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Renal macrophage activation and Th2 polarization precedes
the development of nephrotic syndrome in Buffalo/Mna rats
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Renal macrophage activation and Th2 polarization precedes
the development of nephrotic syndrome in Buffalo/Mna rats.

Background. At 8 weeks, Buffalo/Mna rats spontaneously
develop a nephrotic syndrome associated with focal segmental
glomerulosclerosis (FSGS). We have previously demonstrated
that this glomerulopathy recurs after renal transplantation, thus
supporting the relevance of this rat model to human idiopathic
nephrotic syndrome [1]. In this study, we describe renal immune
abnormalities which appear in parallel to the initiation and pro-
gression of the spontaneous Buffalo/Mna nephropathy.

Methods. Buffalo/Mna rat kidney samples were harvested
before (4 weeks) and after the occurrence of proteinuria (at
10, 18, and 24 weeks, and at 12, 15, 18, and 24 months). Re-
nal immune cell populations [total lymphocytes, macrophages,
T, B, and natural killer (NK) cells] and the expression kinet-
ics of various related cytokine [transforming growth factor-b
(TGF-b), tumor necrosis factor-a (TNF-a), interferon-c (IFN-
c), interleukin (IL)-1, IL-2, IL-4, IL-6, IL-10, IL-12, and IL-
13], chemokine [regulated upon activation, normal T cell
expressed and secreted (RANTES) and monocyte chemoat-
tractant protein-l (MCP-1)] and T-cell receptor b (TCR b) chain
transcripts were studied serially during the course of the disease.

Results. In the Buffalo/Mna kidneys, in parallel to the pro-
teinuria, the focal and segmental glomerular lesions began to
develop at 10 weeks (affecting 2.4 ± 0.8% of glomeruli), in-
creased in number, then in intensity (10.4 ± 0.8% at 24 weeks,
14.6 ± 2.3% at 12 months, and 28.9 ± 7.4% at 18 months). Be-
fore the onset of the disease, at a nonproteinuric stage, the tran-
script expression analysis revealed a strong production of some
macrophage-associated cytokines, particularly TNF-a (350-fold
higher than control levels), which was corroborated by mono-
cyte infiltration. A minor T-cell infiltrate (associated with an in-
crease in Cb TCR transcripts), with a predominantly Th2 profile
and the down-regulation of Th1 cytokines was also observed.
These abnormal macrophage and T-cell patterns remained sta-
ble after the onset of the disease. No changes in chemokine and
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TGF-b transcripts were observed during the initial stages of the
disease.

Conclusion. Our data suggest that the Buffalo/Mna rat dis-
ease may be the result of an immunologic disorder, involving
macrophages and Th2 lymphocytes. We hypothesize that this
modified environment could result in the production of a factor
deleterious to the glomeruli. Thus, this rat strain could provide
a new model for the study of human nephrotic syndrome.

Idiopathic nephrotic syndrome with primary focal
segmental glomerular sclerosis (FSGS) is a disease of
unknown etiology, whose symptoms include a selective
proteinuria and nonspecific lesions with a hyalinosis
and synechia between the floculus and Bowman’s cap-
sule. Immunosuppressive regimens such as corticoids, cy-
closporine A, and cyclophosphamide can influence the
disease outcome to some extent (for review see [2]) but
at least 20% of patients ultimately require hemodialysis
and/or kidney transplantation for end-stage renal failure
(ESRF) [3]. In addition, in 25% to 40% of transplanted
patients, the initial disease immediately relapses, leading
to graft loss in 50% of cases [4]. This immediate recur-
rence strongly suggests the presence of an albuminuric
plasmatic factor(s), a hypothesis that has been strength-
ened by the beneficial effect of plasmatic exchanges [5–7]
and immunoadsorptions [8, 9].

Despite significant recent progress in the understand-
ing of the genetic abnormalities associated with idio-
pathic nephrotic syndrome [10], the disease mechanisms,
particularly those at the disease onset, are unknown. Sev-
eral animal models of proteinuria have been described,
including age-associated nephropathy [11], nephron re-
duction [12, 13], and toxic-induced nephrosis [14, 15].
However, although these experimental models can help
to identify the mechanisms involved in glomerular scle-
rosis progression, they are not pertinent as models for
the initial stages of the human disease. For this reason,
we have been studying the Buffalo/Mna rat strain which,
at 8 weeks of age, spontaneously develops a selective
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proteinuria associated with hypoalbuminemia, hyperlipi-
demia, and glomerular epithelial cell alterations with foot
process flattening and cytoplasmic vacuolization at the
ultrastructural level [16, 17]. The Buffalo/Mna rats were
first reported because they present a spontaneous thy-
moma [18] regulated by an autosomal-dominant gene
[19] associated with muscular weakness and demon-
strated to be linked to plasmatic antiryanodine receptor
antibodies [20]. Following analysis of genetic segregation,
two autosomal-recessive genes were proposed to deter-
mine susceptibility to glomerular sclerotic lesions [21].
Both genes are located on chromosome 13, but are sepa-
rate from the proteinuria gene Pur 1 located on the long
arm of human chromosome 1 [22]. Moreover, neona-
tal thymectomy experiments have shown that nephrotic
syndrome is functionally unrelated to the thymic disease
[23]. In the same way, in our hands, thymectomy in adult
Buffalo/Mna rats has no effect on their proteinuria (un-
published personal data), suggesting the absence of a di-
rect interaction between the renal disease and that of the
thymoma.

In addition to a genetic susceptibility to develop pro-
teinuria [21, 22], the involvement of an extrarenal factor
has been demonstrated by our group in a previous study
[1]. We showed that the disease recurs on normal kidneys
after renal transplantation into Buffalo/Mna recipients
whereas the glomerulopathy regresses when a Buffalo/
Mna kidney is transplanted into a normal recipient [1].

In this study, we have attempted to characterize the de-
velopment of Buffalo/Mna nephropathy by analyzing the
histologic lesions, the cells infiltrating the diseased kid-
neys, and the renal cytokine transcript accumulation. We
report here that the prealbuminuric stage of the disease
is characterized by an early macrophage infiltration and a
Th2 polarization. We suggest that these immunologic dis-
orders could be involved in the Buffalo/Mna nephropa-
thy and that these observations may help to understand
this rat disease. Such observations may also be related
to the human disease and used to elucidate the human
pathologic mechanisms.

METHODS

Animals

The Buffalo/Mna rat line, maintained in our labora-
tory, was originally kindly provided by Dr Saito (Central
Experimental Institute, Nokawa, Kawasaki, Japan). All
animals were born from a unique couple and bred for
at least 10 generations. Five Buffalo/Mna rats were sacri-
ficed at each time point: 4, 10, 18, and 24 weeks and 12, 15,
and 18 months. Five inbred, age-matched Wistar-Furth
rats [with the same major histocompability complex back-
ground (MHC) as Buffalo/Mna], obtained from an estab-
lished colony (Janvier, Le Genest Saint Isle, France), were
used as controls and sacrificed at 4, 10, 18, and 24 weeks.

All animals were fed with standard laboratory food. The
animal care was in strict accordance with our institutional
guidelines.

Proteinuria measurement

The animals were placed in metabolic cages for
24 hours before measurement with free access to drink
but without food to avoid contamination of urinary sam-
ples. The total urinary protein concentration (g/L) was
measured by a colorimetric method using a Hitachi au-
toanalyzer (Boehringer Mannheim, Grenoble, France).
Urinary creatinine (mmol/L) was measured by the Jaffé
method. Proteinuria was expressed according to the fol-
lowing formula: proteinuria (g/mmol)= (urinary protein)
(g/L)/(urinary creatinine) (mmol/L).

Light microscopic examination

Kidney samples were fixed for 20 minutes in Carnoy
solution and then in 10% buffered formalin and embed-
ded in paraffin. Three micro meter sections were stained
with hematoxylin and eosin, periodic acid-Schiff (PAS),
Masson trichrome, or periodic acid-silver methenamine
(PAM). Slides were analyzed in a blind fashion by an inde-
pendent pathologist. Lesions were estimated and counted
in five fields at a 100× magnification.

Immunohistology and quantitative analysis
of cellular populations

Kidney pieces from Buffalo/Mna and Wistar-Furth
rats were embedded in optimal cutting tissue compound
(Tissue Tek) (Miles, Elkhart, IN, USA), snap-frozen in
precooled isopenthane and stored at −80◦ C until use.
Frozen 6 lm tissue sections were fixed in acetone, per-
meabilized with a solution of methanol 10% H2O2, incu-
bated with a Biotin Blocking System (Dako Corporation,
Carpinteria, CA, USA), then saturated with rat serum di-
luted 1/10 in phosphate-buffered saline (PBS)/1% bovine
serum albumin (BSA) and stained using a three-step in-
direct immunoperoxidase technique [20]. The primary
antibodies were mouse IgG antirat monoclonal anti-
bodies: Ox1-Ox30 (a mix of two anti-CD45 antibodies,
a pan-leukocyte marker), R7.3 [anti-T-cell receptor ab
(anti-TCRab)], Ox33 [anti-CD45 receptor antagonist
(anti-CD45 RA)], ED-1 (anti-CD68), or 3.2.3 [(anti-
CD161 or natural killer receptor (NKR)]. All of these
monoclonal antibodies were obtained from the Euro-
pean Collection of Animal Cell Cultures (ECACC), then
purified in our laboratory and pretested on healthy rat
splenocytes to assess their optimal dilution. Nonspe-
cific staining was taken into account by omission of
the first antibody. The secondary antibody used was a
rat adsorbed (negligible cross-reactivity) horse biotiny-
lated antimouse IgG (Vector Laboratories, Burlingame,
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CA, USA). Finally, tissues sections were incubated with
horseradish peroxidase (HRP) streptavidin and devel-
oped with “Very Intense Purple” (VIP Kit) (Vector
Laboratories).

The cell-infiltrated area was determined by quan-
titative morphometric analysis [24]. Briefly, positively
stained cells in each section were counted by morpho-
metric analysis using a point counting method with a 121
intersection square grid in the eyepiece of the microscope.
Results were expressed as the percentage of the area of
each renal section occupied by cells of a particular anti-
genic specificity (± SEM). The percentage of area infil-
trate was calculated as follows: [(number of positive cells
under grid intersections) ÷ (total number of grid inter-
sections = 121)] × 100. The sections were examined at a
×400 magnification. The accuracy of the technique is pro-
portional to the number of points counted. Thus, 15 fields
were counted for each labeled section of high density and
40 fields for sections of low density (<10%). We chose a
random start point on a border section and moved from
field to field. Each counted field was adjacent to the pre-
vious and subsequent field [24]. Counting was scored in
a blind fashion by two observers.

RNA extraction and cDNA synthesis

The decapsulated kidneys of each animal were liga-
tured, cut, immediately snap-frozen in liquid nitrogen,
and stored at −80◦C until used for RNA extraction. Total
RNA from kidney pieces was isolated by the guanidium
isothiocyanate procedure and purified on a Cesium chlo-
ride gradient [25]. Ten micrograms of RNA were reverse-
transcribed into cDNA using 14 lg/mL of oligo (dT)25−30,
10 mmol/L dithiothreitol (DTT), 0.5 mmol/L of each
deoxynucleosidetriphosphate (dNTP), 40 U RNAsin
(Promega, Madison, WI, USA), and 200 U Maloney-
murine leukemia virus (M-MLV) reverse transcriptase in
5× first-strand buffer (Life Technologies, Gaithersburg,
MD, USA). The cDNA synthesis reaction was brought to
a final reaction volume of 100 lL.

Relative quantification of mRNA transcripts

The principle of quantitative reverse transcription-
polymerase chain reaction (RT-PCR) using the SYBR
Green� method has been described previously [26]. Di-
rect detection of PCR products was monitored by mea-
suring the increase in fluorescence due to the binding of
the dye labeler SYBR Green� to double-stranded DNA.
The level of fluorescence, monitored by the ABI PRISM�

7700 Sequence Detection Application program (Applied
Biosystems, Foster City, CA, USA), was thus directly pro-
portional to the level of PCR product.

Oligonucleotides and standard construction. Stan-
dards were amplified from samples known to con-
tain the given mRNA sequences using specific primers
(Table 1). The amplification products were separated

Table 1. Sequences of amplification primers

Length of
mRNA Sequences 5′-3′ amplification product

5′ r HPRT gcgaaagtggaaaagccaagt 76
3′ r HPRT gccacatcaacaggactcttgtag
5′ r IL-1a agtcactcgcatggcatgtg 100
3′ r IL-1a atatgtcgggctggttccac
5′ r IL-2 ccttgtcaacagcgcaccc 399
3′ r IL-2 gctttgacagatggctatcc
5′ r IL-4 ccaccttgctgtcaccctgt 390
3′ r IL-4 aggatgctttttaggctttc
5′ r IL-10 tcagcactgctatgttgcc 403
3′ r IL-10 ccttgcttttattctcacagg
5′ r IL-12 p40 gaaacagtgaacctcacctg 261
3′ r IL-12 p40 tgcttcacacttcaggaaagt
5′ r IL-13 agcaacatcacacaagaccag 320
3′ r IL-13 cacaactgaggtccacagct
5′ r IFN-c tggatgctatggaaggaaaga 314
3′ r IFN-c gattctggtgacagctggtg
5′ r TGF-b ctactgcttcagctccacagaga 279
3′ r TGF-b accttgggcttgcgacc
5′ r TNF-a cttatctactcccaggttctcttcaa 204
3′ r TNF-a gagactcctcccaggtacatgg
5′ r MCP-1 atgcaggtctctgtcacgct 341
3′ r MCP-1 ggtgctgaagtccttagggt
3′ r RANTES gcatccctcaccgtcatcct 260
5′ r RANTES tagctcatctccaaatagttgat
5′ r Cb tctgtgctgaccccattgc 69
3′ r Cb ttccctgaccatgtggagct

Abbreviations are: HPRT, hypoxanthine guanine phosphoribosyl transferase;
IL, interleukin; INF-c, interferon-c; TGF-b , transforming growth factor-b ;
TNF-atumor necrosis factor-a; MCP-1, monocyte chemoattractant protein-1;
RANTES, regulated upon activation, normal T cell expressed and secreted; Cb ,
constant part of TGF-b chain.

electrophoretically and purified using a gel extraction
kit (QIAquick Gel Extraction kit) (Qiagen, Hilden, Ger-
many). The absorbance of each standard at 260 nm and
the molecular weight of the cDNA enabled the calcula-
tion of the number of copies per milliliter and the prepa-
ration of a serial dilution from 107 to 102 copies per well.

PCR amplification and analysis. Ten microliters of
1/10-diluted cDNA sample were amplified in 25 lL of
SYBR Green� PCR Core Reagent (Applied Biosystem)
with 0.6 U of AmpliTaq Gold polymerase, 0.25 U of Am-
perase uracyl-H-glycosylase, 200 nmol/L of each dNTP,
300 nmol/L of each primer and 3 mmol/L of MgCl2, in
10× SYBR Green� PCR Buffer (1× final concentration).
Amplifications were performed in an ABI Prism� 7700
Sequence Detector (TaqMan) (Perkin-Elmer, Wellesley,
MA, USA). Each sample was analyzed in duplicate. The
number of copies of the cDNA target sequence was de-
duced from a comparison of the measured fluorescence
with the standard curve. To normalize the levels of the tar-
get sequences, the quantity of each given transcript was
divided by the quantity of housekeeping gene (HPRT)
transcripts obtained for each sample.

Statistical analysis

Statistical analysis was performed using GraphPad
Prism software. The nonparametric Mann-Whitney test
was used to compare ratio values between groups for
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Fig. 1. Light microscopic examination of
Buffalo/Mna kidneys during the course of
initial disease development (N = 3). (A) At
10 weeks, onset of glomerular lesions (×25
and ×400). (B) At 18 weeks, increase in
glomerular lesions and development of tubu-
lar lesions (×25 and ×400). (C) At 12 months,
damaged glomeruli were numerous (with the
onset of flocculocapsular synechia), sclerotic
lesions and tubular dilatations were extensive
(×25 and ×400). (D) At 18 months, microcys-
tic tubular dilatations were numerous. Some
glomeruli were completely sclerotic and at-
rophic, whereas others presented segmental
lesions with flocculocapsular synechia or had
a subnormal appearance (×25 and ×200).

each time point and to compare the% of surface area
between groups for each point. P < 0.05 was considered
as significant.

RESULTS

Histologic examination of Buffalo/Mna kidneys during
the course of the disease

At 4 weeks, the Buffalo/Mna kidneys showed no
glomerular lesions but marked podocyte swelling was
apparent. At 10 weeks, glomerular lesions began to ap-
pear but remained scarce (affecting only 2.4 ± 0.8% of
the glomeruli) and were not extensive in the flocculi. In
addition, dilated tubules were rare and isolated. From
18 weeks to 12 months, glomerular and tubular lesions in-
creased in number and intensity, damaged glomeruli rep-
resented successively 6.4 ± 4.1%, 10.4 ± 0.8% (24 weeks),

Table 2. Histologic evaluation of Buffalo/Mna kidneys at different
stages during the course of the disease

% of damaged Tubular Interstitial
Buffalo/Mna glomeruli dilatation fibrosis

4 weeks 0 ± 0 0.3 ± 0.6 −
10 weeks 2.4 ± 1.4 3.3 ± 1.2 −
18 weeks 6.4 ± 7.1 2 ± 2 −
24 weeks 10.4 ± 1.4 22 ± 14.9 −
12 months 14.6 ± 4 19.7 ± 7.2 −
15 months 16.3 ± 5.9 42.3 ± 15.6 +/−
18 months 28.9 ± 12.9 56.3 ± 20.5 +
24 months 43.2 ± 27 54.7 ± 30.1 +

Slides were analyzed in a blinded fashion by an independent pathologist.
Lesions were estimated and counted in five fields at a 100× magnification. Three
series of samples were examined. Results were expressed as mean ± SE. Under
the term “damaged glomeruli,” we counted all glomeruli with focal segmental
glomerulosclerosis (FSGS) lesions [i.e., segmental lesions of flocculus, sclerotic
areas (± extensive), flocculocapsular synechia, or atrophic glomeruli].
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Fig. 2. Parallel evolution of the proteinuria
during the course of the disease. Results ex-
pressed as grams of urinary proteins/mmol of
urinary creatinine ± SEM (N = 6 to 21) and
progression of glomerular lesions (results ex-
pressed as% of damaged glomeruli ± SEM)
(N = 3) (see Table 2).

and 14.6 ± 2.3% of the total glomeruli (Fig. 1) (Table 2)
with the appearance of flocculo-capsular synechia and
an increase in the sclerotic area. At 12 months, tubu-
lar dilatations were substantial and were either isolated
or in clusters. From 15 to 24 months, sclerohyalinosis
spread to the flocculi (16.3 ± 3.4% of affected glomeruli
at 15 months, then 28.9 ± 7.4% at 18 months and 43.2
± 15.6% at 24 months) and was associated with a global
glomerular atrophy. Moreover, the onset of a moderate
mononuclear lymphoid infiltration was observed at this
point (Table 2). Tubular dilatations continued to expand
and their disposition in clusters was maximal around 18
to 24 months. In parallel, proteinuria began at 10 weeks,
increased regularly until 15 months, then increased more
rapidly when the glomerular sclerosis spread throughout
the kidney (Fig. 2).

Initially, segmental glomerular lesions result from par-
tial densification of the flocculus. At this level, the basal
membranes appeared less defined, then pleated. The cap-
illary lumina became very reduced or even nonexistent,
without any endo- or extracapillary hypercellularity. The
development of these lesions was associated with floccu-
locapsular synechia. These lesions spread to the entire
flocculus, leading to small atrophic glomeruli. Basal cap-
illary membranes were completely pleated and squeezed
together, leading to a total disappearance of the capillary
lumen.

In parallel, proximal tubules, which were only dilated
at the beginning, became highly microcystic. These di-
latations were clustered. The epithelium of these tubules
was flat and their lumen contained voluminous cylinders
with a protein aspect.

Quantitative assessment of Buffalo/Mna
kidney infiltration

Buffalo/Mna kidneys displayed a global but moderate
increase in their total leukocyte population during the
course of the disease. In comparison with age-matched,
healthy rat kidneys, these values were significantly dif-

ferent at 4, 18, and 24 weeks (4.6 ± 0.4% vs. 3.5 ±
0.3%; 6 ± 0.4% vs. 4.2 ± 0.2%, and 5.9 ± 0.3% vs. 4.8 ±
0.15%, respectively) (P < 0.05) (Figs. 3A and 4, upper
panels).

The predominant infiltrating population was the
monocyte-macrophage lineage which was significantly
higher (P < 0.01) than in the controls at 4 weeks (0.95 ±
0.23% vs. 0.55 ± 0.03%), 10 weeks (1.45 ± 0.16% vs.
0.6 ± 0.12%), 18 weeks (1.3 ± 0.2% vs. 0.6 ± 0.08%), and
24 weeks (1.56 ± 0.33% vs. 0.6 ± 0.03%) (Figs. 3B and
4, middle panels). On the other hand, the T-cell popula-
tion present in the Buffalo/Mna kidneys increased and
was significantly more represented than in control kid-
neys from the first month to 10 weeks (0.45 ± 0.06%
vs. 0.28 ± 0.01%; 0.5 ± 0.07 % vs. 0.3 ± 0.05%; respec-
tively) (P < 0.05) (Figs. 3C and 4, lower panels). The
levels of B lymphocytes and NK cell populations did not
significantly differ between Buffalo/Mna and control rats
(data not shown). A trend (albeit non significant) toward
a periglomerular and glomerular staining of infiltrating
cells was also noted (Fig. 4).

Quantitative analysis of mRNA transcripts
in Buffalo/Mna kidneys during the course of the disease

In accordance with the increase in the monocyte
population in the Buffalo/Mna kidneys, tumor necrosis
factor-a (TNF-a) mRNA showed an early and strong ac-
cumulation in Buffalo/Mna kidneys at 4 weeks, before
the onset of the disease (1.7 ± 0.5% vs. 0.05 ± 0.006%)
(P < 0.01) (Fig. 5). Interleukin (IL)-12 (Fig. 5), IL-1, and
IL-6 transcripts (data not shown) were also significantly
increased at this time (P < 0.01). Transcript accumula-
tions decreased thereafter, albeit remaining significantly
elevated at 10 weeks for TNF-a and at 18 weeks for IL-12.

To evaluate the global T-lymphocyte infiltrate and/or
activation in the Buffalo/Mna kidney, b chain accumula-
tion was also measured. TCR b chain mRNA was strongly
increased as early as 4 weeks (0.62 ± 0.17% vs. 0.018 ±
0.002%) (P < 0.005) and remained elevated throughout
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Fig. 3. Kinetics of infiltration by the cellu-
lar populations during the course of the ini-
tial disease in Buffalo/Mna (Buff/Mna) rats
versus control kidneys. Results are expressed
as the% (mean ± SEM) of surface area oc-
cupied by positive cells. At each time point,
each group consisted of five animals. The con-
trol group consisted of age-matched healthy
rats. (A) Pan-leukocyte (Ox1-Ox30 antibody)
populations were examined. (B) Monocyte-
macrophage ED-1 antibody populations were
examined. (C) T lymphocytes (R7.3 antibody)
were examined. ∗Significant difference <0.05
between the two groups; ∗∗ Significant differ-
ence <0.01.

the course of the disease (at 10 weeks 0.2 ± 0.08% vs.
0.04 ± 0.003% and at 18 weeks 0.243 ±0.03% vs. 0.035 ±
0.002%) (P < 0.005) (Fig. 6). The activation profile of the
T-cell population present in the kidney sections was then
measured for Th1 [IL-2 and interferon-c (IFN-c)] and
Th2 cytokine transcripts (IL-4, IL-10, and IL-13). Inter-
estingly, IL-2 and IFN-c mRNA was weak until 24 weeks
(and inferior to controls), indicating no Th1 polariza-
tion during the onset of the disease (data not shown).
In contrast, at 4 weeks, Th2-related IL-10 and IL-13 tran-
scripts were significantly higher in the Buffalo/Mna rats
than in the controls (IL-10 0.075 ± 0.001% vs. 0.002 ±
0.0004%) (P < 0.005) (IL13 0.006 ± 0.002% vs. 0.001 ±

0.0002%) (P < 0.05) while IL-10 mRNA remained sig-
nificantly more accumulated in Buffalo/Mna at 18 weeks
(P < 0.005) and 24 weeks (P < 0.01) (Fig. 7). However,
despite being significant, the level of IL-10 and IL-13 tran-
script accumulation remained low. In addition, as is of-
ten the case in rats, the level of IL-4 mRNA was at the
technical limit of the SYBR Green� method and thus
considered as negligible in both groups.

Regulated upon activation, normal T cell expressed
and secreted (RANTES) and monocyte chemoattractant
protein-l (MCP-1) chemokine transcripts were also mea-
sured. Both types of mRNA were decreased at 4 weeks
(0.01 ± 0.004% vs. 0.145 ± 0.01%; 0.0001 ± 0.0002%
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Fig. 4. Representative immunostaining of re-
nal cellular infiltration during the course of
the Buffalo/Mna (Buff/Mna) disease (N = 5).
Upper panels show OX1 + OX30 positive
staining. Middle panels show ED-1+ cells.
Lower panels show R7.3+ populations, at 4
and 18 weeks. Background control pictures
are of nonspecific staining taken into account
by omission of the first antibody (magnifica-
tion for each picture was ×400).

vs. 0.17 ± 0.03%; respectively) (P < 0.005). Whereas
RANTES mRNA was lower only at the early time point
(4 weeks), MCP-1 mRNA remained lower at all times
(P < 0.05) (Fig. 8). Similarly, transforming growth factor-
b1 (TGF-b1) mRNA levels were low in the early phases
of the disease (at 4 weeks 0.04 ± 0.0008% vs. 6.26 ±
0.65%; at 10 weeks 1.4 ± 0.67% vs. 6.6 ± 0.45%) (P <

0.005), but reverted to normal levels at 18 weeks (Fig. 9).
Finally, we performed immunohistology to define

which cell types were responsible for the production of
the cytokines measured in the Buffalo/Mna kidneys. Un-
fortunately, the staining revealed by this technique was
very weak, thus making it impossible to identify the origin
of the cytokine production. Furthermore, we were unable
to demonstrate that certain cytokines (such as IL-1, IL-6,
IL-8, TNF-a, and TGF-b) were produced by resident re-
nal cells, which would expect to be easier to detect.

DISCUSSION

In this study, we have shown that initial glomerular
lesions of the spontaneous Buffalo/Mna disease, as as-
sessed by proteinuria and histologic examination, devel-
oped progressively from 10 weeks until 12 months (Fig. 1)
(Table 2). After 1 year, the sclerohyalinosis spread in-
side the floculi. These glomerular changes were paral-
leled by the development of proteinuria, which began at
10 weeks, increased until 15 months, and then increased
rapidly when glomerular sclerosis spread throughout the
kidney (Fig. 2). In addition, the number of total leuko-
cytes of Buffalo/Mna kidneys was increased compared
to that in the controls. This increase was principally due

to an early rise in monocyte infiltration and a minor
T-cell infiltrate, which preceded the occurrence of pro-
teinuria and the ultrastructural podocyte alterations
(data not shown). Moreover, cytokines typically pro-
duced by monocytes/macrophages, TNF-a, IL-12, IL-6,
and IL-1, were significantly increased at the very onset of
the disease (4 weeks), before the appearance of protein-
uria and histologic lesions. The subsequent levels of these
cytokines remained higher than in the control group.
Similarly, an increase in TCR Cb chain transcripts was
observed early-on during the course of the disease. This
increase could be related to T-cell activation, rather than
an increase in the number of these cells (with regards to
the mild T-cell infiltrate). Finally, despite this T-cell infil-
trate, IL-2 and IFN-c (Th1) transcripts were only barely
detectable and were even lower than in the control group.
In contrast, Th2-related cytokines (IL-10 and IL-13) were
increased.

This finding of an early increase in TNF-a and Th2-
related cytokines, in addition to our previous demonstra-
tion of the involvement of an extrarenal factor in this
model of glomerulonephritis, highlights the Buffalo/Mna
nephropathy as a relevant model for human idiopathic
nephrotic syndrome. Indeed, in humans, TNF-a has been
reported to be increased in the blood and urine of FSGS
patients [27, 28] and TNF-a mRNA levels were elevated
in the monocytes of these patients [28]. TNF-a has also
been found to be increased in monocyte supernatants
in puromycin aminonucleoside nephropathy (PAN) [29],
and the injection of TNF-a into rats can trigger glomeru-
lar injury [30, 31]. In the Buffalo/Mna rats, the peak of
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Fig. 5. Kinetics of tumor necrosis factor-a
(TNF-a) and interleukin (IL)-12 mRNA ex-
pression in Buffalo/Mna (Buff/Mna) kid-
neys versus healthy kidneys during the initial
course of the disease. Results are expressed
as means ± SEM of the ratio of the num-
ber of cytokine transcripts to the number of
HPRT transcripts for five animals at each time
point. ∗Significant difference <0.05 between
the two groups; ∗∗Significant difference <0.01;
∗∗∗Significant difference <0.005.
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* Fig. 6. Kinetics of Cb mRNA expression
in Buffalo/Mna (Buff/Mna) kidneys versus
healthy kidneys during the initial course of
the disease. Results are expressed as means
± SEM of the ratio of the number of cytokine
transcripts to the number of HPRT transcripts
for five animals at each time point. ∗Significant
difference <0.05 between the two groups;
∗∗Significant difference <0.01; ∗∗∗Significant
difference <0.005.

TNF-a expression at 4 weeks occurred clearly before the
onset of the nephropathy and could thus be an initiat-
ing factor of the glomerulonephritis. In the same man-
ner, an increase in IL-12 production by the monocytes

of idiopathic nephrotic syndrome patients has also been
described [32], but this was not the case for IL-6 [33, 34].
However, IL-6 has been associated with glomerular dam-
age in glomerulonephritis [33]. The role of macrophages
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Fig. 8. Kinetics of regulated upon activa-
tion, normal T cell expressed and secreted
(RANTES) and monocyte chemoattractant
protein-l (MCP-1) chemokine mRNA ex-
pression: in Buffalo/Mna (Buff/Mna) kid-
neys versus controls kidneys during the initial
course of the disease. Results are expressed
as means ± SEM of the ratio of the num-
ber of cytokine transcripts to the number of
HPRT transcripts for five animals at each time
point. ∗Significant difference <0.05 between
the two groups; ∗∗Significant difference <0.01;
∗∗∗Significant difference <0.005.

that release these cytokines [35] can thus be suspected in
the onset of the Buffalo/Mna disease. In the human dis-
ease, macrophages, named foam cells, were abundant in
the lesion area [36], as well as in the PAN model. Their re-

cruitment is favored by nephrotic syndrome–associated
lipidic disorders and the macrophage-related produc-
tion of TGF-b [37] may contribute to the late phases of
glomerulosclerosis [38].
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Fig. 9. Kinetics of transforming growth
factor-b (TGF-b) mRNA expression in
Buffalo/Mna (Buff/Mna) kidneys versus
controls kidneys during the initial course
of the disease. Results are expressed as
means ± SEM of the ratio of the number of
cytokine transcripts to the number of HPRT
transcripts for five animals at each time point.
∗Significant difference <0.05 between the
two groups; ∗∗Significant difference <0.01;
∗∗∗Significant difference <0.005.

The cytokine profile in the peripheral blood lympho-
cytes (PBL) of idiopathic nephrotic syndrome patients
has also been recently studied [39]. Despite initial re-
ports showing an increase in plasmatic or urinary IL-2
and sIL-2R [34, 40–43], a Th2 profile appeared to pre-
dominate [44, 45], with a considerable rise in IL-13 [39,
46, 47] as well as IL-4 [47, 48]. These findings are in agree-
ment with the known association of idiopathic nephrotic
syndrome with atopic phenomena [49, 50] and an abnor-
mal isotypic switch (high levels of IgE) [51]. Our study in
the Buffalo/Mna rats revealed a very low Th1 profile and,
despite a weak IL-4 expression (frequently described in
rats, even in the context of Th2-mediated disease), an in-
crease in IL-13 and IL-10. An active role for T cells in
this model is suggested by the presence of this Th2 pro-
file before the onset of proteinuria and podocyte injury. In
addition, the down-regulation of the chemokines tested
(RANTES and MCP-1) may be related to this cytokine
environment (IL-4 and IL-10 inhibit while IFN-c induces
RANTES production) [52]. In humans, an increase in
plasmatic and lymphocytic IL-8 has been reported in id-
iopathic nephrotic syndrome, but the rat IL-8 counterpart
has never really been defined and therefore has not yet
been tested [53]. Finally, our study showed that TGF-b
mRNA does not accumulate in the early phase of the Buf-
falo/Mna disease but may promote the late accumulation
of extracellular matrix. An increase in urinary TGF-b
has been found in FSGS patients in the late phases of
the disease, where sclerotic lesions were advanced [54].
However, whereas the role of TGF-b in the progression
of various glomerular diseases is well known [55], its role
at a very early stage of the disease remains elusive.

The role of thymic hyperplasia in the Buffalo/Mna re-
nal disease is questionable. We measured the blood for-
mula of 20 Buffalo/Mna rats and 20 healthy rats of other
strains (Wistar-Furth, Lewis 1A, Lewis 1W, Sprague-
Dawley). We found a roughly similar leukocyte number

but a slight increase in the percentage of blood lympho-
cytes, as also reported by other groups [56]. This increase
could partly explain the increase in T lymphocytes in Buf-
falo/Mna kidneys, but not the rise in monocytes or the ac-
tivation of monocytes and T lymphocytes within the Buf-
falo/Mna kidneys. We cannot exclude the possibility that
these expanded “thymic” lymphocytes, which have been
described as being phenotypically and functionally un-
changed [56, 57], explain the increased number of T cells
in the Buffalo/Mna kidneys. Nevertheless, neonatal [23]
or adult thymectomy (personal unpublished data) have
no effect on proteinuria and Buffalo/Mna nephrotic syn-
drome, thus suggesting that this nephropathy is not sec-
ondary to or dependent on the thymic abnormalities.

Idiopathic nephrotic syndrome represents a heteroge-
neous group of glomerular disorders in humans, with dif-
ferent outcomes depending on the response to steroid
therapy and the possibility of recurrence after transplan-
tation. Furthermore, recent progress in understanding
the putative mechanisms of acquired idiopathic nephrotic
syndrome suggests two caricatural forms of steroid-
resistant nephrotic syndrome: an “immune mediated”
form and a form related to genetic changes and character-
ized by architectural podocyte cytoskeleton alterations.
The Buffalo/Mna disease is resistant to steroid treatment
(unpublished data) [16] and previous studies have shown
a genetic predisposition to proteinuria in this strain reg-
ulated by two autosomal-recessive genes. One locus was
identified as Pur1 on chromosome 13 that is syntenic to
the long arm of chromosome 1 in humans (which contains
the NPSH2 gene) [21]. However, the podocin sequence
in the Buffalo/Mna rats is normal [abstract; Morita et al,
ASN 2002, SU-PO297] and the role of an extrarenal fac-
tor in the development of proteinuria suggests that the
genetic background represents rather a susceptibility fac-
tor for proteinuria development. In this study, we have
shown that macrophages and activated T lymphocytes
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are likely to be involved in Buffalo/Mna disease
pathogenesis. The early infiltration by these cells and the
simultaneous expression of their respective products did
not enable the population responsible for the initiation
of the injury process to be defined. The production of a
factor toxic for the glomeruli, as suggested by the recur-
rence of the initial disease after transplantation, which
is related to the presence of the mononuclear infiltrate,
remains elusive.
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