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Abstract

Computational origami is the computer assisted study of mathematical and computational aspects of
origami. An origami is constructed by a finite sequence of fold steps, each consisting in folding along
a fold line. We base the fold methods on Huzita’s axiomatization, and show how folding an origami can
be formulated by a conditional rewrite system. A rewriting sequence of origami structures is viewed as an
abstraction of origami construction. We also explain how the basic concepts of constraint and functional
and logic programming are related to this computational construction. Our approach is not only useful for
computational construction of an origami, but it leads us to automated theorem proving of the correctness
of the origami construction.

Keywords: computational origami, constraint solving, rewriting, functional logic programming,
automated theorem proving

1 Introduction

We are interested in programming support for computational origami, the computer
assisted study of origami. An origami is constructed by a finite sequence of fold
steps, each consisting in folding along a fold line. We use several admitted fold
operations to find a fold line and then we fold an origami along the fold line.

As Euclidean postulates are the basis of Euclidean geometry, origami can be
based on a formal system. Huzita in 1989 proposed an axiomatization of origami [5].
Since then, his axiomatization has been studied extensively [1,3,4]. We base our
study of origami on Huzita’s axiomatization. We will formulate Huzita’s axiomati-
zation first in the language of first-order predicate logic and then as a conditional
rewrite system. A rewriting sequence of origami structures is seen as an abstraction
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of the origami construction. In so doing, we will be able to turn the declarative
statements about the origami foldability to computing statements, i.e. program.

We use an origami construction of Morley’s triangle as an illustrative example
of our study. We also explain how the basic concepts of constraint and rewrite-
based programming are related to this computational construction. Our approach
is not only useful for computational construction of origami, but it leads to auto-
mated theorem proving of correctness of the construction. The rest of the paper is
organized as follows. Section 2 gives the basic notions and notations used in our
modeling of origami. In Sect. 3, we formalize the basic fold operations that Huzita
proposed. Then in Sect. 4, we formalize the fold. In Sect. 5, we give the construc-
tion of Morley’s triangle. In Sect. 6, we briefly describe the current programming
and computational capabilities of our computational origami environment Eos, and
discuss desirable new features. In Sect. 7, we summarize our work and indicate a
direction of further research.

2 Basics of origami modeling

We give the notions about the geometric objects of our study and notations used
in this paper. Thorough descriptions of geometric notions in plane geometry are
treated in standard textbooks [11,13].

A point is the basic object we use without definition. We denote points by
P1, . . . , Pn. By Pi,j , where i � j, we denote the sequence Pi, ..., Pj of points. When
i = 1, we omit i and write Pj .

By 〈〈Pn〉〉, we denote several geometric objects that are the ingredients of origami.
A ray, i.e. a directed line segment, is represented by a structure 〈〈P1, P2〉〉, where P1

and P2 are the points that the line passes through. A ray is also denoted by
−−−→
P1P2.

An n(n � 3)-gon, i.e. a simple n-edge polygon (polygon consisting of n edges
none of which intersect), is represented by a structure 〈〈P1, . . . , Pn〉〉 made of a se-
quence of vertices P1, . . . , Pn, with the following property: 〈〈P1, . . . , Pn〉〉 and its
cyclic permutation 〈〈P1+k, . . . , Pn+k〉〉 for arbitrary k � 1 are the same 3 .

The degenerate cases of P1 = P2 of the ray, and of Pi = Pi+1 for some i of the
n-gon are not specifically treated as this kind of rigor is not what we pursue in this
paper. It is assumed that the duplication of the same points in the those structures
are automatically removed when they are used.

Definition 2.1 (Face) A face is a convex n-gon.

A face f = 〈〈Pn〉〉 is up if the vertices P1, . . . , Pn are arranged counter-clockwise,
otherwise down. Because of the convexity of the n-gon, we can easily determine
whether the vertices Pn are arranged clockwise or counter-clockwise.

Definition 2.2 (Face division) Let f be 〈〈Pn〉〉. Suppose that points X and Y lie
on the ray

−−−−→
PiPi+1 and

−−−−→
PjPj+1, respectively, where i < j. The division of the face f

by the ray
−−→
XY , written as δ−−→

XY
(f), is defined as follows:

3 The index addition is performed in modulo the number of elements of the sequence.
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Case 1:
−−→
XY does not overlap with one of the edges of f

δ−−→
XY

(f) = 〈f1, f2〉

where f1 = 〈〈Y,X, Pi+1,j〉〉 and f2 = 〈〈X, Y, Pj+1,n+i〉〉.
Note that 〈〈Y,X, Pi+1,j〉〉 and/or 〈〈X,Y, Pj+1,n+i〉〉 would become degenerate cases if
the points X and/or Y are the vertices of the n-gon to be divided.

Case 2:
−−→
XY overlaps with one of the edges of f

δ−−→
XY

(f) = 〈f, 〈〈X, Y 〉〉〉 or 〈〈〈Y,X〉〉, f〉 .

The division of the front side of the face is illustrated in Fig. 1.

Pi

Y

Pi+1

Pj

Pj+1

X

l

P1

PiX

Pi+1Y

Pn

l

Fig. 1. Face division.

The application of δ−−→
XY

to up face f is a pair consisting of geometric objects f1

and f2, and f1 is to the right of
−−→
XY and f2 to the left of

−−→
XY .

Definition 2.3 (Face rotation) For a point P , ρθ
r(P ) is the rotation of P by an

angle θ along a ray r. ρθ
r is extended to a face. Namely, if f = 〈〈P1, . . . , Pn〉〉 then

ρθ
r(f) = 〈〈ρθ

r(P1), . . . , ρθ
r(Pn)〉〉.

In origami folds, faces are divided before rotation. Namely, each face f subjected
to fold is first divided into f1 and f2, i.e. δr(f) = 〈f1, f2〉, and then f1 is rotated
along r by applying ρθ

r to f1.

Definition 2.4 (Abstract Origami) An abstract origami is a structure (Π,�,�
), where Π is the set of faces, � is an overlay relation on Π and � is an adjacency
relation on Π. We hereafter call the abstract origami simply an origami.

Regarding the overlay and adjacency relations, we do not details them as we dis-
cussed elsewhere [7]. We use O to denote a set of origami’s. When we make a fold,
we specify which faces we will fold. The set of faces that we are interested in folding
is called the set of the faces of concern.

Definition 2.5 (Single-step fold) Let O1, O2 ∈ O where O1 = (Π1,�1,�1). An
origami single-step fold from O1 to O2 is defined as a relation:

O1 �F ,r,θ O2

where F ⊆ Π1 is the set of faces of concern, r is a fold ray, and θ is the angle of
rotation.
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V(O) denotes the set of points in O. When the number of divided faces is k, and r

is
−−→
XY , we have:

V(O2) = V(O1) ∪ {Xk, Yk},
where the points Xk, Yk are created in this fold 4 .

Definition 2.6 (Origami construction) Let O1, . . . , On ∈ O. A fold sequence

O1 �F1,r1,θ1 O2 �F2,r2,θ2 · · · �Fn−1,rn−1,θn−1 On

is called an origami construction from O1 to On. We may also write O1 �∗ On.

3 Huzita’s axiomatization of origami construction

3.1 Huzita’s basic folds in brief

Huzita proposed the following operations as the basic folds:

(O1) We can make a fold along a line that passes through given points P and Q.

(O2) We can make a fold along the line that superposes given points P and Q.

(O3) We can make a fold along a line that superposes two given lines m and n.

(O4) We can make a fold along a line that is perpendicular to a given line m, and
passes through a given point P .

(O5) We can make a fold along a line that passes through a given point Q and
superposes a given point P on a given line m.

(O6) We can make a fold along a line that superposes a given point P on a given
line m and a given point Q on a given line n.

Remark 3.1

(i) When we say that we are given n points, those n points are distinct and they
are all on the origami. Likewise, when we are given n lines, those n lines are
distinct and they pass through two distinct points on the origami.

(ii) In the case of (O3), there exists one or two fold lines.

(iii) In the cases of (O5) and (O6), there may be multiple fold lines or none. It is
decidable whether a fold line satisfying the properties exists or not.

The statements (O1)∼(O6) are often called Huzita’s axioms in the literature.
The statements (O5) and (O6) are not axioms in mathematical sense since we have
situations where a fold is impossible to satisfy the properties. To be rigorous,
we have to understand the statements (O5) and (O6) together with the above
remark (iii) in order to call them axioms.

4 We let X1 = X and Y1 = Y .
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3.2 Huzita’s axioms in first-order language

Let P and Q denote points, and l, m and n denote lines. Corresponding to the
statements (O1) ∼ (O6) in the previous subsection, we have the following formulas.

∀P,Q ∃ l OnLine(P, l) ∧ OnLine(Q, l).(A1)
∀P,Q ∃ l reflection(P, l) = Q.(A2)
∀m, n∃ l ∀P OnLine(P,m) ⇒ OnLine(reflection(P, l), n).(A3)

∀P,m ∃ l ∀QOnLine(P, l) ∧ (OnLine(Q, m)⇒
OnLine(reflection(Q, l), m)).

(A4)

∀P,Q, m∃ l OnLine(Q, l) ∧ OnLine(reflection(P, l), m).(A5)
∀P,Q, m, n∃ l OnLine(reflection(P, l), m) ∧ OnLine(reflection(Q, l), n).(A6)

All the predicates and functions have to be given precise meaning in the proper
semantic domain. A rigorous treatment of the semantics of Huzita’s axioms is
given in [4]. We give informal meaning to those symbols based on the geometrical
intuition, as we go along.

We first fix the domain of interpretation to be the domain of algebraic numbers.
We will see shortly that if we represent a line as a term line(a, b, c) that passes
through two given points defining the line, we are always able to find the values of
a, b and c in formulas (A1) ∼ (A6). However, the values may be complex numbers.
In such cases, we can not give geometric meaning in the Euclidean plane. This
observation supplements Remark (iii) in Subsection 3.1.

Formula (A1) states that for any points P and Q, there exists a line l such that
P is on l and Q is on l. In formula (A2), the predicate reflection(P, l) = Q states
that the reflection of a point P in a line l is the point Q.

3.3 Huzita’s axioms in rewrite rules

To reason about the computation implicit in the Huzita’s axioms, the description
in first-order predicate logic is not ideal. When we prove the correctness of an
existentially quantified formula, often we are not only interested in the satisfiability
of the formula, but in the substitution made to the existential variables. Obtaining
the values instantiated in the existential variables is the intended purpose of the
proving, often called solving rather than proving, however.

A rewrite rule clearly serves better for this intention, if we are more inter-
ested in computation rather than declarative statements. Let us consider basic
fold operation (O1) to begin with. The basic idea in transcribing a first-order
formula to a rewrite rule is to define a new relation R(P,Q, l), which is true if
OnLine(P, l) ∧ OnLine(Q, l) holds. Namely, we state

∀P,Q, l (R(P,Q, l) ⇐ OnLine(P, l) ∧ OnLine(Q, l)).

This means that for any combinations of values of P , Q and l, if OnLine(P, l)∧
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OnLine(Q, l) holds, then R(P,Q, l) holds. In particular if for any combinations of
values of P , Q and l for which formula (A1) holds, then R(P,Q, l) holds. This can
be written as a 3-CTRS (type 3 Conditional Term Rewrite System)[10].

foldTh(P,Q) → l ⇐ OnLine(P, l) ∧ OnLine(Q, l).

Here, we have introduced a new function symbol foldTh, and replaced the relation
R(P,Q, l) by the rewrite relation foldTh(P,Q) → l.

We then want to define OnLine as a rewrite rule. At this point we need to
commit ourselves to a certain representation of points and lines. In this paper, we
use the Cartesian coordinate system to represent points and a linear equation to
represent a line. We use constructor symbols point and line to represent them in
term structures.

OnLine(point(x, y), line(a, b, c)) → true ⇐ ax + by + c = 0

To make the equation ax + by + c = 0 always represent a line, we need to impose a
constraint on the coefficients a, b, and c. This constraint is stated in the predicate
Coeff(line(a, b, c)). One possible definition of Coeff(line(a, b, c)) is the following:

(−1 + b)b = 0 ∧ (−1 + a)(−1 + b) = 0.

A slightly complicated re-reasoning of the above rewrite rule leads to the following
rewrite rule.

foldTh(P,Q) → l ⇐ OnLine(P, l) ∧ OnLine(Q, l) ∧ Coeff(l).

(O2) is easily transcribed to the following rewrite rule:

(1) foldBr(P,Q) → l ⇐ reflection(P, l) = Q ∧ Coeff(l),

where reflection(P, l) is written as a rewrite rule:

reflection(point(x, y), line(a, b, c))

→ point
(−a2x + b2x − 2a(c + by)

a2 + b2
,
−2b(c + ax) + a2y − b2y

a2 + b2

)
.

Since (O3) is already a formula of implication, transcribing (O3) needs a bit of
algebraic manipulation. Let P , l, m, n be point(x, y), line(a, b, c), line(a1, b1, c1),
line(a2, b2, c2), respectively. Then the algebraic interpretation of the right-hand side
(of ⇒) in formula (A3) is

c2 +
b2(−2b(c + ax) + a2y − b2y)

a2 + b2
+

a2(−a2x + b2x − 2a(c + by))
a2 + b2

= 0,
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which is equivalent to the formula a′x + b′y + c′ = 0, where

a′ = −a2a2 + a2b
2 − 2abb2

b′ = −2aa2b + a2b2 − b2b2

c′ = −2aa2c − 2bb2c + a2c2 + b2c2

Let l′ be the line line(a′, b′, c′). Then it is easy to see that

(a′, b′, c′) = −k · (a1, b1, c1) for some k.

From the above formula, we can obtain the following rewrite rules:

foldBrLine(line(a1, b1, c1), line(a2, b2, c2)) → l ⇐ l = line(a, b, c)

∧ − a2a2 + a2b
2 − 2abb2 + ka1 = 0 ∧ −2aa2b + a2b2 − b2b2 + kb1 = 0

∧ − 2aa2c − 2bb2c + a2c2 + b2c2 + kc1 = 0 ∧ Coeff(l).

Note that the algebraic expressions in the above formula are square-root free. In
general, solving the conditional part of this rewrite rule yields two solutions for a,
b, c and k, which shows that there are two fold lines that superpose lines m and n.

Similarly, we can obtain the following rewrite rules that correspond to the axioms
(O4) ∼ (O6), respectively.

foldPerTh(P,m) → l ⇐
OnLine(P, l) ∧ (OnLine(Q, m) ⇒ OnLine(reflection(Q, l), m)) ∧ Coeff(l).

foldThBr(P,Q, m) → l ⇐ OnLine(Q, l) ∧ OnLine(reflection(P, l), m) ∧ Coeff(l).
foldBrBr(P,Q, m, n) → l ⇐

OnLine(reflection(P, l), m) ∧ OnLine(reflection(Q, l), n) ∧Coeff(l).

The conditional part of the rewrite rules will become the conjunction of equations
when the rules are applied. In order to perform rewriting of the left-hand side to
the righthand side of the rewrite rules, we need to solve the system of equations.
This can be done either statically or dynamically. By statically, we mean that we
can transform the rewrite rule to a new rewrite rule that does not require constraint
solving at run time. This will be detailed in the next subsection.

The conditional rewrite system that describes Huzita’s axioms can rewrite the
same ground term in more than one way. This behavior indicates that some single-
step folds can be performed in more than one way. It can be shown that every
ground term can be transformed in at most 3 ways. When the rewriting is non-
deterministic, it is desirable to allow the user to view the alternatives and to choose
one to proceed to the next fold step of the construction.

3.4 Transformation of rewrite rules

In this subsection we will show an example of static transformation of rewrite rules.
Rewriting of the term foldBr(P,Q) by the rewrite rule (1) for (O2) requires con-
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straint solving of the set of equations

{(−1 + a)(−1 + b) = 0, (−1 + b)b = 0,

−2b (c + ax1) + a2y1 − b2y1

a2 + b2
= y2,

−a2x1 + b2x1 − 2a (c + by1)
a2 + b2

= x2 }
for a, b, and c. The solution of the above system is

{
a → 1, b → 0, c → −x1 − x2

2

}

if y1 = y2, and
{

a → x1 − x2

y1 − y2
, b → 1, c → −x2

1 + x2
2 − y2

1 + y2
2

2 (y1 − y2)

}

if y1 �= y2. Therefore, the rewrite rule (1) is reduced to

foldBr(point(x1, y),point(x2, y)) → line(1, 0,
−x1 − x2

2
)

foldBr(point(x1, y1),point(x2, y2)) → line(
x1 − x2

y1 − y2
, 1,

−x2
1 + x2

2 − y2
1 + y2

2

2 (y1 − y2)
)

If rewriting is performed in a symbolic computation environment such as of Math-
ematica [14], the above transformation can be done semi-automatically. So on one
hand it is possible to reduce the run time computing cost by static transformation.
We need not solve the same constraints repeatedly.

On the other hand, for theorem proving, we need to maintain the set of equations
symbolically. Origami construction is interactive. As our experiences with Eos [8]
show, constraint solving is not prohibitively expensive, even when we use usual
laptop computers. Therefore solving constraints dynamically is also feasible.

4 Formalizing Fold

Now let us consider formalization of the essential part of origami, i.e. fold. Each
fold requires the following parameters: the set F of faces of concern, the rotation
angle θ (either π or −π in this paper) and the basic fold operation to apply together
with appropriate parameters of lines and points given to the operation.

A fold operation can be decomposed into seven computational steps:

(F-1) Choose a basic fold operation from among (O1)∼(O6).

(F-2) Find a fold line l according to the fold method.

(F-3) Specify the set F of the faces of concern and the ray r obtained from l.

(F-4) Compute the set G of all the faces that are affected by the fold.

(F-5) Divide the faces by l and classify all the obtained faces into “to be moved” and
“to be non-moved”.
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(F-6) Compute the overlay and adjacency relations.

(F-7) Rotate the “to be moved” faces along r by the angle θ.

In this paper we consider an origami construction where each fold operation is
followed by an unfold, so that we always make a fold on a square piece of origami
paper. This is the case of the construction of Morley’s triangle. The modeling of
the folds in general cases requires the analysis of overlay and adjacency relations
on the faces at step (F-4). Then the faces are divided and classified at step (F-5).
At step (F-6) the overlay and adjacency relations are computed using the relations
computed in the previous origami construction step. Finally, at step (F-7), the
“to be moved” faces are rotated. The resulting origami forms layers of faces and
exhibits an artistic shape.

5 Construction of Morley’s triangle

In this section we will show how to formalize the origami construction of Morley’s
triangle [2]. Given an arbitrary triangle, Morley’s triangle is the triangle inside
the given triangle, formed by the three intersections of neighboring trisectors of
the angles of the given triangle. The Morley’s triangle is always equilateral. This
is an interesting example of a construction that can be realized with only a piece
of origami paper by following simple constructive steps [6]. Since angle trisection
cannot be realized by means of a compass and a ruler, it is a surprising result,
which shows that an origami construction exceeds the capabilities of the Euclidean
construction by the compass and ruler.

5.1 Overview of the construction

Figure 2 illustrates the construction of Morley’s triangle. We need 28 fold steps to
obtain Morley’s triangle. The first four steps are preparation of the construction.
Morley’s triangle is clearly marked in thick solid line (red if colored) in O29. Suppose
we are given an initial origami ABCD with a point E. The thin solid line segments
(light brown if colored) EA and EB in Fig. 2 are shown for the convenience of readers,
and are not part of the construction. Let this origami be O5. The construction
proceeds by trisecting the internal angles of �ABE. The points B1, C1 and S
are the intersections of the neighboring trisectors. Morley’s theorem states that
�B1C1S is equilateral.

The construction is described as follows:

O5 �{ABCD},−→FG
O6 �{GFAB},−→GF

O7 �{GFAB},−→HI
O8 �{IHDA},−→IH

O9 �{FGAB},−→AL
O10 �{ABL},−→LA

O11 �{ABL},−−→AM
O12 �{ABM},−−→MA

O13 � · · · � O29

Here we omit θ since θ is always π. F is specified by the set of the names of the
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Fig. 2. Origami construction of Morley’s triangle
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faces of concern. Here, the name of 〈〈Pi, . . . , Pj〉〉 is Pi · · ·Pj .

5.2 Trisection of an angle

{−1 + η3, (−1 + b8)b8, (−1 + a8)(−1 + b8), (−1 + b9)b9,

(−1 + a9)(−1 + b9), c9 + a9x1 + b9y1,

2a9c9 + (a9
2 + b9

2)x6, c9 + a9x2 + b9y2, y2,

c8 + a8x3 + b8y3, b9
2(x3 − x8) − a9(2c9 + a9(x3 + x8) + 2b9y3), c8 + a8x4 + b8y4,

− 1 + x4, 2b9c9(x3 − x4) − 2a9c9(y3 − y4) + (a9
2 + b9

2)(−x4y3 + x3y4),

− 1 + x5, a9
2y6 − b9(2c9 + 2a9x6 + b9y6), 2b9c9 + (a9

2 + b9
2)y6,

b9
2x6 − a9(2c9 + a9x6 + 2b9y6),−1 + x7, x7y6 − x6y7,

a9
2(y3 − y8) − b9(2c9 + 2a9x3 + b9(y3 + y8)), x8y5 − x5y8,

a8,−1 + y1, x3, b8 + 2c8,−b9(b9 + 2c9)x13 + a9(a9x13 + 2(b9 + c9)y13)}

We have A(0, 0), B(1, 0), C(1, 1), D(0,1), E(x13, y13), M(x5, y5), L(x7, y7), G(x4,
y4), F(x8, y8), H(x1, y1), I(x2, y2). Lines GF, IH are represented by line(a8, b8, c8),
line(a9, b9, c9), respectively.

Fig. 3. Premise equations for the proof of the trisection of ∠EAB

The steps from O5 to O13 correspond to the construction of the trisector of
∠EAB. The rest is for constructing the other two trisectors. Let us see in more
detail how the computation proceeds. The rewrite rules applied in the steps from
O5 to O13 is foldBr, unfold, foldBrBr, unfold, foldTh, unfold, foldTh and unfold.
During the construction, the system solved the constraints numerically, and at the
same time it saved the constraints in symbolic expression. Therefore, at the step
where O13 is obtained, we can generate the set C of the equations, and can prove
that we indeed have constructed the trisector. The set C is given in Fig. 3. We abuse
the notation of a set of polynomials and identify it with the system of equations.

The conclusion of the proposition that we want to verify must then be formu-
lated. For the proof based on the Gröbner bases method, we need the statement
about the trisection in terms of polynomials. We use the square of sin of concerned
angles that is defined by Spread in rational trigonometry [13]. Then the conclusion
is formulated as follows:

Spread(∠LAB) =
y7

2

x7
2 + y7

2
,

Spread(∠MAL) =
(x7y5 − x5y7)2

(x5
2 + y5

2) (x7
2 + y7

2)
,

Spread(∠EAM) =
(x5y13 − x13y5)2

(x13
2 + y13

2) (x5
2 + y5

2)
, and

Spread(∠LAB) = Spread(∠MAL) = Spread(∠EAM)
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From the above, we obtain D given in Fig. 4.
We want to prove

(2) C ⇒ D.

Let C = {c1, . . . , cn} and D = {d1, . . . , dm}. The proof of proposition (2) is by
contradiction using the theory of Gröbner bases. We compute the Gröbner basis of
the set of polynomials

(3) {c1, . . . , cn, (κ1d1 − 1) · · · (κmdm − 1)}

where κ1, . . . , κm are newly introduced slack variables.

{−y5(x7
2y5 − 2x5x7y7 − y5y7

2),
− (x7y13 − x13y7)

(x5
2(x7y13 + x13y7) − y5

2(x7y13 + x13y7) + x5(−2x13x7y5 + 2y13y5y7))}

Fig. 4. Conclusion equations for the proof of the trisection of ∠EAB

We consider the set of the polynomials (3) as the system of equations. The
non-existence of its solution implies the correctness of the proposition. Namely, if
the reduced Gröbner basis of (3) is {1}, the proposition is proved.

Eos has an interface to assist computational origamists to perform the proofs.
To compute the reduced Gröbner basis of (3), it took 0.33 seconds for the proof of
the trisector of ∠EAB on a Pentium 1.2 GHz laptop computer equipped with 1 GB
memory running under Windows XP.

After trisecting the angles and proving the correctness of the construction of
the trisectors, we can go on to prove that the triangle �B1C1S is equilateral. The
triangles formed by the three intersections of neighboring trisectors of the angles are
not necessary inside the given triangle. Out of the 27 possible triangles, 18 of them
are equilateral. Origami experiments are reported in [6] and thorough geometrical
investigations are given in [15,12]. For this paper we only give the timing of the proof
for particular origami construction when E lies at some point inside the origami. It
took 84.49 seconds of computation by the same laptop computer mentioned above.

6 Programming language supports for origami

We have seen the model of computation for computational origami. The model
comes with a formal language to reason about the model. However, the formal
language is not sufficient for end-users, i.e. origamists, to explore the possibilities
of computational origami. The computational origami environment Eos developed
by us assists the user to perform origami construction and reason about geomet-
ric properties. The programming and computational capabilities described in this
paper are an abstraction of what have been implemented so far. We need more
programming supports for computational origami.

T. Ida et al. / Electronic Notes in Theoretical Computer Science 216 (2008) 31–4442



In this section we briefly discuss what we already have and the desiderata for
further development. Eos provides primitives for the following operations:

• Simulation of the origami construction: The realization of the single-step fold
O1 �F ,r,θ O2 is achieved by one of the Huzita’s axioms, together with appropriate
parameters and the additional information needed in the formalization of the fold.
For example, the fold using (O1) is realized by a call HFold[A,Along → {P,Q}]
and the fold using (O2) is realized by HFold[P,Q]. In the latter case, point P is
brought to point Q. In this way, the origamists do not have to know the faces
of concern. In the former case the origamists must give point A as the first
parameter, such that the system can identify the face of concern. The system
processes the input specification, and computes G and r, and constructs the data
structure O2 for the origami produced by the single-step fold.

• Visualization of the origami O2 produced by single-step folds O1 �F ,r,θ O2.
• Maintaining an algebraic representation of the origami construction, that can be

used for proving geometric theorems about origami.
• Providing a set of functions that enable origamists to compute and reason about

the geometric objects used in origami.

The implementation of these capabilities requires the support for conditional term
rewriting, capabilities of symbolic computation such as Gröbner basis computation
and manipulation of polynomials, and graphics processing. Eos is implemented
in Mathematica, since Mathematica is based on higher-order term rewriting with
functionalities that we described above.

As our experiences grow with many examples of origami’s, more functionalities
have become needed. From programming point of view, typing and object orienta-
tion are highly desirable. However, typing of geometrical objects is non-trivial since
the type may change as the shape of an object gets degenerated; for instance a
polygon becomes a line when the number of vertices becomes 2. Features proposed
by Liang and Wang [9] would have to be taken into account. For computational
origami the desired functionalities are also for producing high-quality art pieces of
origami. We expect to have better human friendly interface which can be obtained
by integrating off-the-shelf software components.

7 Conclusion

We have shown how the origami construction can be modeled by a sequence of fold
steps. At each fold step, an origami structure is transformed to a new structure.
The fold line along which the fold is made is computed by a 3-CTRS. The rewrite
rules of 3-CTRS are derived from Huzita’s axioms. The application of the rewrite
rules requires constraints solving in order to satisfy the conditions of the rewrite
rules.

The numerical solutions are used to simulate the construction of origami, and
to visualize the origami shapes at each step. The accumulated constraints are used
for proving the geometric properties of the constructed origami.
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We argued for the usefulness of the modeling of the construction as a rewrite
sequence, and discussed the language features that are essential in the geometrical
modeling of origami.

The formalization of origami is an important step towards the study of reverse
problems of origami (e.g., finding a shape from the fully unfolded origami with
creases), exploration of new construction methods of origami pieces and the study
of foldability beyond the power of Huzita’s axiomatization.
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