Cloning and expression of human brain type I inositol 1,4,5-trisphosphate 5-phosphatase

High levels of mRNA in cerebellar Purkinje cells

Florence De Smedt*, Benoît Verjans*, Pierre Mailleux*, Christophe Erneux*,*

*Interdisciplinary Research Institute (IRIBHN) and Brain Research Unit, Université Libre de Bruxelles, Campus Erasme, Bldg. C, 808 route de Lennik, 1070 Brussels, Belgium

Received 9 May 1994

Abstract

In brain and many other tissues, Type I inositol 1,4,5-trisphosphate (InsP3) 5-phosphatase is the major isozyme hydrolysing the calcium-mobilizing second messenger InsP3. We recently reported the cloning and expression of dog thyroid InsP3 5-phosphatase. During the course of this cloning, screening of a human brain cDNA library allowed us to isolate a cDNA clone D1 with 91% sequence identity with the thyroid sequence. When clone D1 was expressed in Escherichia coli, the fusion protein had InsP3 5-phosphatase activity. M, estimates of the recombinant enzyme made by immunodetection, activity assay after SDS/PAGE or silver staining were consistent with the calculated molecular mass. In situ hybridization on human cerebellum sections localised the mRNA for this enzyme to the Purkinje cells.

Key words: Inositol phosphate metabolism; Signal transduction; Ca2+; Human brain

1. Introduction

It is generally accepted that the phosphoinositide (PI) turnover system acts as a signal transducing cascade in the central nervous system. Many neurotransmitter receptors coupled with G protein activate phospholipase C, which hydrolyzes phosphatidylinositol 4,5-bis-phosphate, generating inositol 1,4,5-trisphosphate (InsP3) and 1,2-diacylglycerol (DAG). InsP3 releases Ca2+ from intracellular stores whereas DAG activates protein kinase C [1]. InsP3 5-phosphatase catalyzes the dephosphorylation of InsP3, inactivating the signal. This enzyme is present at high concentration in the brain, particularly in the cerebellum [2,3]. Regulation of this enzyme will directly modify InsP3 accumulation and Ca2+ signalling. To study this reaction, we aimed to clone cDNAs encoding InsP3 5-phosphatase in brain tissue. We present here for the first time cloning, expression and production of recombinant Type I InsP3 5-phosphatase from human brain. We also show its localisation in cerebellar Purkinje cell bodies.

2. Materials and methods

2.1. Molecular cloning and expression of human brain InsP3 5-phosphatase

The cloning of human brain Type I InsP3 5-phosphatase (clone D1) resulted from a screening of a human brain frontal cortex cDNA library (Stratagene) as reported in [4]. To express D1 as a β-galactosidase fusion product, the following construct was made by PCR using the following sense and antisense primers: ATCGGATCCGATGGCGGGGAAG-GCCGCCC and ATCGAATTCAAGTGTGGGCd2CGGCCGTCTA. Plasmid DNA of D1 was subjected to PCR to amplify a 1,376 bp product. This material was subcloned into Bluescript after digestion with EcoRI and BamHII. The in-frame clone derived from D1 is now referred to as ECH1. To express the recombinant enzyme from ECH1 plasmid, LB medium (3 l) containing 50 μg/ml ampicillin was inoculated for an overnight incubation at 37°C with a single colony of E. coli containing the Bluescript ECH1 plasmid. After addition of isopropyl β-thiogalactoside (1 mM final concentration) for 2.5 h at 30°C, the bacteria were harvested by centrifugation (1,200 x g, 15 min) and resuspended in 250 ml of cold lysis buffer (20 mM Tris-HCl, pH 8, 1 mM EDTA, 50 mg/ml pefabloc, 2.5 μM leupeptin, 10% sucrose, 12 mM 2-mercaptoethanol and 1% Triton X-100). After agitation for 60 min at 4°C and centrifugation (15,000 x g, 15 min), supernatant was used for further purification. The crude lysate (activity of about 50–120 μmol/min assayed at 10 μM InsP3) was loaded onto a Blue-Sepharose column (14 x 5 cm) equilibrated in BD buffer (20 mM Tris-HCl, pH 7.5, 0.1 mM EGTA, 2 mM MgCl2, 10% glycerol and protease inhibitors). After washing with 100 ml of BD buffer, the enzyme was eluted with a linear gradient of 0–1 M NaCl of 1 l (total volume). After concentration to 10 ml, further purification was achieved by Sephacryl S-200 gel filtration [5]. At this step, specific activity was 1.25 μmol/min/mg at 10 μM InsP3. The pooled fractions were concentrated to 10 ml (1 μmol/min/mg). An aliquot of this preparation (0.25 ml) was six-fold diluted in 20 mM Na acetate, pH 5.5, and further purified onto a CM Mem Sep HP 1000 cation exchange HPLC resolved by a gradient of NaCl (0-0.2 M). Materials, assay of InsP3 5-phosphatase activity, Western blotting and immunodetection of proteins were as previously described [5–6].

2.2. In situ hybridization

In situ hybridization was performed on three human cerebella obtained at autopsy, as outlined in [7]. Three oligonucleotides complementary to bases 164-212, 373-419 and 674-720 of clone D1 were radiolabeled with [α-35S]dATP. They exhibit identical distribution but with different intensities (Fig. 4A–C). To enhance the signal, they were mixed 1:1:1 (Fig. 3A). In situ hybridization of the InsP3 receptor mRNAs was performed on adjacent sections with oligonucleotides de-
3. Results

3.1. Molecular cloning and nucleotide sequencing of human brain Type I InsP₃ 5-phosphatase

A human brain frontal cortex cDNA library in phage Lambda ZAP II was screened to isolate a cDNA clone D1 of 1,564 bp together with four other clones with comparable restriction maps. Sequencing of clone D1 identified a 1,236 bp open reading frame encoding a 412 amino acid protein with a calculated molecular mass of 47,817 including the initiating methionine. Fig. 1 shows the sequence of the human brain InsP₃ 5-phosphatase.

When translated into protein, the coding sequence showed an overall 97% identity with the thyroid sequence ([4], similarity in terms of nucleic acids was 91% in the coding region). In particular, peptide sequences previously reported for the bovine brain enzyme [4] were found in the sequence of the human clone (13 peptide sequences underlined in Fig. 1 with a total of 135 over 142 residues conserved between the two species). A computer search at the NCBI using the Blast network service revealed no significant similarities with other proteins. However, a partial and unidentified sequence (T08974) derived from a human cDNA was found to match the 3' end sequence of clone D1 over 403 bp (96% identity).

3.2. Expression in E. coli

To confirm that the cDNA clone obtained did indeed code for an InsP₃ 5-phosphatase, the coding sequence was amplified by PCR and subcloned into Bluescript plasmid (ECH1 clone). Apparent Kₘ value for InsP₃ of the expressed protein was 65 μM which is twice the Kₘ of the recombinant thyroid enzyme [4]. We verified that the activity was inhibited by InsP₄ and 2,3-
bisphosphoglycerate as expected considering the pharmacology of Type I InsP$_3$ 5-phosphatase (ref. [5]; IC 50 at 10 μM InsP$_3$ were 10 μM and 1 mM, respectively).

As the β-galactosidase fragment fused to the insert of clone ECH1 has a M_r of 4,000–5,000, we estimate the total M_r of the expressed protein to be 51,000. A series of experiments have identified the recombinant protein with an apparent M_r of 43–45 kDa on SDS gels. The E. coli-derived InsP$_3$ 5-phosphatase activity could be regenerated after SDS polyacrylamide gel electrophoresis. A single peak of activity comigrated with the standard of ovalbumin (M_r 43 ± 3 kDa) (Fig. 2A). InsP$_3$ 5-phosphatase antibodies directed against the native bovine brain enzyme [6] recognized, on Western blots, a 45 ± 2 kDa band in purified lysates derived from expressed ECH1. When the experiment was repeated with a lysate derived from a non-recombinant clone which did not contain 5-phosphatase activity, no signal was detected on immunoblot (Fig. 2B). Purification of the recombinant enzyme followed by silver staining shows the presence of a polypeptide at the same apparent M_r (45 ± 2 kDa; Fig. 2C).

3.3. In situ hybridization

InsP$_3$ 5-phosphatase mRNA was found in the Purkinje cells neuronal bodies (Fig. 3A–C), in their proximal dendrites (Fig. 3B) and to a much lesser extent in the granule cell layer (Fig. 3A–C). We verified that a similar distribution was obtained using three probes separately (Fig. 4A–C) and that the pattern was different from that of InsP$_3$ receptor mRNAs using the same technique (Fig. 4D). In the case of the InsP$_3$ receptor, the signal is only found in the Purkinje cells, while in the case of InsP$_3$ 5-phosphatase it is detected on these neurons but also to a lesser extent on the granule cell layer.

4. Discussion

There are several lines of evidence for the participation of InsP$_3$/Ca$^{2+}$ signaling in neuronal function. It is known that glutamate stimulates P$_i$ turnover and InsP$_3$ accumulation in Purkinje cells [9]. Purkinje neurons of the cerebellar cortex contain a particularly high density of InsP$_3$ receptors [10]. In these cells, InsP$_3$ metabolizing enzymes may be involved in Long-term depression of the parallel fiber–Purkinje cell glutamate synaptic transmission [11]. To study these enzymes, our aim was to clone cDNAs encoding the proteins, particularly InsP$_3$ 5-phosphatase and have addressed the question of the existence of possible isozymes. In this study, we report the sequence of human brain Type I enzyme. The protein sequence is 97% identical with the previously reported dog thyroid enzyme suggesting together with biochemical data [4,12,13], that this enzyme is widely expressed in various tissues. The high levels of mRNA in the Purkinje neurons are consistent with the high activity observed in cerebellum over other brain areas [3]. Since the enzyme could easily be produced in E. coli, it is now possible to study its regulation and importance in the Ca$^{2+}$ release mecha-
nism. It will also be possible to compare its expression in Purkinje neurons and other cells. In this context, recent data have shown a functional difference in InsP$_3$-evoked Ca$^{2+}$ release between Purkinje cells and peripheral tissues [14].

Acknowledgements: This work was supported by grants from Ministère de la Politique Scientifique (PAIT), the Communauté Française (Action Concertée), FRSM, FMRE, National Lottery and Boehringer Ingelheim. F.D.S. and B.V. are supported by the I.R.S.I.A., EMBO and Wineur Anspach foundation, respectively. P.M. is Chercheur Qualifié of the EN.R.S. We thank G. Vassart, J.E. Dumont and S. Swillens for discussions, and C. Moreau and N. Albala for helpful technical assistance.

References