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• We construct correlated spaces of human motions and word labels.
• The correlated space can be applied to searching for motions from word queries.
• The motions can be retrieved, even if the queries are not assigned to the motions.
• This technology can be helpful for reusing the motion data.
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a b s t r a c t

The motion capture technology has been improved, and widely used for motion analysis and synthesis
in various fields, such as robotics, animation, rehabilitation, and sports engineering. A massive amount
of captured human data has already been collected. These prerecorded motion data should be reused
in order to make the motion analysis and synthesis more efficient. The retrieval of a specified motion
data is a fundamental technique for the reuse. Imitation learning frameworks have been developed in
robotics, where motion primitive data is encoded into parameters in stochastic models or dynamical
systems. We have also been making research on encoding motion primitive data into Hidden Markov
Models, which are referred to as ‘‘motion symbol’’, and aiming at integrating the motion symbols with
language. The relations betweenmotions and words in natural language will be versatile and powerful to
provide a useful interface for reusing motion data. In this paper, we construct a space of motion symbols
for human whole body movements and a space of word labels assigned to those movements. Through
canonical correlation analysis, these spaces are reconstructed such that a strong correlation is formed
between movements and word labels. These spaces lead to a method for searching for movement data
from a query of word labels. We tested our proposed approach on captured human whole body motion
data, and its validity was demonstrated. Our approach serves as a fundamental technique for extracting
the necessary movements from a database and reusing them.

© 2015 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

To understand real-world phenomena that are not clearly sep-
arated, humans segment those phenomena and perceive them
as symbols. Rather than being based on physical properties, this
segmentation is arbitrary and depends on the society to which
the person belongs [1]. However, these symbols have been re-
fined by recording the correspondence between the arbitrarily seg-
mented world and the symbols used for denoting it, as well as the
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relation between the different symbols, and through the evolution-
ary process of the cumulative utilization of these symbols. This im-
mense system of intricately intertwined symbols sublimated into
language, allowing humans to communicate efficiently with one
another and to perform high-order reasoning. It can be said with-
out exaggeration that the high-order cognitive capabilities of hu-
mans are a product of language.

For humanoid robots to coexist with humans, they will have to
be able to use the same symbols and language systems as humans.
Research on robot body motion has focused on imitating learn-
ingmethods that optimize the parameters ofmathematicalmodels
based on various motion patterns [2,3]. In this framework, time-
series data (e.g., data about the joint angles representing motions)
arememorized as symbols represented discretely by parameters of
a statistical model [4,5] or of a dynamical system [6–10]. This sort
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of robot intelligence is the ability not only to understand human
behavior by comparing human motions with previously memo-
rizedmotions but also to generate continuousmotions frommem-
orized symbolic representations of motions to apply them to the
real world. The expansion of the range of fields where humanoid
robots are used is creating an increasingly strong demand for a
framework to memorize many motion symbols [11].

With the improvement and spread of optical motion capture
technologies, data about human body motions is getting applied
not only in robotics but also in various other fields, such as ani-
mation, sports engineering and rehabilitation. A massive amount
of data about humanbodymotionhas alreadybeen collected.How-
ever, when reusing memorized motion data in order to synthe-
size new motions for animated characters or to perform motion
analysis by comparingmotionswith previous ones, efficient search
techniques should be used to find the necessary motions in the
collected data. Currently, searching for and reusing the necessary
motion data is based on labels such as measurement time or mo-
tion description. An environment where it is possible to search for
only labels that match the input data places a large burden on op-
erators that reuse the motion data by requiring them to memorize
the exact measurement time or motion description.

The ability of a robot to perform intelligent information pro-
cessing by encoding and categorizing large amounts of body mo-
tion data and linking that data to linguistic representations forms
the basis of the robot’s comprehension of language and body mo-
tion. Also, this is closely related to technology for searching and
presentingmotion data related to simple linguistic input. This abil-
ity would substantially improve the reusability of motion data in
motion analysis or motion generation for CG characters. Frame-
works proposed thus far have been based on arrays of motion
symbols representing body motion data learned through a Hidden
Markov Model (HMM) [12] and arrays of verb labels attached to
those motions. In those frameworks, emphasis is placed on learn-
ing the correspondence between motions and verbs by restricting
the linguistic representations to verbs and considering the context
of the symbol and verb arrays, however, without taking into ac-
count the interrelation between motions or other linguistic units,
such as nouns or adverbs [13]. One proposed method for express-
ing the interrelation betweenmotion symbols involves calculating
the distances between individual motion symbols and construct-
ing a multidimensional motion symbol space and assigning mo-
tion symbols to points such that those distances are preserved [14].
Furthermore, there are language processing techniques in which
sentences composed of verbs, nouns and other elements are rep-
resented as points in a vector space based on the presence, absence
or frequency of the constituentwords [15–17]. Thus, itmay be pos-
sible to construct a computational model connecting motions to
word labels by using a common representation of both motions
and word labels as points in some spaces. In this paper, we con-
struct a space of motion symbols learned by applying an HMM to
bodymotion data and aword label space consisting of verbs, nouns
and other words assigned to those motions. Next, through canon-
ical correlation analysis [18], these spaces are reconstructed such
that a strong correlation is formed between motion symbols and
word labels. Using these spaces,wepropose amethod for searching
for motion data based on word labels. This serves as a fundamen-
tal technique for extracting the necessarymotions from a database
and reusing them.

2. Mapping between motions and word labels

Research on intelligent robots through conversion of bodily
senses or movements into symbols is being conducted in robotics.
These approaches encode the continuous spatio-temporal data of
motions into the low dimensional parameters of motion primi-
tives, and these parameters allow robots to classify the motions
into the motion primitives. However, the motion primitives rep-
resented in the parameters cannot be intuitively understood by
humans. Humans have acquired language through the process of
evolution. We can understand motions in same expression that
others can do by using the language. The mapping between the
motion parameters and words is crucial to establishing communi-
cation between robots and humans. This section describes an ap-
proach to extract the mapping between motions and word labels.
The motion data is encoded into a Hidden Markov Model (HMM),
which is referred to as ‘‘motion symbol’’. The motion data is also
givenword labels by human annotators. Relation between themo-
tions and theword labels is extracted from the training pairs of the
motion symbols and the word labels as shown in Fig. 1.

2.1. Extracting correlation between motions and words

Fig. 2 shows the overview of mapping between human whole
body motions and word labels. The human motion primitive data
are encoded in Hidden Markov Models (HMMs). Each HMM is
referred to as ‘‘motion symbol’’ since it represents spatio-temporal
features of its corresponding motion primitive. Dissimilarity
between each motion symbol can be calculated by using the
Kullback–Leibler information.

d(λi, λj) =


Ô(k)
i : k=1,2,3,...,N

1
N


ln P(Ô(k)

i |λi) − ln P(Ô(k)
i |λj)


(1)

d(λi, λj) is the Kullback–Leibler information from motion symbol
λi to motion symbol λj. Ô

(k)
i is the kth motion data that the motion

symbol λi generates by the Monte Carlo method. P(Ô(k)
i |λj) is the

likelihood that motion symbol λj generates the motion data Ô(k)
i .

The Kullback–Leibler information does not necessarily satisfy the
symmetry. In Eq. (2), d(λi, λj) and d(λj, λi) are summed to obtain
D(λi ∥ λj), which satisfies the symmetry.

D(λi ∥ λj) =
d(λi, λj) + d(λj, λi)

2
. (2)

This is defined as the distance between motion symbol λi and
motion symbol λj. All of themotion symbols are arranged as points
on a multidimensional space such that the distance between all
the motion symbols is satisfied. The coordinates of the point in
themultidimensional space corresponding tomotion symbolλi are
taken as xi, and this position is found such that the following error
function is minimized.

T =


∀i,j


D(λi ∥ λj)

2
− d2ij

2
4D(λi ∥ λj)2

(3)

dij = ∥xi − xj∥. (4)

Here, the multidimensional scaling proposed by Takane et al.
[19] is used. The error function T is represented by a fourth-order
polynomial in coordinate xi of motion symbol λi. The optimal po-
sition of themotion symbol, whichminimizes the error function T ,
can be found by the Newton–Raphson method. This process con-
structs the motion symbol space based on dissimilarity between
the motion symbols by the multidimensional scaling.

Multiple word labels aremanually assigned to the samemotion
primitive data that the HMM encodes into the motion symbol. The
word labels are descriptive of the motion primitive. A set of the
word labels is represented by a feature vectorwith binary elements
taking value 1 if the corresponding word label is present in the set
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Fig. 1. The overview of motion database and its application to retrieve captured motion data from word label queries. The motion data is encoded into an Hidden Markov
Model, which is referred to as ‘‘motion symbol’’. Human annotators attach multiple word labels to this motion data. The motion symbol and the word labels are converted
to feature vectors in the motion symbol space and word label space. These two feature vectors are linearly transformed into new vectors so that correlation between the
transformed vectors can bemaximized. These derived vectors can be used to retrievemotion data corresponding toword label queries. Theword label queries are represented
by the feature vector. This feature vector is converted to the feature in the motion symbol space. The motion symbols, whose feature vectors are close to converted feature
vector, are searched for in the motion database. The motion data, which are encoded into these closest motion symbols, can be retrieved.
Fig. 2. Motion patterns are symbolized by HMMs. Motion symbols form ‘‘motion symbol space’’ based on dissimilarities among the symbols. The motion patterns are also
given motion words, which represent the motions. The motion words form ‘‘word space’’. Canonical correlation analysis establishes the canonical spaces for the motions
and the words. These spaces make it possible to retrieve motions from word queries.
of theword label, and 0 if theword label is not present. The number
of dimensions of the feature vector is equal to the number of the
different word labels. For example, four word labels ‘‘run’’, ‘‘walk’’,
‘‘throw’’ and ‘‘ball’’ can be used, and two word labels, ‘‘throw’’ and
‘‘ball’’ are assigned to motion primitive data. In this case, feature
vector y = (0, 0, 1, 1)T corresponding to the motion primitive is
derived. The position of theword labels in theword label space can
be defined as the feature vector y.

The motion primitive data {Oi}
n
i=1 can be represented not only

by the position {xi}ni=1 in the motion symbol space but also by the
position {yi}ni=1 in the word label space. n is the number of the
motion primitive data. By using training dataset of the positions,
{xi, yi}ni=1, these positions are linearly projected onto the basis
vectors a and b by Canonical Correlation Analysis (CCA) such that
the correlation between the resulting positions is maximized. The
matrices, X and Y can be derived by arranging the vectors of the
motion symbols and the word labels along the column direction
respectively:

X = [x1, x2, . . . , xn]T (5)

Y = [y1, y2, . . . , yn]T . (6)
The correlation rfg between the projections of fi = xTi a and
gi = yT

i b can be given by

rfg =
aTΣXYb

aTΣXa

bTΣYb

(7)

ΣX =
1

n − 1
X TX (8)

ΣY =
1

n − 1
Y TY (9)

ΣXY =
1

n − 1
X TY . (10)

The CCA seeks to find the optimal basis vectors a and b to
maximize the correlation rfg subject to following constraints that
the covariances of the resulting projections take value 1.

aTΣXa = 1 (11)

bTΣYb = 1. (12)
The CCA optimization problems can be simplified to the follow-

ing eigenvalue problems.

ΣXYΣ−1
Y ΣYXa = α2ΣXa (13)
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ΣYXΣ−1
X ΣXYb = α2ΣYb (14)

{a1, a2, . . . , ak} and {b1, b2, . . . , bk} denote the eigenvectors
corresponding to the largest eigenvectors α2

1 ≥ α2
2 ≥ · · · ≥ α2

k .
The projections xTai and yTbi are ith dimensional coordinates of
a motion symbol and word labels in the canonical spaces respec-
tively. The correlation between these two coordinates becomes αi.
The matrices A = [a1, a2, . . . , ak] and B = [b1, b2, . . . , bk] project
themotion symbols andword labels onto k-dimensional canonical
spaces.

2.2. Retrieval of motions from word labels

Reuse technologies of prerecorded motion data improve
analysis of human motions, edition of character animation, and
interaction between a human and a robot. The reuse of the motion
data archive has remained challenging. The reuse technologies
need the effective search for specific motion data in the archive.
The conventional search has been depending on recording date
labels, or names of motion data files. Users have to know the date
or names of their necessary motion data. The relation between
motion symbols and word labels through the CCA leads to a useful
search for motion data from queries of word labels. The users only
have to inputword labels in order to find prerecordedmotion data.

We assume that the relation between the project f = ATx and
the project g = BTy can be represented as the linear transforma-
tion, f = C Tg , where C is a transformation matrix. The transfor-
mation matrix can be found such that it can minimize the error S
between the project ATx and the project estimated by the transfor-
mation C Tg .

S =

n
i=1

1
2
(fi − C Tgi)T (fi − C Tgi). (15)

The optimal transformation matrix can be represented as

C = ΣFG (16)

ΣFG =
1

n − 1
F TG (17)

F = [f1, f2, . . . , fn]T (18)

G = [g1, g2, . . . , gn]T . (19)

Word labels are given as a search query, and converted to a
binary feature vector y. The projection g = BTy can be de-
rived by projecting the binary feature onto the canonical space.
This projection is transformed into the feature vector C Tg in the
canonical space ofmotion symbols. Motion symbols whose feature
vectors are close to the transformed feature can be retrieved from
the database. This operationmakes it possible to search for motion
data corresponding to a query of word labels.

In addition to themotion retrieval, the relation betweenmotion
symbols and word labels through the CCA is also used for motion
recognition. The relation between the project f = ATx and the
project g = BTy can be represented as the linear transformation,
g = DT f , where D is a transformation matrix. The transformation
matrix can be found such that it can minimize the error S between
the project BTy and the project estimated by the transformation
DT f . The optimal transformationmatrix can be derived by a similar
fashion described above. Observed motion is recognized as a
motion symbol that is most likely to generate the observation. The
feature vector x representing the position of this motion symbol
in the motion symbol space can be derived. This feature vector
is projected to f = ATx. This projection is further transformed
into the feature vector DT f in the canonical space of word labels.
Words whose feature vectors are close to the transformed feature
can be found out of the database. The observed motion can be
consequently recognized as the words.
Fig. 3. Relationship between the number of dimensions of the motion symbol
space and error between the distance calculated from the Kullback–Leibler and the
distancemeasured in themotion symbol space. The error converges around d = 10
as the number of dimensions in the motion symbol space is incremented.

3. Experiments

3.1. Dataset of motions and descriptive word labels

The positions of 34 markers attached to a performer were
measured by using an opticalmotion capture system. The sampling
rate of themotion capture systemwas set to 30Hz. Joint angles, the
height in the vertical direction, speed in the horizontal direction,
roll, pitch and yaw of the body trunk were calculated by inverse
kinematics based on a human body model with 20 degrees of
freedom. Human motion primitive data is defined as a segment of
a time series of 26-dimensional feature vector of these joint angles
and trunk data. The trunk data include its vertical position pz , roll
angle θx, pitch angle θy in the global coordinate system, and its
horizontal speeds vx, vy and yaw angular velocity ωz in its local
coordinate system. The motion primitive data were encoded into
HMMs. The HMMs are referred to as motion symbols. The number
of nodes in theHMMwas set to 30, and 618motion primitiveswere
measured. This means that 618 motion symbols were derived.

The Kullback–Leibler distances between all themotion symbols
were calculated. The motion symbol space was constructed by
locating themotion symbols in amultidimensional space such that
the error between the Kullback–Leibler distances and the distances
measured in this space is minimized. Fig. 3 shows the relationship
between the number d of dimensions of the motion symbol space
and the error Td in the Kullback–Leibler distance and the distance
between the motion symbols located in the multidimensional
space. The error decreases as the number of dimensions of the
motion symbol space increases. The error ratio, γ =

Td+1−Td
Td

, is
0.001 at the 10 dimensions. The error was found to converge at
the 10 dimensions. Therefore, we set the number of dimensions of
themotion symbol space to 10. The 10 dimensionalmotion symbol
space was used hereafter. The position x of the motion symbol in
the motion symbol space represents each motion primitive.

Human annotators assigned descriptive word labels to the mo-
tion primitive data. The annotators did not select word labels from
the prepared set of word labels, but found the words of noun
or verb relevant to the motion data and attached them to the
motion. The number of different word labels attached to all the
motion primitive data was 253. 253 dimensional binary feature
vector y represents the word labels assigned to each motion prim-
itive. Note that several word labels were assigned to each motion
primitive. For examples, two word labels, ‘‘tennis’’ and ‘‘swing’’,
were assigned to the action of swinging a tennis racket. Moreover,
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Table 1
Examples of motion and attached word labels.

Motion Word labels Motion Word labels Motion Word labels

jump1 ‘‘jump’’ tennis swing2 ‘‘tennis’’ ‘‘swing’’ march walk2 ‘‘march’’ ‘‘walk’’
jump2 ‘‘jump’’ tennis swing3 ‘‘swing’’ march walk3 ‘‘march’’
jump3 ‘‘leap’’ tennis swing4 ‘‘tennis’’ ‘‘swing’’ left highkick1 ‘‘left leg’’ ‘‘high kick’’ ‘‘kick’’
jump4 ‘‘leap’’ tennis swing5 ‘‘tennis’’ ‘‘swing’’ left highkick2 ‘‘left leg’’ ‘‘high kick’’
jump forward1 ‘‘leap’’ tennis smash1 ‘‘tennis’’ ‘‘smash’’ left highkick3 ‘‘left leg’’ ‘‘kick’’
jump forward2 ‘‘forward’’ ‘‘jump’’ tennis smash2 ‘‘tennis’’ ‘‘smash’’ right lowkick1 ‘‘right leg’’ ‘‘low kick’’ ‘‘kick’’
jump forward3 ‘‘forward’’ ‘‘leap’’ tennis smash3 ‘‘tennis’’ ‘‘swing’’ right lowkick2 ‘‘right leg’’ ‘‘low kick’’
jump down1 ‘‘jump down’’ bow1 ‘‘bow’’ right lowkick3 ‘‘right leg’’ ‘‘kick’’
jump down2 ‘‘leap’’ ‘‘jump down’’ bow2 ‘‘bow’’ sweep bloom1 ‘‘bloom’’ ‘‘sweep’’
jump down3 ‘‘leap’’ ‘‘drop’’ bow3 ‘‘salute’’ sweep bloom2 ‘‘bloom’’ ‘‘sweep’’
play guitar1 ‘‘guitar’’ ‘‘play’’ bow deeply1 ‘‘bow’’ ‘‘apologize’’ sweep bloom3 ‘‘bloom’’ ‘‘sweep’’ ‘‘clean’’
play guitar2 ‘‘guitar’’ ‘‘play’’ bow deeply2 ‘‘bow’’ clean1 ‘‘cleaner’’ ‘‘vacuum’’
play guitar3 ‘‘guitar’’ ‘‘perform’’ bow deeply3 ‘‘salute’’ clean2 ‘‘cleaner’’ ‘‘vacuum’’
play violin1 ‘‘violin’’ ‘‘play’’ walk1 ‘‘walk’’ clean3 ‘‘cleaner’’ ‘‘clean’’
play violin2 ‘‘violin’’ ‘‘play’’ walk2 ‘‘walk’’ read book1 ‘‘book’’ ‘‘read’’
play violin3 ‘‘violin’’ ‘‘perform’’ walk3 ‘‘walk’’ read book2 ‘‘book’’ ‘‘read’’
tennis swing1 ‘‘tennis’’ ‘‘swing’’ march walk1 ‘‘march’’ ‘‘walk’’ read book3 ‘‘read’’
query : jump

jump1 jump forward2

jump forward1 jump3

stomp3jump down3

stomp1jump4

Fig. 4. Eightmotions are retrieved from theword query ‘‘jump’’ out ofmotion dataset. Themotion,which is given sameword as the query, can be retrieved. These experiment
results mean that queried word labels do not correspond to only one motion, but that they can refer to multiple motion symbols in the proposed framework.
same word labels were not necessarily assigned to similar motion
primitives. One word label ‘‘jump’’ was assigned to the action of
jumping, and different word label ‘‘leap’’ was assigned to another
action of jumping. Table 1 shows instances of motion primitives
and word labels attached to them. Two word labels ‘‘book’’ and
‘‘read’’ are attached to the motion ‘‘read book1’’ referring to the
action of reading a book. Word labels ‘‘left leg’’, ‘‘high kick’’, and
‘‘kick’’ are attached to the motion ‘‘left highkick1’’ referring to the
action of high-kicking.

The position x of the motion symbol in the motion symbol
space and the binary feature y of the word labels were derived.
The CCA forms the canonical spaces of the motion symbols and
the word labels by using the pairs (x, y) as training data. The
transformation matrix C can be also derived by using these data.
The transformationmatrix allows for projection from the canonical
space of the motion words onto the canonical space of the motion
symbols.
The relationship between the motion symbols and the word la-
bels through the CCA can be applied to the retrieval of motion data
from a query of word labels. This is implemented by representing
the query of theword labels by the binary feature vector y, project-
ing the feature vector onto the canonical space of theword labels to
derive a feature vector g = BTy, transforming the project g to the
feature vector C Tg in the canonical space of the motion symbols
by using the transformation matrix, and finding motion symbols
which are close to C Tg . This implementation retrievesmotion data
corresponding to a query of word labels.

3.2. Qualitative experimental results

Figs. 4 and 5 show the experimental results of the motion
retrieval. The displayed motions are ranked in ascending order
of distance between the query and the motion. When a query of
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query : guitar

play guitar2 play guitar1

play guitar3 play violin1

badminton swing2 play violin2

table tennis swing3 fire gun2

Fig. 5. Eight motions are retrieved from the word query ‘‘guitar’’ out of motion dataset. The motion, which is given same word as the query, can be retrieved. These
experiment results mean that queried word labels do not correspond to only one motion, but that they can refer to multiple motion symbols in the proposed framework.
Table 2
Search for motions corresponding to words ‘‘march’’, ‘‘cleaner’’, ‘‘book read’’ and ‘‘high kick’’, respectively.

march cleaner book, read high, kick
Result Similarity Result Similarity Result Similarity Result Similarity

march walk3 1.000 clean1 1.000 readbook1 1.000 left highkick2 1.000
march walk1 1.087 clean3 1.274 readbook2 1.000 right highkick1 1.069
march walk2 1.431 clean2 1.393 readbook3 1.195 left highkick1 1.070
run2 1.488 sweep broom3 5.873 PC3 1.674 left highkick3 1.097
run1 1.534 crouch2 6.144 PC2 1.889 left lowkick3 1.111
walk3 1.595 sweep broom1 6.226 PC1 1.891 left lowkick2 1.122
run3 1.610 sit down1 6.263 sit down1 2.459 right highkick3 1.158
crap3 1.626 bow2 6.301 do dish2 2.699 left lowkick1 1.188
shakehand2 1.631 crouch1 6.321 catch3 2.714 run3 1.196
welcome2 1.646 do dish1 6.357 sitdown2 2.725 do dish1 1.198
the word label ‘‘jump’’ was given, the motion ‘‘jump1’’ and the
motion ‘‘jump forward2’’, both of which the word label ‘‘jump’’
were attached to,were retrieved. Themotion ‘‘jump forward1’’, the
motion ‘‘jump3’’, the motion ‘‘jump down3’’ were also retrieved.
The word label ‘‘jump’’ was not attached to these motions, but the
word label ‘‘leap’’ was attached. These motions can be categorized
as the motion of jumping, and they are relevant to the word
label ‘‘jump’’. Fig. 6 shows generated trajectories of the trunk
height, left knee joint angle, and right knee joint angle, which are
generated by HMMs corresponding to ‘‘jump1’’, ‘‘jump forward2’’
and ‘‘jump forward1’’. The trajectory distributions and the average
trajectories are displayed in shaded graphs and in solid graphs
respectively. The figure illustrates that these motions are very
similar to each other. The retrieval results look reasonable. When
a query of the word label ‘‘guitar’’ was given, the motion ‘‘play
guitar2’’, the motion ‘‘play guitar1’’, and the motion ‘‘play guitar3’’
were retrieved. The motion word ‘‘guitar’’ was attached to these
retrieved motions. The motion ‘‘play violin1’’ with the word labels
‘‘violin’’ and ‘‘play’’ attached was retrieved at the fourth rank. The
motion of playing the guitar and the motion of playing the violin
look similar. The motion ‘‘play violin1’’ was relevant to the word
label ‘‘guitar’’. The majority of motions retrieved at the top ranks
look good. This experiment clarified that motions relevant to the
word label can be retrieved by using our proposed framework.
Another experimental results of motion retrieval are shown
in Table 2, where ten motions were retrieved given word la-
bels ‘‘march’’, ‘‘cleaner’’, ‘‘book, read’’ and ‘‘high, kick’’ as retrieval
queries, and the similarities between the motion and the query
were calculated as the distances divided by the shortest distance
such that the shortest distance becomes one. Note that the dis-
tances were measured in the canonical space of the motion sym-
bols. The motion ‘‘march walk3’’, the motion ‘‘march walk1’’ and
‘‘march walk2’’ were retrieved at top ranks given the word label
‘‘march’’ as a query. The word label ‘‘march’’ was attached to these
three motions. The motion ‘‘run2’’, the motion ‘‘run1’’ and the mo-
tion ‘‘walk3’’ were retrieved at the following ranks. Although these
three motions were not given the word label ‘‘march’’, they look
similar to themotion of marching. The averages of the similarity of
motion ‘‘march walk’’ and ‘‘run’’ were 1.17 and 1.54 respectively.
Themotion ‘‘clean1’’, themotion ‘‘clean3’’ and themotion ‘‘clean2’’,
which the word label ‘‘cleaner’’ was attached to, were retrieved
given the word label ‘‘cleaner’’. The motion ‘‘sweep broom3’’ was
retrieved at the fourth rank. The word label ‘‘cleaner’’ was not at-
tached to this motion. The similarities for the motion ‘‘clean2’’ and
for the motion ‘‘sweep broom3’’ were 1.39 and 5.87 respectively.
The averaged similarities of the motion ‘‘clean’’ and the motion
‘‘sweep broom’’ were 1.22 and 6.16. The motion ‘‘sweep broom3’’
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Fig. 6. Motions are generated by sampling-based method from HMMs, which are retrieved from the query of the word label‘‘jump’’. The average and distribution of the
trajectories of the trunk height, the left knee joint angles, and the right knee joint angles are displayed.
is much more irrelevant to the word label ‘‘cleaner’’. However,
the word label ‘‘clean’’ was attached to both the motion ‘‘clean3’’
and ‘‘sweep broom3’’. The attachment of these words establishes
the relationship between the word label ‘‘cleaner’’ and the motion
‘‘sweep broom3’’, and thenmakes it possible to retrieve themotion
which the queried word label was not attached to. Given twoword
labels ‘‘book’’ and ‘‘read’’ as a query, the motions ‘‘read book1’’ and
‘‘read book2’’ were retrieved at the first and second ranks. Both the
word label ‘‘book’’ and the word label ‘‘read’’ were attached to the
retrievedmotions. Themotion ‘‘read book3’’, which only one word
label ‘‘read’’ was attached to, was retrieved at the third rank. The
motions retrieved at the following ranks, ‘‘PC3’’, ‘‘PC2’’, ‘‘PC1’’, and
‘‘sit down1’’ look similar to the motion of reading a book, since a
performer sat at the desk during recording these motions. Note
that the motion ‘‘read book’’ captured full body movement of a
performer reading a book during sitting on a chair, and the mo-
tion ‘‘PC’’ captured whole body movement of a performer typing
at a keyboard during sitting on a chair. The averaged similarities
of the motion ‘‘readbook’’ and the motion ‘‘PC’’ were 1.07 and 1.82
respectively. Themotions, which theword labels ‘‘high’’ and ‘‘kick’’
were attached to, were retrieved given the word label ‘‘high’’ and
the word label ‘‘kick’’ as queries. The motions retrieved at the top
ranks look quite relevant to the queried motion words. The pro-
posed retrieval can find the motions relevant to the queried word
labels even if the queries are not attached to them.
3.3. Quantitative experimental results

We evaluated the results of retrieving motions given queried
word labels. We adopted Recall (R) and Precision (P) as the
evaluation measures. The motion retrieval was tested on all the
word labels, which were attached to captured motion primitives.
This means that the number of test queries was 618. Note that
some overlapped queries were permitted. The retrieved motion,
which the queried word labels are attached to, is counted as True
Positive (TP). The Recall measures the percentage of TP in all the
motions in the database that the queried word labels are assigned
to. The Precision measures the percentage of TP in all the retrieved
motions. The binary feature for queried word labels is projected
onto the canonical space of themotion symbols. Themotionwhose
distance to the project in the canonical space is below the threshold
is retrieved. The threshold was increased from 0.2 to 5.0 in
increments of 0.1. Fig. 7 shows the relationship between the Recall
and the Precision. The F measure, which is the weighted harmonic
mean of the Recall and the Precision, and can be simplified to
F =

2PR
P+R , was 0.598 when the Recall was equal to the Precision.

We evaluated the retrieval results by using another measure
called Mean Average Precision (MAP). MAP is the average of
Precision values obtained after each motion with the query
attached is retrieved. When the motion retrieved at the rth rank
is counted as TP, Precision P(r) is obtained from tops r retrieved
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motions. The retrievals are iterated until all the motions with the
query attached are found. MAP is defined as average of all the
Precision P(r). rel(r) returns 1 if the motion retrieved at the rth
rank is counted as TP, otherwise 0.

AP =
1
Nq

Nr
r=1

rel(r)PR(r), (20)

where Nq is the number of motions that the queried word labels
are attached to. All the motions with the query attached are found
until the retrievals are iterated until the Nr th rank. All the motions
that the query is assigned to are found from until the higher ranks,
MAP becomes larger. MAP was 0.822 in this retrieval experiment.

Additionally, we tested our framework on recognizing observed
motions as word labels. We chose 617 pairs of motion symbol
and the its descriptive word labels as training data in order to
construct the motion symbol space and the word label space. One
remaining pair was used as a test data. This motion symbol is
supposed to be recognized as three word labels. More specifically,
three word labels that is the most related to the motion symbol
are founded. The found set of word labels including one of the
word labels attached to the motion symbol is counted as correct.
The average recognition rate was 0.72. Our framework is expected
to associate multiple motion symbols and word labels, and to
recognize amotion as its relevantword labels thatmay be attached
to this motion. Therefore, we selected three word labels as motion
recognition result.

In this paper, 618 motion symbols are projected onto a motion
symbol space, and each of them is expressed by 10 dimensional
feature vector. However, 253 different word labels are used, and
each of them is expressed by 253 dimensional binary feature
vector. The more different word labels are assigned to the motion
primitive data, the larger size of the binary feature vector is
required. To deal with this problem, the feature vector of a
word needs to be expressed by a low dimensional feature vector
applying dimensionality reduction to the words based on the their
co-occurrence frequencies in the documents [16,17]. We should
recorded more motion data and their descriptive word labels and
test the scalability of our proposed framework.

4. Conclusion

The contribution of this study can be summarized as follows.

1. We proposed a framework for correlating motion symbols
learned by applying an HMM to full-body motion data with
word labels assigned to those motions. We constructed a mo-
tion symbol space based on the dissimilarity between motion
symbols, and represented the motion symbols as points in the
symbol space.Word labels assigned to thosemotions were rep-
resented as binary vectors composed of elements representing
the presence or absence of different word labels. Furthermore,
canonical correlation analysis was used to create a linear map-
ping of the vectors such that the correlation is maximized be-
tween the feature vectors representing the positions of symbols
in the motion symbol space and the binary vectors for word la-
bels. In this way, canonical spaces could be constructed consist-
ing of points representing the projections of motion symbols
and word labels.

2. We proposed a method for searching for motions correspond-
ing to word labels given as input. The input word labels are
projected onto the canonical space of motion symbols, and the
motion symbols located near the projection point can be ex-
tracted as search results. A single word label can extract mul-
tiple motions based on their distance in the canonical space.
Fig. 7. Recall and precision curve. The retrieval depends on the distance threshold.
The motion, whose distance to the word query is smaller than this threshold, is
retrieved out of the motion database. This curve can be derived by plotting recall
and precision as this distance threshold is incremented.

3. Using training data consisting of 618 symbols for full-body
motions measured with a motion capturing system and 253
types of word labels assigned to those motions, we constructed
canonical spaces for motion symbols and word labels. Further-
more, we derived a transformation matrix for mapping points
from the canonical space of word labels to the canonical space
ofmotion symbols.We verified that given aword label as input,
the search extracts not only the motions to which this label is
assigned, but also the motions that can be derived by associa-
tion with that word label. The F-measure calculated from the
Recall and Precision of the search was 0.598, andMean Average
Precision for all word labels was 0.822.
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