
As each point s # M belongs to a conic C # V, the space (s, s%, s%2

, ..., s%n&1)
is (n&1)-dimensional. So the extension PG(n&2, q) of any hyperplane
PG(n&2, q) of PG(n&1, q) intersects M=s1 s2 in a point not in M. As M

is the projection onto M of a non-singular conic K from an exterior point
of K, we have that the cross-ratio [s1 , s2 ; v, w]=g for any two distinct
points v, w not in M.

The hyperplane Xi=0 of PG(n&1, qn) intersects M in the point

vi (x0 yi&xi y0 , ..., xi&1 yi&xi yi&1 , 0, xi+1 yi&xi yi+1 , xn yi&xi yn),

i=0, 1, ..., n. As [s1 , s2 ; vi , vj]=[(1, 0), (0, 1);( yi , &xi), ( yj , &xj)], we
have [s1 , s2 ; vi , vj]=( yj xi)�( yixj)=g for all i, j=0, 1, ..., n with i{j.
Hence xiyi xjyj=g for all i, j=0, 1, ..., n with i{j. Next, let

$: a0 X0+a1 X1+ } } } +an&1Xn&1=0, ai # GF(q),

be any hyperplane of PG(n&1, q). If v is the common point of $� and M,
then

v=(a0 y0+a1 y1+ } } } +an&1yn&1) s1

+(&a0 x0&a1x1& } } } &an&1xn&1)s2.

If $${$ is a second hyperplane of PG(n&1, q), with

$$: b0 X0+b1X1+ } } } +bn&1Xn&1=0, bi # GF(q),

and if w is the common point of $$ and M, then

w=(b0 y0+b1 y1+ } } } +bn&1 yn&1)s1

+(&b0 x0&b1x1& } } } &bn&1xn&1) s2.

Hence

[s1 , s2 ; v, w]={(1, 0), (0, 1); \:
i

ai yi ,&:
i

aixi+ , \:
i

bi yi ,&:
i

bixi+= .

Consequently

[s1 , s2 ; v, w]=\:
i

bi yi :
i

aixi+<\:
i

bixi :
i

ai yi+=g,
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and so

:
i

aixi :
i

ai yi :
i

bixi :
i

bi yi=g.

As the points s1 , s2 do not belong to the hyperplane X0=0 of
PG(n&1, qn), we may assume that x0=1=y0 . Then

xi yi=g, i=1, 2, ..., n&1,

and

\a0+ :
n&1

i=1

aixi+\a0+ :
n&1

i=1

ai yi+=g, (1)

with a0 , a1 , ..., an&1 # GF(q) and (a1 , a2 , ..., an&1){(0, 0, ..., 0).
If the elements 1, x1 , x2 , ..., xn&1 are linearly dependent over GF(q), then

l0+l1x1+l2x2+ } } } +ln&1xn&1=0 for some l0 , l1 , ..., ln&1 # GF(q) with
(l0 , l1 , ..., ln&1){(0, 0, ..., 0). Hence the point s1 belongs to the extension of
the hyperplane l0X0+l1X1+ } } } +ln&1Xn&1=0 of PG(n&1, q), a con-
tradiction. Consequently the elements 1, x1 , x2 , ..., xn&1 are linearly inde-
pendent over GF(q). It folllows that

GF(qn)=[c0+c1x1+c2x2+ } } } +cn&1xn&1 & ci # GF(q)].

Analogously,

GF(qn)=[c0+c1y1+c2y2+ } } } +cn&1yn&1 & ci # GF(q)].

Now we consider the mapping . defined by

.: GF(qn) � GF(qn), c0+c1x1+ } } } +cn&1xn&1

� c0+c1 y1+ } } } +cn&1 yn&1.

Clearly . is a permutation of GF(qn).
Let h, k be distinct elements of GF(qn), with

h=a0+a1x1+ } } } +an&1xn&1,

k=b0+b1 x1+ } } } +bn&1xn&1.

Then

(h.&k.)(h&k)=\a0&b0+ :
n&1

i=1

(ai&bi) yi+\a0&b0+ :
n&1

i=1

(ai&bi)xi+ .
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By (1) we have

(h.&k.)(h&k)=g.

Also 0.=0 and 1.=1. Now by a theorem of Carlitz [1960]

.: GF(qn) � GF(qn), h [ hpr
,

with q=ph, p prime, and 1�r�hn&1 (r{0 as s1{s2). For any a # GF(q)
we have

ay1=(ax1).=(ax1) pr
=a prx pr

1 =a prx.
1=a pry1 .

As y1{0, we have

apr
=a, for all a # GF(q).

It follows that r=dh for some d, with 1�d�n&1, and so

.: GF(qn) � GF(qn), h [ hqd
.

As

%: PG(n&1, qn) � PG(n&1, qn), (z0 , z1 , ..., zn&1) [ (zq
0 , zq

1 , ..., zq
n&1),

we have

s2=(1, y1 , ..., yn&1)=(1, x.
1 , ..., x.

n&1)=(1, xqd

1 , ..., xqd

n&1)=s%d

1 .

We conclude that s1 and s2 are in the same orbit of the group (%) . K

Theorem 6.6. Consider a non-classical TGQ T(n, 2n, q)=T(O), q odd,
with O an egg which is good at PG(n&1, q). If the set W is contained in
a PG(4, qn), then the translation dual T(O*) of T(O) is good at { with { the
tangent space of O at PG(n&1, q).

Proof. We use the notations of Lemma 6.5.
The point si belongs to qn elements of V and all these conics have a

common tangent line Ui at si , i=1, 2; this line Ui does not belong to
PG(n&1, qn), i=1, 2. The collineation of order n of PG(4n&1, qn) which
fixes PG(4n&1, q) pointwise (and so is an extension of %), will also be
denoted by %. If C # V contains si , then (Ui , U %

i , U %2

i , ..., U %n&1

i ) is the
tangent space at PG(n&1, q) of the [n&1]-oval O(n, n, q) defined by C,
i # [1, 2]. If %d=%$ then the line U %$

1 contains the point s%$
1 =s2 , and the line

U2
%$&1

contains the point s1 . If U2=U %$
1 , then the qn [n&1]-ovals defined

by the conics of V through s1 and the qn [n&1]-ovals defined by the
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conics of V through s2 all have the same tangent space at PG(n&1, q),
a contradiction. So U2{U %$

1 and U %$&1

2 {U1 . Let }=(U1 , U %$&1

2 ); then
}%$=(U %$

1 , U2) .
Consider an element PG(i)(n&1, q) of O(n, 2n, q)=O, and the tangent

space {i of O at PG(i)(n&1, q). Let ri be the point of W which corresponds
with PG(i)(n&1, q), and let Cj be the conic of V which contains ri and sj ,
j=1, 2. Let Zj be the tangent line of Cj at ri , j=1, 2. Then {� i=
(Z1 , Z2 , Z%

1 , Z%
2 , ..., Z%n&1

1 , Z%n&1

2 ). If U1 & Z1=[z1] and U2 & Z2=[z2],
then {� i & }=z1z%$&1

2 and {� i & }%$=z2z%$
1 . Let {� i & }=Yi ; then {� i & }%$=Y %$

i .
We have {� & {� i=(Yi , Y %

i , ..., Y %n&1

i ). As {� & {� i{{� & {� j for i{j, there holds
Yi{Yj for i{j. So with the q2n elements of O&[PG(n&1, q)] there
correspond the q2n lines of } not through s1 . Let t be a point of }, with
t{s1 , and let Yi1 , Yi2 , ..., Yiqn be the qn lines of } not containing s1 . The
extensions PG(i1)(n&1, qn), PG(i2)(n&1, qn), ..., PG(iqn)(n&1, qn) of the ele-
ments PG(i1)(n&1, q), PG(i2)(n&1, q), ..., PG(iqn)(n&1, q) # O&[PG(n&1, q)]
all contain the point t, hence they all contain the (n&1)-dimensional space
�� =(t, t%, t%2

, ..., t%n&1
>/{� . So � is contained in qn+1 tangent spaces of

O. Let PG(i)(n&1, q), PG( j)(n&1, q) # O&[PG(n&1, q)], i{j, let {i be
the tangent space of O at PG(i)(n&1, q), and let {j be the tangent space of
O at PG( j)(n&1, q). If {� & {� i=Y1 , {� & {� j=Yj and Yi & Yj=[t], then �=
{ & {i & {j with �� =(t, t%, t%2

, ..., t%n&1). So { & {i & {j is contained in exactly
qn+1 tangent spaces of O. Hence the translation dual T(O*) of T(O) is
good at {. K

Theorem 6.7. Consider a non-classical GQ S(F ) of order (q2, q), q odd,

arising from the flock F and assume that the point-line dual S(F )@ of S(F )
is a TGQ T(n, 2n, q)=T(O). Then the translation dual T(O*) is good at the
tangent space { of O at the element ` of O, where ` is the point (�) of S(F ).
If the corresponding set W is contained in a PG(4, qn), then the flock F is
a Kantor flock.

Proof. As S(F ) is not classical, by 3.3 of Payne and Thas [1991] the
point (�) of S(F ) is a line of type (b) of T(O), that is, a line which is an
element PG(n&1, q)=` of O. By Section 4 T(O) satisfies Property (G) at
PG(n&1, q) and then by Theorem 3.5 the translation dual T(O*) of T(O)
is good at the tangent space { of O at PG(n&1, q). As for T(O*) the
corresponding set W is contained in a PG(4, qn), by Theorem 6.6 the TGQ
T(O) is good at PG(n&1, q). Now by Corollary 4.2 the flock F is a Kantor
flock. K

Theorem 6.8. Consider a non-classical TGQ T(n, 2n, q)=T(O), q odd,
with O=O(n, 2n, q)=[PG(n&1, q), PG(1)(n&1, q), ..., PG(q2n)(n&1, q)].
Assume that O is good at PG(n&1, q) and that the set W is contained in
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a PG(5, qn), but not in a PG(4, qn). If P is the set of all common points of
the plane +=PG(n&1, qn) & PG(5, qn) with conics of V, then W _ P is a
quadric Veronesean V 4

2 in PG(5, qn).

Proof. Let C, C$ # V, with C{C$, and assume that C & +=C$ & +
=[s]. If |C & C$|=2, then C and C$ are contained in a 3-dimensional
space PG(3, qn) which contains C and more than one point rd # W&C, a
contradiction (see section preceding (a) in the proof of Theorem 6.1).
Hence C & C$=[s].

Consider a conic C # V and all conics C$ # V&[C] containing a point of
C&+. As no 3-dimensional space containing C contains more than one
point rd # W&C, the conics C and C$ generate a 4-dimensional space.
Assume, by way of contradiction, that the 4-dimensional spaces ?$1 and
?$2 , respectively defined by C, C$1 and C, C$2 with C$1 , C$2 # V&[C],
|C & C$1 & W|�1, |C & C$2 & W|�1 and C$1{C$2 , coincide. Let rv � C _
C$1 _ C$2 , rv # W. In the plane '1 (we still use the notations introduced at
the beginning of the proof of Theorem 6.1) there correspond with
C, C$1 , C$2 distinct lines K, K$1 , K$2 , and with rv the point r~ v . Now let K" be
a line of '1 through r~ v which intersects K, K$1 , K$2 in distinct points of
'1&{� . With K" there corresponds a conic C" of V through rv which inter-
sects C _ C$1 _ C$2 in at least three distinct points. Hence C" belongs to ?$1 ,
and so rv belongs to ?$1 . We conclude that W/?$1 , a contradiction.
Consequently ?$1{?$2 , that is, the q2n conics C$ define q2n 4-dimensional
spaces. Let ?$ be the 4-dimensional space generated by C and C$, with
C$ # V&[C] and |C & C$ & W|�1. Assume, by way of contradiction, that
?$ & W contains a point rd not in C _ C$. In the plane '1 there correspond
with C, C$ distinct lines K, K$, and with rd the point r~ d . Now let K" be a
line of '1 through r~ d which intersects K, K$ in distinct points of '1&{� . With
K" there corresponds a conic C" of V through rd which intersects each
of C, C$ in a point not in +. So C" belongs to ?$, and consequently the
4-dimensional spaces generated by C, C$, respectively C, C", coincide, a
contradiction. It follows that ?$ & W=(C _ C$) & W.

Next, assume that the conics C1 , C2 # V, with C1{C2 , define lines of the
plane '1 which intersect {� in a common point. Suppose, by way of con-
tradiction, that C1 & C2=<. Let #i be the plane of Ci , i=1, 2. Assume first
that (#1 , #2) is 5-dimensional. Then the q2n 4-dimensional spaces of the
preceding section defined by C1 , intersect #2 in q2n distinct lines. Hence one
of these spaces, say $, intersects C2 in two distinct points of W. If C1 , C$
are the conics of V in $, then C$ contains two distinct points of C2 & W,
clearly a contradiction. Consequently (#1 , #2) is 4-dimensional. If
ri # C2 & W, then the 3-dimensional space generated by C1 and ri contains
just one point of C2 & W, hence intersects #2 in the tangent line of C2 at ri .
This tangent line contains the common point l of #1 and #2 . Consequently
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qn tangent lines of C2 are concurrent, a contradiction as q is odd. So we
conclude that |C1 & C2 |=1, that is, C1 & +=C2 & +.

From the foregoing follows that the q2n+qn conics of V intersect + in
exactly qn+1 distinct points; the set of these qn+1 points will be denoted
by P.

Now we will use Theorem 25.2.13 of Hirschfeld and Thas [1991] to
prove that P _ W is a quadric Veronesean in PG(5, qn). Call L the set
with as elements the plane + and the q2n+qn planes of the conics of V.
Any point of P _ W belongs to qn+1 elements of L, hence no point of
P _ W belongs to all elements of L. Relying also on the section preceding
(a) in the proof of Theorem 6.1 we have : (i) if C & +=C$ & +=[s], with
C, C$ # V and C{C$, then the planes of C and C$ have just s in common,
(ii) if C & C$ & +=<, with C, C$ # V and C{C$, then the common point
of C and C$ is the unique common point of the planes of C and C$, and
(iii) for any C # V, the plane of C contains exactly one point of the plane
+. It follows that any two distinct elements of L have exactly one point
in common. Now we consider any three distinct elements ?1 , ?2 , ?3 of L.
First, assume that ?i{+, with i=1, 2, 3. Let Ci be the element of V in ?i ,
with i=1, 2, 3. Assume, by way of contradiction, that ?1 , ?2 , ?3 generate
a PG(4, qn). Let rv � C1 _ C2 _ C3 , rv # W. In the plane '1 there correspond
with C1 , C2 , C3 distinct lines K1 , K2 , K3 and with rv the point r~ v . Now let
K$ be a line of '1 through r~ v which intersects K1 , K2 , K3 in distinct points
of '1&{� . With K$ there corresponds a conic C$ of V through rv which
intersects C1 _ C2 _ C3 in three distinct points. Hence C$ belongs to
PG(4, qn), hence rv belongs to PG(4, qn), so W/PG(4, qn), a contra-
diction. It follows that (?1 , ?2 , ?3) =PG(5, qn). Next, suppose that
?3=+. Let Ci be the element of V in ?i , with i=1, 2. Assume, by way
of contradiction, that PG(4, qn)=(?1 , ?2) also contains +. Let
rv � C1 _ C2 , rv # W. In the plane '1 there correspond with C1 , C2 distinct
lines K1 , K2 and with rv the point r~ v . Now let K$ be a line of '1 through
r~ v which intersects K1 , K2 in distinct points of '1&{� . With K$ there
corresponds a conic C$ of V through rv which intersects C1 _ C2 in two dis-
tinct points of W and which contains a point of + not on C1 _ C2 . Hence
C$ belongs to PG(4, qn), hence rv belongs to PG(4, qn), so W/PG(4, qn),
a contradiction. Now by Theorem 25.2.13 of Hirschfeld and Thas [1991],
which is a corollary of a theorem by Tallini [1958], L is the set of all
conic planes of a quadric Veronesean V 4

2 in PG(5, qn). Also, V 4
2 is the set

of all intersections of pairs of distinct elements of L, that is,
V4

2=W _ P. K

Main Theorem 6.9. Consider a TGQ T(n, 2n, q)=T(O), q odd, with
O=O(n, 2n, q)=[PG(n&1, q), PG(1)(n&1, q), ..., PG(q2n)(n&1, q)]. If O
is good at PG(n&1, q), then we have one of the following.
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(a) There exists a PG(3, qn) in the extension PG(4n&1, qn) of the
space PG(4n&1, q) of O(n, 2n, q) which has exactly one point in common
with each of the spaces PG(n&1, qn), PG(1)(n&1, qn), ..., PG(q2n)(n&1, qn).
The set of these q2n+1 points is an elliptic quadric of PG(3, qn) and T(O)
is isomorphic to the classical GQ Q(5, qn).

(b) We are not in Case (a) and there exists a PG(4, qn) in
PG(4n&1, qn) which intersects PG(n&1, qn) in a line M and which has
exactly one point ri in common with any space PG(i)(n&1, qn),
i=1, 2, ..., q2n. Let W=[ri & i=1, 2, ..., q2n] and let M be the set of all
common points of M and the conics which contain exactly qn points of W.
Then the set W _ M is the projection of a quadric Veronesean V 4

2 from a
point p in a conic plane of V 4

2 onto a hyperplane PG(4, qn); the point p is
an exterior point of the conic of V 4

2 in the conic plane. Also, if the point-line
dual of the translation dual of T(O) is a flock GQ S(F ), then F is a Kantor
flock.

(c) We are not in Cases (a) and (b) and there exists a PG(5, qn)
in PG(4n&1, qn) which intersects PG(n&1, qn) in a plane + and which
has exactly one point ri in common with any space PG(i)(n&1, qn),
i=1, 2, ..., q2n. Let W=[ri & i=1, 2, ..., q2n] and let P be the set of all com-
mon points of + and the conics which contain exactly qn points of W. Then
the set W _ P is a quadric Veronesean in PG(5, qn).

Proof. In Case (a), T(n, 2n, q) is the interpretation over GF(q) of
T(1, 2, qn)$Q(5, qn). If we are not in Case (a), then the theorem directly
follows from Theorems 6.1, 6.2, 6.4, 6.7 and 6.8. K

Remark. If we project the Veronesean V4
2 in PG(5, qn) onto some

PG(3, qn)/PG(5, qn) from a line N which intersects V 4
2 in two points of

PG(5, q2n)&PG(5, qn) which are conjugate with respect to the extension
GF(q2n) of GF(qn), then we obtain an elliptic quadric of PG(3, qn).

Conjectures. (a) In Case (c) of the Main Theorem and if the point-
line dual of the translation dual of T(O) is a flock GQ, then the flock GQ
is a Roman GQ of Payne (see Payne [1988], [1989]). As by the Main
Theorem, and also by some other results not mentioned here, we have
strong information on this class of GQ, we hope to prove shortly this con-
jecture. This would yield the complete classification of all TGQ of order
(s, s2), s odd and s{1, for which the point-line dual is a flock TGQ.

(b) Any TGQ T(O) of order (s, s2) and s{1, with O good at some
element, is the point-line dual of the translation dual of a translation flock
GQ.

Final remark. For s even Johnson [1987] proves that any TGQ for
which the point-line dual is a flock GQ, is the classical GQ Q(5, s). We

253GENERALIZED QUADRANGLES OF ORDER (s, s2)



File: 582A 277932 . By:CV . Date:17:07:01 . Time:08:04 LOP8M. V8.0. Page 01:01
Codes: 5244 Signs: 2102 . Length: 45 pic 0 pts, 190 mm

conjecture that any TGQ T(O) of order (s, s2), s even and s{1, with O
good at some element, is the classical GQ Q(5, s).
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