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Abstract A numerical boundary integral scheme is proposed for the solution of the system of field

equations of plane, linear elasticity in stresses for homogeneous, isotropic media in the domain

bounded by an ellipse under mixed boundary conditions. The stresses are prescribed on one half

of the ellipse, while the displacements are given on the other half. The method relies on previous

analytical work within the Boundary Integral Method [1,2].

The considered problem with mixed boundary conditions is replaced by two subproblems with

homogeneous boundary conditions, one of each type, having a common solution. The equations

are reduced to a system of boundary integral equations, which is then discretized in the usual way

and the problem at this stage is reduced to the solution of a rectangular linear system of algebraic

equations. The unknowns in this system of equations are the boundary values of four harmonic

functions which define the full elastic solution inside the domain, and the unknown boundary val-

ues of stresses or displacements on proper parts of the boundary.

On the basis of the obtained results, it is inferred that the tangential stress component on the

fixed part of the boundary has a singularity at each of the two separation points, thought to be of

logarithmic type. A tentative form for the singular solution is proposed to calculate the full solu-

tion in bulk directly from the given boundary conditions using the well-known Boundary Collo-

cation Method. It is shown that this addition substantially decreases the error in satisfying the

boundary conditions on some interval not containing the singular points.

The obtained results are discussed and boundary curves for unknown functions are provided,

as well as three-dimensional plots for quantities of practical interest. The efficiency of the used
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numerical schemes is discussed, in what concerns the number of boundary nodes needed to cal-

culate the approximate solution.
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1. Introduction

The plane problem of the linear Theory of Elasticity has
received considerable attention long ago as being a simplified
alternative to the more realistic three-dimensional problems

of practical interest. A large class of two-dimensional problems
has been tackled using various analytical techniques. Due to the
increasing mathematical difficulties encountered in the theoret-

ical studies of problems involving arbitrary boundary shapes or
complicated boundary conditions, many purely numerical tech-
niques have been developed in the past few decades, which rely

on finite difference or finite element techniques. In both meth-
ods, the natural boundary of the body is usually replaced by an
outer polygonal shape which involves a multitude of corner
points and necessarily adds or deletes parts to the region occu-

pied by the body. This, in turn, necessitates the application of
boundary conditions on artificial boundaries, a fact that intro-
duces additional inaccuracies into the solution. Minimizing the

error requires large computing times.
Some of the disadvantages of the numerical techniques are

overcome by the use of alternative, semi-analytical treatments

based on Boundary Integral Formulations of the problem.
Such approaches are usually classified under the general title
of Boundary Integral Methods. They have the advantage of

reducing the volume of calculations by considering, at one
stage, only the boundary values of the unknown functions
and then using them to find the complete solution in bulk.
An extensive account of integral equation methods in potential

theory and in elastostatics may be found in [3] and [4]. Natr-
oshvili et al. [5] give a brief review of boundary integral meth-
ods as applied to the theory of micropolar elasticity.

Constanda [6] investigates the use of integral equations of
the first kind in plane elasticity. Atluri and Zhu [7] present a
meshless local Petrov-Galerkin approach for solving problems

of elastostatics. Sladek et al. [8] and Rui et al. [9] present mesh-
less boundary integral methods for 2D elastodynamic prob-
lems. Elliotis et al. [10] present a boundary integral method

for solving problems involving the biharmonic equation with
crack singularities. Li et al. [11] present a numerical solution
for models of linear elastostatics involving crack singularities.

The solution of plane problems of elasticity for isotropic

media with mixed boundary conditions is a difficult task.
Boundary methods may be useful in providing such solutions,
especially when the geometry of the domain boundary is not

simple. Several papers deal with such problems, either for
Laplace’s equation or for the biharmonic equation. Shmegera
[12] finds exact solutions of non-stationary contact problems

of elastodynamics for a half-plane with friction condition in
the contact zone in a closed form. A new method of solution
based on the use of Radon transform is used. Schiavone [13]

presents integral solutions of mixed problems in plane strain
elasticity with microstructure. Haller-Dintelman et al. [14] con-
sider three-dimensional elliptic model problems for heteroge-

neous media, including mixed boundary conditions. Helsing
[15] studies Laplace’s equation under mixed boundary condi-
tions and their solution by an integral equation method. Prob-

lems of elasticity are also considered. Lee et al. [17,16] study
singular solutions at corners and cracks in linear elastostatics
under mixed boundary conditions. Explicit solutions are ob-
tained. Khuri [18] outlines a general method for finding well-

posed boundary value problems for linear equations of mixed
elliptic and hyperbolic type, which extends previous tech-
niques. This method is then used to study a particular class

of fully non-linear mixed type equations.
Abou-Dina and Ghaleb [1,2] proposed a method to deal

with the static, plane problems of elasticity in stresses for homo-

geneous isotropic media occupying simply connected regions.
The method relies on the representation of the biharmonic
stress function in terms of two harmonic functions and on the
well-known integral representation of harmonic functions ex-

pressed in real variables. This method was applied to a number
of examples with boundary conditions of the first, or of the sec-
ond type only, but the case of mixed conditions was not consid-

ered. Constanda [19] discusses Kupradze’s method of
approximate solution in linear elasticity. The same author
[20] explains the advantages and convenience of the use of real

variables due to its generality in dealing with the different forms
of the boundary, unlike the approach based on the use of com-
plex variables ‘‘where the essential ingredients of the solution

must be constructed in full for every individual situation’’.
In the present paper, we propose a semi-analytical scheme

for the solution of a mixed boundary-value problem of plane,
linear elasticity for homogeneous, isotropic elastic bodies occu-

pying a domain bounded by an ellipse. Part of the boundary is
subjected to a given pressure, and the remaining part of the
boundary is fixed. The initial problem with mixed boundary

conditions is replaced by two subproblems with homogeneous
boundary conditions, one of each type, having a common solu-
tion. Following the scheme presented in [1], the equations for

each of these two subproblems are reduced to a system of
boundary integral equations which are then discretized in the
usual way, and the problem at this stage is reduced to the solu-

tion of a rectangular system of linear algebraic equations. The
obtained results are discussed and graphs are given. In particu-
lar, we put in evidence the singular behavior of the tangential
stress component at the two separation boundary points. A sin-

gular solution is proposed and used to obtain the solution in
bulk by the Boundary Collocation Method. Three-dimensional

http://creativecommons.org/licenses/by-nc-nd/4.0/
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plots are provided. The efficiency of the used scheme is dis-
cussed. All figures were produced using Mathematica 7.0
software.

2. Problem formulation and basic equations

Consider an infinitely long cylinder of elliptical normal cross-

section from an isotropic, homogeneous, elastic material. A
system of orthogonal Cartesian coordinates is used, with origin
0 at the center of the ellipse, x-axis along the major axis of the

ellipse. The parametric equations of the boundary C may be
taken as:

x ¼ a cosðhÞ; y ¼ b sinðhÞ; 0 6 h < 2p; ð1Þ

2a and 2b being respectively the lengths of the major and the

minor axes of the ellipse, while h denotes the eccentric angle
of a general point on the ellipse. For dimension analysis pur-
poses, the half-length of the major axis is taken to be the char-

acteristic length, i.e. a is taken to be equal to unity, a = 1.
Also, we take b = 0.5.

Let s be the unit vector tangent in the positive sense associ-
ated with C and n the unit outwards normal to C at any arbi-

trary point. One has

s ¼ _x

x
iþ _y

x
j; n ¼ _y

x
i� _x

x
j: ð2Þ

The general equations of the linear theory of elasticity for a
homogeneous and isotropic material are well established and
may found in standard references. In what follows, we shall

quote these equations as presented in [1] without proof, to
be used throughout the text. In the absence of body forces,
the equations of equilibrium are automatically satisfied if the

identically non-vanishing stress components are defined
through the stress function U by the relations

rxx ¼
@2U

@y2
; ryy ¼

@2U

@x2
; rxy ¼ �

@2U

@x@y
: ð3Þ

With respect to polar coordinates, the stress components are:

rrr¼
1

r

@U

@r
þ 1

r2
@2U

@h2
; rhh¼

@2U

@r2
; rrh¼

1

r2
@U

@h
�1

r

@2U

@r@h
: ð4Þ

In Cartesian coordinates, Hooke’s law reads

rxx ¼
mE

ð1þ mÞð1� 2mÞ
@u

@x
þ @m
@y

� �
þ E

ð1þ mÞ
@u

@x
; ð5Þ

ryy ¼
mE

ð1þ mÞð1� 2mÞ
@u

@x
þ @m
@y

� �
þ E

ð1þ mÞ
@m
@y
; ð6Þ

rxy ¼
E

2ð1þ mÞ
@u

@y
þ @m
@x

� �
; ð7Þ

where u and v are the displacement components along the axes,
E and m are Young’s modulus and Poisson’s ratio, respectively,
for the considered elastic medium.

The compatibility condition for the solution of Eqs. (5)–(7)
for the displacement components leads to the following homo-
geneous biharmonic equation for the stress function U:

D2U ¼ 0: ð8Þ

The function U solving Eq. (8) is

U ¼ x/þ y/c þ w; ð9Þ
where / and w are two harmonic functions, the superscript

‘‘c’’ denotes the harmonic conjugate and D is the closure of
D. Since the boundary integral representation is to be used,
it seems adequate to suppose from the outset that the

function / and w and their conjugates belong to the class
of functions C2(D). The following representation for
the mechanical displacement components may be easily
deduced:

E

1þ m
u ¼ � @U

@x
þ 4ð1� mÞ/; ð10Þ

and

E

1þ m
t ¼ � @U

@y
þ 4ð1� mÞ/c: ð11Þ

In terms of the harmonic functions /, /c and w, the stress and
the displacement components are expressed as follows:

rxx ¼ x
@2/
@y2
þ 2

@/c

@y
þ y

@2/c

@y2
þ @

2w
@y2

; ð12Þ

ryy ¼ x
@2/
@x2
þ 2

@/
@x
þ y

@2/c

@x2
þ @

2w
@x2

; ð13Þ

rxy ¼ �x
@2/
@x@y

� y
@2/c

@x@y
� @2w
@x@y

ð14Þ

and

E

1þ m
u ¼ ð3� 4mÞ/� x

@/
@x
� y

@/c

@x
� @w
@x

; ð15Þ

E

1þ m
t ¼ ð3� 4mÞ/c � x

@/
@y
� y

@/c

@y
� @w
@y

: ð16Þ
3. Boundary integral representation of the basic equations

In what follows, we present the boundary integral representa-

tion of the basic equations and boundary conditions to be used
in the sequel. We closely follow the guidelines of [1].

3.1. Boundary integral representation of harmonic functions

Let f 2 C2ðDÞ be harmonic in D. We use the well-known inte-
gral representation for f at an arbitrary field point (x,y) in D in

terms of the boundary values of the function f and its complex
conjugate fc in the form:

fðx; yÞ ¼ 1

2p

I
s

fð�sÞ @
@�n

lnRþ fcð�sÞ @
@�s

lnR

� �
d�s; ð17Þ

where R is the distance between the point (x, y) in D and the
current integration point (x(ś), y(ś)) on S. The representation
of the conjugate function is given by

fcðx; yÞ ¼ 1

2p

I
s

fcð�sÞ @
@�n

lnR� fð�sÞ @
@�s

lnR

� �
d�s: ð18Þ

The integral representations (17) and (18) for the harmonic

functions f and fc replace the usual Cauchy-Riemann
conditions

@f

@x
¼ @f

c

@y
and

@f

@y
¼ � @f

c

@x
: ð19Þ

When the point (x, y) tends to a boundary point (x(s), y(s)),
relation (17) yields
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fðsÞ ¼ 1

p

I
s

fð�sÞ @
@�n

lnRþ fcð�sÞ @
@�s

lnR

� �
d�s: ð20Þ

Replacing @
@�n

� �
lnR by @

@�s

� �
H in (17), (18) and their boundary ver-

sion (20), where H is the complex conjugate of lnR, it is readily
seen that these integral relations are invariant under the trans-
formation of parameter from the arc length s to any other suit-

able parameter. This property makes the method more flexible.

3.2. Conditions for the uniqueness of the solution

Before dealing with each of the two above-mentioned funda-
mental problem, we first turn to the conditions to be satisfied
in order to determine the unknown harmonic functions in an

unambiguous manner. This is of primordial importance for
any numerical treatment of the problem, for a proper use of
the solving algorithm. We shall require the following supple-
mentary conditions to be satisfied at the point Q0(s = 0) of

the boundary, in order to determine the totality of the arbi-
trary integration constants appearing throughout the solution
process. These additional conditions have no physical implica-

tions on the throughout the problem:
(1) The vanishing of the function U and its first order par-

tial derivatives at Q0

U ¼ @U
@x
¼ @U
@y
¼ 0;

or, equivalently,

U ¼ @U
@s
¼ @U
@n
¼ 0;

which, in terms of the boundary values of the unknown har-
monic functions, give

xð0Þ/ð0Þ þ yð0Þ/cð0Þ þ wð0Þ ¼ 0; ð21Þ
xð0Þ _/ð0Þ þ yð0Þ _/cð0Þ þ _wð0Þ þ _xð0Þ/ð0Þ þ _yð0Þ/cð0Þ ¼ 0; ð22Þ
xð0Þ _/cð0Þ � yð0Þ _/ð0Þ þ _wcð0Þ þ _yð0Þ/ð0Þ � _xð0Þ/cð0Þ ¼ 0:ð23Þ

(ii) The vanishing of the expression

xð0Þ/ð0Þc � yð0Þ _wð0Þ þ /cð0Þ ¼ 0: ð24Þ

This last additional condition amounts to determining the va-
lue of wc at Q0 and this is chosen to simplify the formulae.

3.3. Boundary conditions for the first fundamental problem of
elasticity

In the first fundamental problem, we are given the force distri-
bution on the boundary S of the domain D.

Let

f ¼ fxiþ fyj ¼ fssþ fnn;

denote the external force per unit length of the boundary.
Then, at a general boundary point Q, the stress vector

rn ¼ f;

or, in components,

rxxnx þ rxyny ¼ fx and rxynx þ ryyny ¼ fy: ð25Þ

The stress function U at the boundary point Q.

@U

@s
ðsÞ ¼ � _xðsÞYðsÞ þ _yðsÞXðsÞ; @U

@n
ðsÞ

¼ � _yðsÞYðsÞ � _xðsÞXðsÞ;
or, in terms of the unknown harmonic functions

xðsÞ _/ðsÞ þ yðsÞ _/cðsÞ þ _wðsÞ þ _xðsÞ/ðsÞ þ _yðsÞ/cðsÞ
¼ � _xðsÞYðsÞ þ _yðsÞXðsÞ ð26Þ

and

xðsÞ _/cðsÞ � yðsÞ _/ðsÞ þ _wcðsÞ þ _yðsÞ/ðsÞ � _xðsÞ/cðsÞ
¼ � _yðsÞYðsÞ � _xðsÞXðsÞ: ð27Þ
3.4. Boundary conditions for the second fundamental problem of
elasticity

In this problem, we are given the displacement vector on the
boundary S of the domain D. Let this vector be denoted

d ¼ dxiþ dyj ¼ dssþ dnn:

Multiplying the restriction of expression (15) to the boundary
S by _xðsÞ and that of expression (16) by _yðsÞ and adding, one

gets

ð3� 4mÞð _xðsÞ/ðsÞ þ _yðsÞ/cðsÞÞ � xðsÞ _/s� yðsÞ _/cðsÞ
� _wðsÞ

¼ E

1þ m
ð _xðsÞdxðsÞ þ _yðsÞdyðsÞÞx: ð28Þ

Similarly, if one multiplies the restriction of expression (15) to
the boundary S by _yðsÞ and that of expression (16) by _xðsÞ and
subtracting, one obtains

ð3� 4mÞð _yðsÞ/ðsÞ � _xðsÞ/cðsÞÞ � xðsÞ _/csþ yðsÞ _/ðsÞ
� _wcðsÞ

¼ E

1þ m
ð _yðsÞdxðsÞ � _xðsÞdyðsÞÞx: ð29Þ

These last two relations may be conveniently rewritten as

ð3� 4mÞð _xðsÞ/ðsÞ þ _yðsÞ/cðsÞÞ � xðsÞ _/s� yðsÞ _/cðsÞ
� _wðsÞ

¼ E

1þ m
dsðsÞx ð30Þ

and

ð3� 4mÞð _yðsÞ/ðsÞ � _xðsÞ/cðsÞÞ � xðsÞ _/csþ yðsÞ _/ðsÞ
� _wcðsÞ

¼ E

1þ m
dnðsÞx: ð31Þ
3.5. Boundary conditions for the third fundamental problem of

elasticity

This is a problem with mixed boundary conditions. For defi-
niteness, we shall restrict further considerations to the case
where one half of the boundary has a prescribed pressure on

it, while the other half of the boundary is fixed. This problem
will be replaced by two subproblems, each with homogeneous
boundary condition. The first subproblem is of the first kind. It
involves the given known pressure on the same half of the

boundary as the initial problem and an unknown stress on
the other half. This stress is expressed through its normal
and tangential components, respectively, denoted frn ; ers .
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The second subproblem is of the second type. It involves zero
displacement on the same half of the boundary as the initial
problem and an unknown displacement on the other half. This

displacement is expressed through its normal and tangential
components, respectively, denoted eun ; eus .

In what follows, we shall apply this idea to solve the prob-

lem for the ellipse.

3.6. Calculation of the harmonic functions at internal points

Having determined the boundary values of the harmonic func-
tions, formulae (17) and (18) may now be used to calculate the
values of these functions at any point (x, y) inside the domain.

For this, we write:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xðs0ÞÞ2 þ ðy� yðs0ÞÞ2

q
;

@ lnðRÞ
@n

¼ n � rðlnRÞ @ lnðRÞ
@s

¼ s � rðlnRÞ:
ð32Þ

We can also proceed otherwise. In fact, if we write down

expansions of the four harmonic functions involved in the cal-
culations in terms of some adequately chosen basis, we can
then determine the expansion coefficients using the well-known
Boundary Collocation Method (BCM). This is in fact the

method we have used to calculate the unknown functions in
the circular domain. The expansions of the four basic har-
monic functions in terms of polar harmonics are as follows:

/¼
XN
n¼1

rnðAn cosnhþBn sinnhÞ; /c¼
XN
n¼1

rnðAn sinnh�Bn cosnhÞ; ð33Þ

w¼
XN
n¼1

rnðEn cosnhþDn sinnhÞ; wc¼
XN
n¼1

rnðEn sinnh�Dn cosnhÞ; ð34Þ

while the stress function is

U ¼ x/þ y/c þ w ð35Þ
and the quantities of practical interest are:

2lu¼
XN
n¼1

rnðAn cosnhþBn sinnhÞ�
XN
n¼1

nrnðAn cosðn�2Þh

þBn sinðn�2ÞhÞ�
XN
n¼1

nrn�1ðEn cosðn�1ÞhþDn

� sinðn�1ÞhÞ; ð36Þ

2lv¼
XN
n¼1

rnðAn sinnh�Bn cosnhÞ�
XN
n¼1

nrnð�An sinðn�2Þh

þBn cosðn�2ÞhÞ�
XN
n¼1

nrn�1ð�En sinðn�1ÞhþDn

� cosðn�1ÞhÞ: ð37Þ
The equations for the normal and the tangential stresses on

any given element of area with unit normal (nx, ny) inside the
body or on its boundary are given by the following formulae:

rn ¼
XN
n¼1

rn�1An cosðn�1Þh ð3n�n2Þn2r þðn2þnÞn2h
� �

þ2ðn2�nÞnrnh sinðn�1Þh
� �

þ
XN
n¼1

rn�1Bn sinðn�1Þh ð3n�n2Þn2r þðn2þnÞn2h
� �

þ2ðn2�nÞnrnh cosðn�1Þh
� �

þ
XN
n¼1

rn�2Cn cosnh ðn�n2Þn2r þðn2�nÞn�h2
� �

þ2ðn2�nÞnrnh sinnh
� �

þ
XN
n¼1

rn�2Dn sinnh ðn�n2Þn2r þðn2�nÞn2h
� �

þ2ðn�n2Þnrnh cosnh
� �

;

ð38Þ
rs¼
XN
n¼1

rn�1An cosðn

�1Þh ð�2nþ2n2Þnrnhþðn2�nÞ n2r �n2h
� �

sinðn�1Þh
� �

þ
XN
n¼1

rn�1Bnðsinðn

�1Þh ð�2nþ2n2Þnrnhþðn�n2Þ n2r �n2h
� �

cosðn�1Þh
� �

þ
XN
n¼1

rn�2Cnðcosnhð�2nþ2n2Þnrnhþðn2�nÞn2hþ2ðn2

�nÞðn2r �n2hÞsinnhÞ

þ
XN
n¼1

rn�2Dn sinnhð�2n�2n2Þnrnhþðn�n2Þ n2r �n2h
� �

cosnh
� �

;

ð39Þ

rxx ¼
XN
n¼1

nðn� 1Þrn�1ð�An cosðn� 3Þh� Bn sinðn

� 3ÞhÞ þ 2
XN
n¼1

nrn�1ðAn cosðn� 1Þhþ Bn sinðn

� 1ÞhÞ þ
XN
n¼1

nðn� 1Þrn�2ð�En cosðn� 2ÞhþDn

� sinðn� 2ÞhÞ; ð40Þ

ryy ¼
XN
n¼1

nðn� 1Þrn�1ðAn cosðn� 3Þhþ Bn sinðn� 3ÞhÞ

þ 2
XN
n¼1

nrn�1ðAn cosðn� 1Þhþ Bn sinðn� 1ÞhÞ

þ
XN
n¼1

nðn� 1Þrn�2ðEn cosðn� 2ÞhþDn sinðn

� 2ÞhÞ ð41Þ

and
rxy ¼
XN
n¼1

nðn� 1Þrn�1ð�An sinðn� 1Þhþ Bn cosðn

� 1ÞhÞ �
XN
n¼1

nðn� 1Þrn�2ð�En sinðn� 2ÞhþDn

� cosðn� 2ÞhÞ: ð42Þ

The relevant boundary relations are discretized in the usual

way by considering a partition of the boundary. As a result,
the actual boundary is replaced by a contour formed by
broken lines. The differential and integral equations thus re-

duce to a rectangular system of linear algebraic equations
which are solved by the Least Squares method. The conver-
gence of the solution of the discretized system of equations
to the solution of the initial problem was discussed else-

where [20]. Here, we only notice the existence of removable
singularities in the formulae of integral representation of
harmonic functions. These are dealt with in the manner ex-

plained in [2]. Also, the tangential derivatives of the un-
known harmonic functions have to be evaluated carefully
as they can be a major source of error. We have calculated

these derivatives using 31 points.



Figure 1 Boundary values of the basic harmonic functions for 220 nodes.

Figure 2 Boundary values of the normal and tangential force and displacement components for 220 nodes.
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4. Numerical results and discussion

The force acting on one half of the boundary is a pressure of
intensity f given by

f ¼ �p0ðsin hÞ6; p < h 6 2p: ð43Þ
The other half of the boundary is completely fixed:

u ¼ v ¼ 0; 0 < h 6 p: ð44Þ

For definiteness, we have taken p0 = 1. The motivation for the
above choice of the pressure is to make the pressure distribu-
tion tend to zero smoothly enough at both ends of its interval



Figure 3 Boundary values of the stress function.

Figure 4 Singular points.
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of definition, so as to reduce any potential conflict with the
boundary condition prevailing on the other half of the bound-
ary (zero displacements).

The above boundary integral equations were solved numer-

ically, from which we have obtained the boundary values of
the harmonic functions /; /c; w; wc; ~rn; ~rs; ~un; ~us and,
accordingly, of the stress function U on the boundary. In this

procedure, it is important to specify the rule by which the no-
dal points are scattered on the boundary. Equidistant nodes
are one variant, concentration of the nodes toward the singular

points is another option. For the present case, the boundary
was discretized by placing a number of nodal points distrib-
uted uniformly with respect to the angle h on it as explained,

220 boundary nodes were needed in order to get the present re-
sults. The results are shown on Fig. 1.

As numerical experiments, we have considered the case of
the circular boundary and found out that weak discontinuities

appear on the curves of the basic harmonic functions at the
boundary separation points. These discontinuities are not
clearly defined on the figures for the presently considered case

of the ellipse.
Figure 5 Displacement compone
The displacement components converged rapidly to zero to-
ward the boundary separation points. Perturbations appeared,
however, when calculating the tangential stress component in

the vicinity of these singular points. Increase in the number
of nodes could not improve the situation, thus indicating a sin-
gular behavior. To put in evidence the nature of the singular-

ities, curve fitting was used to reach smooth shapes of the
curves. A logarithm was used at each separation point for
curve fitting for the tangential stress component. This is shown

on Fig. 2 (see Fig. 3).

5. On the singular solution

Based on the results of numerical experiments presented
above, we propose a function ws with boundary singularities
at the separation points to be added to the function w, in order

to get the required logarithmic behavior of the function rs at
the singular points (±a, 0). Such a function was proposed
by Abou-Dina and Ghaleb [21] in connection with the solution
of some boundary-value problems for Laplace’s equation in

rectangular domains. Here, it has a somewhat different shape.
To get the required singular behavior of the tangential stress
component, one needs an analytic function of the type z2log

z to be added to the stress function, where z denotes a complex
argument. Fig. 4 shows the emplacements of the singularities
of function ws, where local polar coordinates centered at the

singular points have been used. A correct choice of direction
of the polar axes at the singularities is necessary for obtaining
good results.

The function ws has the form:

ws ¼
1

2p
½q2

1ðsin 2h1 ln q1 þ h1 cos 2h1Þ þ q2
2ðsin 2h2 lnq2 þ h2

� cos 2h2Þ�;

where

q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 2ar cos hþ a2
p

; q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2ar cos hþ a2
p

;

h1 ¼ tan�1
r cos h� a

�r sin h

� �
; h2 ¼ tan�1

r cos hþ a

�r sin h

� �
:

Figs. 5 and 6 show three-dimensional plots of the stress and the
displacement components inside the ellipse after adding the
singular solution. The sinusoidal form of the normal stress
component on one-half of the boundary is clear, while the

tangential stresses on the same portion of boundary show
nts inside the ellipse by BCM.



Figure 6 Stress components inside the ellipse by BCM.

Figure 7 Boundary values of the tangential stress component

without logarithm.

Figure 8 Boundary values of the tangential stress component

with logarithm.
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logarithmic behavior. For reference, we have also plotted a flat
surface representing the cross-section of the ellipse.

Such rise in the tangential stress component means that the
linear elastic model will fail to provide an accurate description
of the problem in the vicinity of the boundary separation

points. A more accurate study would require the consideration
of regions of plastic deformation around these points.

Figs. 7 and 8 show the improvement that occurred in the

evaluation of the tangential stress component on the boundary
interval 3.17 6 h 6 6.25 after including the singular solution.
The maximal absolute error on this interval was reduced from

.3 · 10�2 to .3 · 10�4.

6. Conclusions

We have considered a boundary-value problem of the plane
theory of elasticity with mixed boundary conditions in the el-
lipse. Half of the boundary is subjected to a variable pressure,
while the other half is completely fixed. The boundary pressure

was chosen to decrease smoothly enough to zero toward the
points of separation in order to reduce the possibility of
non-existence of a solution. To get the solution on the bound-

ary, the initial problem was replaced by two subproblems, each
with homogeneous boundary condition of one type, having a
common solution. The calculations on the boundary were per-

formed using a known boundary integral technique involving
harmonic functions only, including regularization at the nodes
and a careful calculation of the derivatives of functions along

the boundary. The boundary calculations indicated a logarith-
mic behavior of the tangential stress component on the fixed
part of the boundary. The solution inside the domain was ob-
tained by the Collocation Method directly using the prescribed
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boundary conditions. In solving the systems of linear algebraic
equations arising from discretization, we have used packages
named Least Squares and QR-Factorization techniques. Both

yielded the same results. Each time, we verified that the ob-
tained results satisfy the system of equations with high
accuracy.

The numerical treatment within boundary integral methods
of this type of problems requires a relatively large number of
boundary nodes at which the unknowns are to be calculated.

For the present case, 220 points could be reached without
obtaining satisfactory results over the whole boundary. The
reason for this is the presence of singular boundary points at
the separation points of the boundary conditions. Increasing

the number of points increased the accuracy of the results up
to a certain level. In order to improve the solution, a singular
term with logarithmic boundary singularity was added to the

solution. The absolute errors in satisfying the boundary condi-
tions on an interval not including the separation points could
thus be reduced from .3 · 10�2 to .3 · 10�4. The obtained

results indicate the need to introduce domains of possible plas-
tic behavior of the material around the two boundary separa-
tion points.

Future work will involve more complicated shapes of the
boundary and other types of mixed boundary conditions. In
each case, the behavior of the solution near the points of sep-
aration will be investigated.
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