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1. Introduction

The subject of fractional calculus has recently gained much momentum and a variety of problems involving differential
equations and inclusions of fractional order have been addressed by several researchers. Fractional differential equations
appear naturally in a number of fields such as physics, polymer rheology, regular variation in thermodynamics, biophysics,
blood flow phenomena, aerodynamics, electro-dynamics of complex medium, viscoelasticity, Bode analysis of feedback
amplifiers, capacitor theory, electrical circuits, electro-analytical chemistry, biology, control theory, fitting of experimental
data, etc. [1-4]. For some recent work on fractional differential equations and inclusions, see [5-13] and the references
therein.

Anti-periodic boundary value problems occur in the mathematical modeling of a variety of physical processes and have
recently received considerable attention. For examples and details of anti-periodic boundary conditions, see [14-18] and
the references therein.

In this paper, we discuss some existence results for anti-periodic boundary value problems of differential equations and
inclusions of fractional order q € (3, 4]. Precisely, we consider the following problems:

‘Dix(t) = f(t,x(t)), te€[0,T], T>0,3<q=<4, (1)

x(0) = —x(T), X (0)=-X(T), x"(0)=-x"(T), x"(0)=—x"(T), :
where D7 denotes the Caputo fractional derivative of order g, f is a given continuous function, and

‘Dix(t) € F(t,x(t)), te[0,T], T>0,3<q<4, (12)

x(0) = —x(T), ¥ (0)=—X(T), x"(0)=-x"(T), x"(0)=—x"(T). '

In(1.2),F : [0, T] x R — £ (R) is a multivalued map, & (R) is the family of all subsets of R.
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This paper is organized as follows. In Section 3, we discuss the existence of solutions for problem (1.1) by applying some
well known fixed point theorems and the Leray-Schauder degree theory. Section 4 deals with some existence results for the
inclusion problem (1.2) involving convex as well as nonconvex multivalued maps. These results are based on the nonlinear
alternative of Leray-Schauder type, a selection theorem due to Bressan and Colombo and a fixed point theorem due to Covitz
and Nadler. The methods used in this paper are standard, however their exposition in the framework of problems (1.1) and
(1.2) is new.

2. Preliminaries

Definition 2.1. For a continuous function g : [0, c0) — R, the Caputo derivative of fractional order q is defined as

1 t
‘Dig(t) = 7/ (t—9"9'g"(s)ds, n—1<qg<n, n=[q+]1,
rin—aq Jo
where [q] denotes the integer part of the real number g.

Definition 2.2. The Riemann-Liouville fractional integral of order q is defined as

t

g
r@Jo (=91
provided the integral exists.

Ig(t) =

ds, q>0,

Lemma 2.1 ([3]). For q > 0, the general solution of the fractional differential equation ‘Dx(t) = 0 is given by
x(t) = co+ 1t + Cot? + - 4 gt
wherec;e R, i=0,1,2,...,n—1(n=[q] + 1).
In view of Lemma 2.1, it follows that
19°Dx(t) = x(t) + co + 1t + Cpt? + -+ 4 cuqt", (2.1)
forsomec eR,i=0,1,2,...,n—1(m=[q]+ 1).

To study the nonlinear problems (1.1) and (1.2), we need the following lemma.

Lemma 2.2. For any o € C[0, T], the unique solution of the boundary value problem

‘Dix(t)=0(t), 0<t<T,3<q<4, 22)
x(0)=—x(T), X(0)=-=X(T), x'0)=-x"(T), x"(0)=-x"(T (2.
is
T
x(t) = / G(t,s)o(s)ds,
0
where G(t, s) is Green'’s function given by
(t—)T 1= 2T =" (T—2t)(T =992 T —t)(T —s)93
I'(q) ar@q-m 4r{q-2)
6t°T — 4t — T3)(T — )94
( Y )E(B 9 , O0<s<t<T,
G(t,s) = @=3 (2.3)
(T—9)T1 (T=200(T =592 (T —t)(T—-s5)713
2I'(q) ar@g-1 4I'(q — 2)
27 _ a3 _ T3 _¢)q—4
(6t°T — 4t> — T)(T — s)  O0<t<s<T
48r'(q — 3)
Proof. Using (2.1), for some constants by, by, bs, by € R, we have
Lt —s)11
x(t) = 1% (t) — by — byt — bst> — bst> = | ———" o (s)ds — by — byt — bst? — bat>. (2.4)

o I'@
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Applying the boundary conditions for problem (2.2) in (2.4), we find that

(T =541 T (T -5 (T —s)"*
=] e “d‘zom“‘”* T3 70"
b, 1 (T —s)172 o (s)ds — (T —s)" 3U(s)ds
2_2 o I'(g—1) 4J)o Ir'@q—2) ’
_ 1 TT=—9 (T 9"
"4y Ta-2 978 ) T35V
T(T —s)14
by=— [ ——o(s)ds.

12 rq-3)

Substituting the values of by, by, bz and b, in (2.4), we obtain

_ 1 _ 1 _ T (7 g2
X(t) = f E=9" syds— f =9 oass =20 [ T=977 s

CT@ @ 4 o I'(@—1
t(T—t) [T (T—s)093 (6t>T — 4t3 —T3) [T (T —s)T*
+ 7 . TWq-2 o(s)ds + 5  TWG-3 o(s)ds

T
= / G(t, s)o (s)ds,
0

where G(t, s) is given by (2.3). This completes the proof. O
Observe that

{I(T —20(T =) < |T =T =) < [T =], t<s,

(T = 20)(T — )74 < |(T — )T — )74 < |(T =73, t=s. 25)

Remark 2.1. It is worthwhile to note that the first two terms in G(t, s) correspond to the anti-periodic fractional boundary
value problem of order g € (1, 2][15] and the first three terms in G(t, s) correspond to the anti-periodic problem of fractional
order q € (2, 3] [16]. The consideration of the anti-periodic problem of fractional order q € (3, 4] gives rise to four terms
in G(t, s). Thus, it can easily be inferred that the contributions due to lower-order anti-periodic fractional boundary value
problems preserve their form in Green'’s function G(t, s) for fractional anti-periodic problems of higher order and can be
sorted out accordingly. Moreover, Green’s function G(t, s) for the fourth-order anti-periodic boundary value problem of
ordinary differential equations can be obtained by taking ¢ = 4 in (2.3), which is a new result and is given by

2t -3 —(T—93 T —t)(T—s)473
3! * 2
(T —2¢t) , (22 —2tT —T?)
+74 (T —5s) +—6 , O0<s<t<T,
CCI=31 T-9 T-0T-—9 (26)
3!T 2 2 2t% — 2tT — T?
+¥<(T—s)z+¥>, O0<t<s<T.

3. Existence results

Let @ = C(]0, T], R) denote the Banach space of all continuous functions from [0, T] — R endowed with the norm
defined by ||x|| = sup{|x(¢)|, t € [0, T]}.
Now we state some known results which are needed to prove the existence of solutions for (1.1).

Theorem 3.1 ([19]). Let X be a Banach space. Assume that £2 is an open bounded subset of X with® € 2 andlet T : 2 — X
be a completely continuous operator such that
(ITull < lull, Vuedsf.
Then T has a fixed point in £2.
Theorem 3.2 ([19]). Let M be a closed convex and nonempty subset of a Banach space X. Let A, B be the operators such

that (i) Ax + By € M whenever x,y € M; (ii) A is compact and continuous; (iii) B is a contraction mapping. Then there
exists z € M such that z = Az + Bz.
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Define an operator § : ¢ — C as

_ ¢)q-1 T — )9~ 1
@00 = [ 2 s xonds — / T (s xs))ds
0

r(Q INC)
(T—2t) (T (T -5 tT —t) [T (T —s)13
1 . Ta- )f(s, x(s))ds + 2 | TG-2) f(s, x(s))ds
(62T —4t3 —T3) (T (T —s5)9*
+ T . Ta- f(s x(s))ds, te[0,T]. (3.1)

Observe that problem (1.1) has a solution if and only if the operator § has a fixed point.

Lemma 3.1. The operator § : C¢ — C is completely continuous.

Proof. Let 2 C C be bounded. Then, Vt € [0, T], x € £2, there exists a positive constant L, such that |[f(t, x)| < L;. Thus,

we have
Le—9r! . (T =) ‘
<
[(§x) ()] < T ———If (s, x(s))|ds + - / @ ———1If (s, x(s))Ids
fIT—Ztlf T =9 2lf(s X(S))Ids+lt(T—t)|/TWV(s x(s))|ds
rg-1n-" 4 o '@—2)" "
1o s g [T =9
-|—48|6t T—4t’ —T° a3 If (s, x())|ds
-1 t
—_ )91 _ )91
§L1|:F(q)/.s(t s) d5+21"()/ (T —s)T'ds
T — 2t a2 e(T —t)I/ -3
+741"(q—1)/ (T — )7 “ds + (T —s5)7>ds
27 3_ 713 _ a4
+748F(q—3)|6t T—4t>—T |/0 (T —5) ds:|
T a@+10\] _
=h [2r<q+1> <3+ 24 )] =k (32)
which implies that ||(§x)|| < L,. Furthermore,
t o 2
g0/l = | (;(qs_)q)m x(s>>|ds+ i (;(ilf(s x(5))|ds
IT—2t] [T (T—5)13 (T -0 (T (T—s)"*
7 . Tq-2 [f (s, x(s))|ds + 7  TWG-3 f (s, x(s))|ds
t e \q-2 T (T _ g2
< Ly wds_’_ 1 &ds
o I'(@g—1) 2o I'(g—1)
IT—2t] [T (T—5)73 (T -0 (T(T —S)q“‘d
4 o I'(@—2) 4 o I'(@—3)
79! (@—1D@+2)\] _
<L [zr(q) (3 + 3 )] =L3. (3.3)

Hence, for tq, t; € [0, T], we have
[5)
[(§x)(t2) — (§x)(t1)| < / ()" (s)|ds < L3(t; — t1).
f

This implies that g is equicontinuous on [0, T]. Thus, by the Arzela-Ascoli theorem, the operator § : ¢ — € is completely
continuous. 0O

Theorem 3.3. Let f : [0, T] x R — R, and lim,_.¢ @ = 0. Then problem (1.1) has at least one solution.
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Proof. Since lim,_, ¢ f(t Y — 0, there exists a constant r > 0 such that If(t,x)| < §|x| for 0 < |x| < r, where § > 0is such
that

(3.4)

219 +T9 T —2t|T"  |6(T —0)|T9?  |6t*T — 4t> — T|T973 5 <1
eor [2@+1) 4l 4r@—-1 48I'(q —2) T

Define 2 = {x € C | ||x|| < r} and take x € € such that ||x|| = r, thatis, x € 02;. By Lemma 3.1, we know that § is
completely continuous and

209419 [T —2tT"" |6(T —6)|T92  |6t°T — 4t3 23| : 3}5“ I
X
2] (Q-i- 1) 4F(Q) 41 (q_ 1) 8 ( )

Thus, in view of (3.4), we obtain [|gx| < ||x||, x € d£2;. Hence, by Theorem 3.1, the operator § has at least one fixed point,
which in turn implies that problem (1.1) has at least one solution. O

[$x(t)] < [max { (3.5)

Example 3.1. Consider the problem
CDIx(t) = (5 4+ 23(6))2 + 2(t + 1)(x — sinx(t)) — /5, 0 <t <1, (36)
x(0) = —x(1), X0 =-x(1), x'(0)=-x"(1), ¥"(0)=-x"(D), '
where3 < qg<4,andT = 1.

It can easily be verified that all the assumptions of Theorem 3.3 hold. Consequently, the conclusion of Theorem 3.3 implies
that problem (3.6) has at least one solution.
Our next existence result is based on Krasnoselskii’s fixed point theorem [19].

Theorem 3.4. Assume that f : [0, T] x R — R is a jointly continuous function and the following assumptions hold:

(A2) If(t, %) < u(t), Y(t,x) €[0,1] x X, and u € L'([0, T], R™).

Then the anti-periodic boundary value problem (1.1) has at least one solution on [0, T] if

LTY 2
]+q(q +11) <1
r@+1 24

Proof. Let us fix

- T il (3 N (@—Dl@—1*+ 11]>’

"= T \2 48
and consider B, = {x € C: ||x|| < r}. We define the operators ¢ and ¥ on B, as
_ 1
(Px)(t) = A ¢ 1*(); f(s, x(s))ds,
(T —s5)%! (T —5)42
X)) = —7/ @ — G X(S))6315+ (T—Zt)f T_;)f(s, x(S))zds T 4
- (T — 2t)(2t2 — 2tT — T?) (T — )1~
+ - (t(T —t)) / ﬁf(s, x(s))ds + 13  T@—3) £ (s, x(s))ds.

For x, y € B,, by virtue of (2.5), we find that

Tl (3 @-Dlq-D*+ 11]) .

[&x + vyl < =
IN())

2 48

Thus, ®x + ¥y € B,. It follows from assumption (A;) that ¥ is a contraction mapping for F(L;il) (1 + q<q2:11)> < 1

Continuity of f implies that the operator @ is continuous. Also, @ is uniformly bounded on B, as

Tl
I'(q)
Now we prove the compactness of the operator @. In view of (A;), we define

ox|| <

sup ”f(ta X)” =fmax < Q.
(t,x)€[0,T]xBr
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Then, for t1, t; € [0, T], we have

[(@x)(t1) — (2x) (L) ]|

- / [ — 97— (6 — 971 (5, ¥(©)ds + / (62 — 97 s, x(5))ds
q
S fmax

ri@+1m
which is independent of x and tends to zero as t; — t;. So @ is relatively compact on B;. Hence, by the Arzela-Ascoli
theorem, @ is compact on B,. Thus all the assumptions of theorem by Theorem 3.2 are satisfied. Therefore, the conclusion of
Theorem 3.2 applies and the anti-periodic fractional boundary value problem (1.1) has at least one solution on [0, T]. This
completes the proof. O

12(t, — t)T + t] — 51,

Now we prove an existence and uniqueness result by means of the Banach contraction principle.

Theorem 3.5. Assume that f : [0, T] x X — X is a jointly continuous function satisfying the condition
If @, %) —fEe. I <Lix=yl, Vtel0,T] x,y€X
with
rg+1
@+1D’
e )

Then the anti-periodic boundary value problem (1.1) has a unique solution.

L <

Proof. Setting sup,.(or; If (t, 0)| = M and selecting r > F’X}TU (3 + q("ZX“)). we show that §B, C B,, where B, = {x €

C: ||x|| <r}. Forx € B;, we have

— )1 _ )1
||<9x>(t>||_[ggg>;]{/( P tsxonias [ T s onias

<
Q) r'(q)
yi-3
HUSY |/ s, x(s>)|ds+f|t<r—t)|/ 7)v<s,x<s)>|ds
1o o0 3 o3 (T—s)‘?*4
+£|6t T — 4t —T°|  TG_3) If(s,X(S))IdS}

Lt —s)T!
< max —————([f(s,x()) — f(s,0)[ + If (s, 0)])ds
te[0,T) ra

— 1
/ (Tp(S))q (If (5. x(5)) — £ (5, 0)] + f (s, 0)|)ds

IT 2t I/ (If(S X(s)) = f(s, 0)| + If (s, 0))ds

1 a3
th(T—r)I/ ) (If(s X($)) = f (s, 0)[ + If (s, 0)ds

*|6f T —4t’ — T3I/ 7([f( x(s)) = f(s, 0)| + If (s, O)I)dS]

3)

1 t
— )1 _ )1
< (Lr + M) tg}&);]{r(q) / (t—s)"""ds+ (g )/ (T —s)"'ds

IT — 2t a2 I(T—t)lf ¢-3
+74F(q—1)/(T s)™=ds + (T —95)7>ds

76t2T—4t3—T3[ T —s)4d
+48F(q—3)| IO( $)17%ds

T4 q(g®> +11)
oo ()
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Now, for x, y € Cand for each t € [0, T], we obtain

t (t _ s)q—l
1§26 = G O] = max / ﬁllf(s,X(S))—f(s,y(S))IIdS

te[0,T]

T — )1
/( ) If (s, x(s)) — f (s, y(s))llds

I'(q)
IT - 2t|/ IIf(s x(s)) — f(s, y(s))ds
1
th(T - t)lf ||f( x(s)) — f(s,y(s))lds
1 o0 3 3 (T—s)‘?*4 B
+@|6t T—4t> —T°| a3 If (s, x(s)) f(s,y(S))IIdS}

< L||x — y|| max L/(r— s)471d s+7/ (T —s)%'ds
- telo.71| I"(q) 2I(q)

T2t /(T o245 4 100 = ”'/a o1-%ds

4F(q—1) 4r(q—2)
1
4+ ————|6t2T — 43 — T3 f (T —5)%ds
48I'(q — 3) 0
LTY q(q® + 11)
< 3 X — =A x =Y,
S TRCEET ( 4 Ix =yl Lrgllx =yl
where A; 1, = 21"1-(71;11) (3 + q(qzzzm), which depends only on the parameters involved in the problem. As A; 1, < 1,

g is a contraction. Thus, the conclusion of the theorem follows by the contraction mapping principle (Banach fixed point
theorem). O

Example 3.2. Consider the following anti-periodic fractional boundary value problem

enlvipy lIx1
D2x(t) = . te(0,2],
(t+2)3 1+ x|

x(0)=—x@2), ¥(0)=-X(2), x'0)=-x"@2), x"0=-x"Q2),

(3.7)

where g = 7/2,and T = 2. Clearly, L = } as [ (t,x) — f(t,y)|| < allx — y||. Further,
LTI N q(g*> + 11)
riqg+1 24

Thus, all the assumptions of Theorem 3.5 are satisfied. Hence, the fractional boundary value problem (3.7) has a unique
solution on [0, 2].
The last result of this section is based on the Leray-Schauder degree theory.

) = 0.7769875842 < 1.

Theorem 3.6. Let f : [0, T] x R — R. Assume that there exist constants 0 < k < % where

R q(q+n>>
r@+1 \2 48
and M > 0 such that |f(t,x)| < «|x| + M forallt € [0, T],x € R. Then the boundary value problem (1.1) has at least one
solution.
Proof. Lets us define a fixed point problem by
X = Gx, (3.8)

where § is defined by (3.1). Then we just need to prove the existence of at least one solution x € C[0, T] satisfying (3.8).
Define a suitable ball By C C[0, T] with radiusR > 0 as

Br = {x € C[0, T] : max |x(t)| < R},
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where R will be fixed later. Then, it is sufficient to show that gx : By — C[0, T] satisfies

X # Agx, Vxe€ 0BgandV A € [0, T]. (3.9)
Let us set

H(A,x) = Xgx, xe€C@R) X €]0,1].
Then, by the Arzela-Ascoli theorem, h; (x) = x — H(A,x) = x — A4x is completely continuous. If (3.9) is true, then the
following Leray-Schauder degrees are well defined and by the homotopy invariance of topological degree, it follows that

deg(h;, Bg, 0) = deg(I — A4x, Bg, 0) = deg(hy, Bg, 0)

= deg(ho, Bg, 0) = deg(I,Bg,0) =1+#0, O0¢€B,

where I denotes the unit operator. By the nonzero property of the Leray-Schauder degree, h1(t) = x — Agx = O for at least
one x € Bg. In order to prove (3.9), we assume that x = Agx for some A € [0, T] and for all t € [0, T] so that

t— (T — 51
X(O)] = [1gx(0)] < / C=9" s, x(ods + 2 / ol xo)s
-3
fIT - 2t|/ If(s x(s))|ds + flt(T - t)lf 7|f(s x(s))|ds
T 3 3 (T_ )T
+ 48|6t T —4t> — T  Ta—3 [f(s, x(s))|ds

IA

(el + M) [rz)f (t—s5)'d 5+T()/ (T - 5)7~ds

2f| a2 |t(T t)' / q-3
+74F(q—1)/(T s) ds—|—4F( 2 (T —s)T>ds

1
+——— 62T — 4t3 — T3|/ (T —5)7*ds
48T (q — 3) 0

_ (klxI+M)TY ( n qa(q* + 11))
r@g+m 2 48
= (k|x| + M)s
which, on taking norm (sup;¢o 11 [X(t)| = |Ix]|) and solving for ||x||, yields
M$
1—«é’
Letting R = % + 1, (3.9) holds. This completes the proof. O

Il <

Remark 3.1. The new existence results for a class of fourth-order nonlinear differential equations with anti-periodic
boundary conditions can be obtained as a special case by taking g = 4 in the results of this section.

4. Existence results for multivalued maps

In this section, we discuss the existence of solutions for the anti-periodic boundary value problem of differential inclusion
of fractional order q € (3, 4] given by (1.2). First of all, we recall some basic concepts of multivalued maps [20-22].

For a normed space (X, |.]1), let P4(X) = {Y € LX) : Yisclosed}, P,(X) = {Y € P(X) : Y isbounded}, Pp,(X) =
{Y € 2(X) : Yiscompact}, and P, (X) = {Y € $£(X) : Y is compact and convex}. A multivalued map G : X — P (X) is
convex (closed) valued if G(x) is convex (closed) for all x € X. The map G is bounded on bounded sets if G(B) = Uyep G(x)
is bounded in X for all B € P,(X) (i.e. sup,c{sup{ly| : ¥y € G(x)}} < 00). G is called upper semi-continuous (u.s.c.) on X if
for each xy € X, the set G(xo) is a nonempty closed subset of X, and if for each open set N of X containing G(xy), there exists
an open neighborhood N of Xy such that G(.Mg) € N. G is said to be completely continuous if G(B) is relatively compact
for every B € Py(X). If the multivalued map G is completely continuous with nonempty compact values, then G is u.s.c.
if and only if G has a closed graph, i.e., X, = X., ¥n — ¥« Vn € G(x,) imply y, € G(x,). G has a fixed point if there is
x € X such that x € G(x). The fixed point set of the multivalued operator G will be denoted by Fix G. A multivalued map
G : [0, T] — Py4(R) is said to be measurable if for every y € R, the function

t —> d(y, G(t)) = inf{ly — z| : z € G(t)}
is measurable.
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Let C([0, T]) denote a Banach space of continuous functions from [0, T] into R with the norm ||x|| = sup,¢[o 17 [x(t)|. Let
L'([0, T], R) be the Banach space of measurable functions x : [0, T] — R which are Lebesgue integrable and normed by

Il = Jy x(@©)lde.
Definition 4.1. A multivalued map G : [0, T] — £ (R) with nonempty compact convex values is said to be measurable if
for any x € R, the function
t— d(x,F(t)) = inf{|x — z| : z € F(t)}
is measurable.

Definition 4.2. A multivalued map F : [0, T] x R — £ (R) is said to be Carathéodory if

(i) t —> F(t, x) is measurable for each x € R;
(ii) x —> F(t, x) is upper semi-continuous for almost all t € [0, T];

Further a Carathéodory function F is called L'-Carathéodory if
(iii) for each @ > 0, there exists ¢, € L'([0, T], R*) such that
IF(t, x|l = sup{|v| : v € F(t, %)} < ¢u(t)
for all ||x||oc < « and fora.e.t € [0, T].

Let E be a Banach space, X a nonempty closed subset of E and G : X — £ (E) a multivalued operator with nonempty
closed values. G is lower semi-continuous (l.s.c.) if the set {x € X : G(x) N B # ¢} is open for any open set Bin E.LetAbea
subset of [0, T] x R.Ais £ ® B measurable if A belongs to the o -algebra generated by all sets of the form g x D, where ¢ is
Lebesgue measurable in [0, T] and D is Borel measurable in R. A subset A of L ([0, T], R) is decomposable if for all u, v € A
and ¢ C [0, T] measurable, the function uyy + vy g € A, where x4 stands for the characteristic function of g.

Definition 4.3. If F : [0, T] x R — £ (R) is a multivalued map with nonempty compact values and u(.) € C([0, T], R),
then the set of selections of F(., .), denoted by S 4, is of lower semi-continuous type if

Seu = {w e L'([0, T, R) : w(t) € F(t, u(t)) forae.t € [0, T]}
is lower semi-continuous with nonempty closed and decomposable values.

Let (X, d) be a metric space associated with the norm | - |. The Pompeiu-Hausdorff distance of the closed subsets A, B C X
is defined by

dy (A, B) = max{d* (A, B), d*(B, A)}, d*(A, B) = sup{d(a, B) : a € A},
where d(x, B) = infycp d(x, y).

Definition 4.4. A multivalued operator N on X with nonempty values in X is called
(a) y-Lipschitz if and only if there exists ¥ > 0 such that
dy(N(x),N(y)) < yd(x,y), foreachx, y € X;

(b) a contraction if and only if it is y-Lipschitz with y < 1.

The following lemmas will be used in what follows.
Lemma 4.1 ([23]). Let X be a Banach space. Let F : [0, T] X R — £ (X) be an L'-Carathéodory multivalued map and let ©
be a linear continuous mapping from L' ([0, T], X) to C([0, T1, X). Then the operator

© oS : C([0,T],X) = Pepo(C([0,T], X)), x+> (O o0Sp)(X) = O(Srx)

is a closed graph operator in C([0, T], X) x C([0, T], X).
Lemma 4.2 ([24]). Let Y be a separable metric space and let N : Y — £ (L'([0, T], R)) be a lower semi-continuous multivalued

map with closed decomposable values. Then N(.) has a continuous selection, i.e., there exists a continuous mapping (single valued)
g:Y — L([0, T], R) such that g(y) € N(y) foreveryy € Y.

Lemma 4.3 ([25]). Let (X, d) be a complete metric space. If N : X — Py (X) is a contraction, then Fix N # (.

Theorem 4.1. Assume that

(Hy) F:[0,T] x R — £ (R) is Carathéodory and has convex values;
(H,) there exists a continuous nondecreasing function v : [0, oo) — (0, 0o) and a function p € L'([0, T], R*) such that

IF(t, X)||» = sup{ly| : ¥ € F(t,0)} < p(OY ([ Xllc) foreach (t,x) € [0, T] x R;
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(Hs3) there exists a number M > 0 such that

M
_ >1
Yy (M)lplip
where
79! (3 + (@—Dl(g—1D*+ 11])
"TTw 48

Then the boundary value problem (1.2) has at least one solution on [0, T].

Proof. Define an operator

heCc(0,T],R) :
(t—s)! / (T —s)a!
ds— = | —Zf(s)d
/0 T ¢ r@ 1O
_ _ 2
(T=2t) (T (T =9 Fs)ds
2x) = het) = 4 rg-1
+t(T—t) T(T —5)13 F(s)ds
4 o I'(@q—2)
(66T — 4> —T3) [T (T —5)4~* & teroT
+ 3 ; F(q_3)f(s) s, t €[0,T]

forf € Sr . We will show that §2 satisfies the assumptions of the nonlinear alternative of the Leray-Schauder type. The proof
consists of several steps. As a first step, we show that §2(x) is convex for each x € C([0, T], R). For that, let hy, h, € 2(x).
Then there exist f1, f, € Sr such that for each t € [0, T], we have

_ (t —s)i1 (T —s)9~! (T —2t) [T (T —s)172
hi(t) = / @ T f( )d—ff @ S fi(s)ds + 2 TG _1)ﬁ(s)ds
(T —t) (T(T—5)73 (6t°T — 4t> — T3) (T —s)1 .
+ 2 . Ta- f(s x(s))ds + 13 I _B)f(s)ds, i=1,2.
Let 0 < w < 1.Then, foreach t € [0, T], we have
o+ (1= l© = [ =2 afi6) + (1 — w)f(s)ds ]fT =" fs) + (1 — o )ds
w - = — - - = — o —w
! 2 o I'@ 2 2y T@ ?
(T—=2t) [T(T —5)12 t(T—t) [T(T—s5)9173
T2 | Taon@h®+A-eh®Ms+ == | T
27 243 3 g4
< S, x(s))ds + ST =4 =T (1@ s)q Clofi(9)+ (1 - 0@, i=1.2
48 o I'(@—

Since S x is convex (F has convex values), it follows that wh; 4+ (1 — w)h, € 2(x).
Next, we show that £2(x) maps bounded sets into bounded sets in C([0, T], R). For a positive number r, let B, = {x €

C([0,T],R) : |Ix]lc <1} beabounded setin C([0, T], R). Then, for each h € £2(x), x € By, there exists f € Sg x such that
Lt —s)! /‘ (T —s)47!
h(t) = ds — — d
() T ——f©) @ ———f(s)ds
(T —2t) T (T —5)172 t(T—t) [T(T—s)973
+ 2 ; F(q—l)f(s)ds+ 1 ; F(q—2)f(s)ds
(62T — 4> —T3) (T (T —s)7*
+ 48 o I'(@q— f( 9ds.
Then
(t—s)"! (T —s5)%!
lh(t)| = / @ ————If(s)lds / @ ————1f(s)|ds
s)q 3
HiS 2t|f lf(s)lds+f|t(T—t)|/ s
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2 ( - S)q 4
—|(T—2t)(2t —2tT — T?)] 7[f(s)|ds

T4 (M) (q—l)[(q—1)2+11]
< W (5—}— 13 )/0 Ip(s)|ds.

Thus,

TS yM) (3 (q—Di(g— D>+ 111\ (7
Il = = 2D (5 + - )/0 1p(5)]ds,

where we have used (2.5), (H) and (H3).
Now we show that £2 maps bounded sets into equicontinuous sets of C([0, T], R). Let t’, t” € [0, T] with t’ < t” and
X € B., where B, is a bounded set of C([0, T], R). In view of (Hs3), For each h € £2(x), we obtain

") = he)] = | "o s~ 1o / (' — 5" (5)ds
_ (r"z—r/) OT (;(; s_)"l)2 s+ &= ’)[T4— t" —t'] OT (ﬁ(;s_)lf F(s)ds
L@ =OBre+ H)ZZ 20672 + t"t + t?)] OT (;(; S_)”’;)“ Fs)ds
< %q) 0[/ (¢ = 5T = (¢ = T [F©)lds
b [”I(t”—S)"1||f(5)|ds+‘(t”_t,) T(;(;S_):;v(s)ms
Coor-e-t / ' (;(;S_)Z;lf(S)lds
i e
(t ’t)[3T(t +t)24 27 4t + t2)] 0 (1T~(q5_)3) Fods
< o Ot [ = )7 = (€ = 977 p(s) ¥ (M) ds
) "= 9 ey nlds + ‘ 0 OT = 5_):_)2 POV MDIds

(t// _ f,)[T —t = t/] T (T _ S)q—3
2 . Ta-2) Ip(s)y (M)|ds

(l.'” _ t/)[BT(t// + t’) _ z(t//z + t't + t/Z)]
24

T (T _ S)q—4
s)yr(M)|ds.
/0 Fa—3) POV
Obviously the right hand side of the above inequality tends to zero independently of x € B, ast” —t’ — 0. As §2 satisfies the
above three assumptions, it follows by the Arzela-Ascoli theorem that 2 : C([0, T], R) — £(C([0, T], R)) is completely
continuous.

In our next step, we show that £2 has a closed graph. Let x, — x., h, € 2(x,) and h,, — h,. Then we need to show that
h. € £2(x.). Associated with h, € £2(x,), there exists f, € S¢ 5, such that foreach t € [0, T],

E(t—s)t! / (T — )8! (T—=2t) [T (T —s)12
hn = n - = n ds n d
(t) T ————fu(s)ds @ ————fu(s)ds + 1 ; r(q—1)f(s)5
t(T—t) (T (T—5)93 (62T — 4t3 —T3) [T (T —s)t*
2 . Ta- fn( s)ds + 23 - fn (s)ds.

Thus we have to show that there exists f, € Sg x, such that foreacht € [0, T],

Pt —s)i! / (T —s)a7! (T—=2t) (T(T =572
h* = * -3 * ds * d
(©) T ————fi(s)ds Q@ —————f«(s)ds + 7 ) F(q_])f(S)s
_ _ \q-3 27T 3_713 _ \q—4
t(T—1t) [T(T—y5) £.()ds + (6t°T — 4t T>) (T —5s) £.(5)ds.

4 o I'(q—2) 48 o I'(@—3)
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Let us consider the continuous linear operator @ : L'([0, T], R) — C([0, T], R) given by

_ 1 _ 1 _ T _ -2
foon© = [ 2 rgas— 1 / T fgyas+ L2200 [T =9

o TI'(p r(q) 4 o rg-1

t(T—t) [T (T—s)093 (6t2T — 4t3 — T3) (T —s)74

2 . Ta-2) f(s)ds + 13 . T4-3 f(s)ds.
Observe that
lha(6) — hu(O)]| = Rl 1(f(s) f(S))ds—f/ =97 1(f(s) — fu(s))ds
n * - F( ) n * F( ) n *
(T —2t) [T (T —s)12 t((T—t) [T(T—s)93
1  Ta- (fa(s) — fi(s))ds + 2 . Ta—2) (fa(s) — fi(s))ds

(62T — 4t — T3 [T (T —s)9~*

+ o T3 (fu(s) = fi(s)ds|| — 0

asn — oo. Thus, it follows by Lemma 4.1 that & o S is a closed graph operator. Further, we have h,(t) € ©(Sf,). Since
Xn — X, We have

_ 1 _ 1 _ T g2
e = [ =2 s 2 / T ¢ as+ =20 [ T =977 6

A () rq) 4T a1
(r—o (TT-97 (62T — 46> —T3) [T (T —5)14
4 . TWq-2 fe(s)ds + n  Ta—3 fe(s)ds,

for some f, € Sry,.
Finally, we discuss a priori bounds on solutions. Let x be a solution of (1.2). Then there exists f € L'([0, T], R) with

f € Spxsuchthat, fort € [0, T], we have

_ )1 _ )1 _2 T (T =592
x(t) = f =9 fgas— 1 / T pgas+ L2200 [T o4
0

) b T@ i hora-n®
(T —t) [T (T —s)i (T — 200262 — 2T — T2) [T (T —5)1~
i )y Tq-2/O%" 28 ) Tq—3 5%

Foreacht € [0, T], using (H) and (2.5), we obtain

79! (@—Dl(qg— 1>+ 11]
x| < F(q)< + = )/ f(s)ds

Y (X0 /0 p(s)ds.

IA

Consequently, we have

lI%1l 0o
Y ixlloo) Pl —
In view of (Hs), there exists M such that ||x|| # M. Let us set

U={xeCI0,TLR) : [xoc <M + 1}.

Note that the operator £2 : U — £(C([0, T], R)) is upper semi-continuous and completely continuous. From the choice
of U, there is no x € dU such that x € p$2(x) for some u € (0, 1). Consequently, by the nonlinear alternative of the
Leray-Schauder type [26], we deduce that §2 has a fixed point x € U which is a solution of problem (1.2). This completes

the proof. O
As a next result, we study the case when F is not necessarily convex valued. Our strategy to deal with these problems

is based on the nonlinear alternative of the Leray-Schauder type together with the selection theorem of Bressan and
Colombo [24] for lower semi-continuous maps with decomposable values.

Theorem 4.2. Assume that (H,), (Hs) and the following conditions hold:

(Hy) F:[0,T] x R — L (R) is a nonempty compact-valued multivalued map such that
(a) (t,x) —> F(t,x)is £ ® B measurable,
(b) x —> F(t, x) is lower semi-continuous for each t € [0, T];
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(Hs) foreach o > 0, there exists ¢, € L'([0, T], R*) such that
IF(t, x) || =sup{lyl : y € F(t, %)} < ¢5(t) forall |x]loc < o andforae.t € [0, T].

Then the boundary value problem (1.2) has at least one solution on [0, T].

Proof. It follows from (Hs) and (Hs) that F is of Ls.c. type. Then from Lemma 4.2, there exists a continuous function
f:C([0, T],R) — LI([0, T], R) such that f(x) € # (x) forallx € C([0, T], R).
Consider the problem
Dix(t) = f(x(t)), tel0,T], T>0,3<qg=<4, (42)
x(0) = —x(T),  X¥(0)=—x(T), «'(0)=—x"(T), x"(0)=—x"(T). '

Observe that if x € C2([0, T]) is a solution of (4.2), then x is a solution to problem (1.2). In order to transform problem
(4.2) into a fixed point problem, we define the operator 2 as

E o g1 T (1 g1 _ T (r_ \q-2
2x(t) = / %f(x(s))ds _ %/ &f(X(S))ds-k (T —2t) (T —s)d fx(s)ds
0 0

r'(q) rq 4 o I'(@—1)
t(T —t) (T — )93 (6T — 4t3 — T3) T(T —s)1*
/ ra—2) fx(s))ds + o -3 f(x(s))ds.

It can easily be shown that £2 is continuous and completely continuous. The remaining part of the proof is similar to that of
Theorem 4.1. So we omit it. This completes the proof. O

Now we prove the existence of solutions for problem (1.2) with a nonconvex-valued right hand side by applying a fixed
point theorem for a multivalued map due to Covitz and Nadler [25].
Theorem 4.3. Assume that the following conditions hold:

(He) F : [0, T] x R — P (R) is such that F(., x) : [0, T] — P, (R) is measurable for each x € R.

(H7) dy(F(t, x), F(t,X)) < m(t)|x—X| foralmostallt € [0, T]andx, X € Rwithm € L'([0, T], RT) and d(0, F(t, 0)) < m(t)
foralmostallt € [0, T].

Then the boundary value problem (1.2) has at least one solution on [0, T] if

-t (; (q—l)[(q—1)2+11]> 1
r@ 48 ="

Proof. Observe that the set Sg, is nonempty for each x € C([0, T], R) by assumption (Hg), so F has a measurable
selection (see [27, Theorem III.6]). Now we show that the operator 2 satisfies the assumptions of Lemma 4.3. To show
that £2(x) € P4((C[0, T], R)) for each x € C([0, T], R), let {up}s>0 € $2(x) be such that u, — u(n — o0) in C([0, T], R).
Thenu € C([0, T], R) and there exists v, € S such that, foreach t € [0, T],

_ 1 _ 1 _ T _ -2
nt) = / = ods— 2 / T s+ L2200 [T =97 s

(@ @ 4 o I'(g—1)
t(T—1t) [T (T—s)93 (62T — 4¢3 — T3) T(T —s)1*
+ 1 . Ta—2) v (s)ds + yr T vy (s)ds.

As F has compact values, we pass onto a subsequence to obtain that v, converges to v in L'([0, T], R). Thus, v € Sk x and
foreacht € [0, T},

_ 1 _ 1 _ T _ -2
Uy (6) — u(t) = / =9 oas— / =97 oas+ T=20 [T T =977 oas
0

@ @ 4 o I'(@—1)
t(T—t) [T (T —s)93 (6T — 4> — T3 [T (T —s)9~*
+ 1 . Ta-2) v(s)ds + 5 . Taq—3) v(s)ds.

Hence, u € 2(x).
Next we show that there exists T < 1 such that

dy(£2(x), 2(x)) < 7|lx — X||oc foreachx,x € C([0, T], R).



R.P. Agarwal, B. Ahmad / Computers and Mathematics with Applications 62 (2011) 1200-1214 1213

Letx,x € C([0, T], R) and h; € £2(x). Then there exists v;(t) € F(t, x(t)) such that, foreach t € [0, T],

_ (=9 (T —5)7! (T — 2t) (T — 5)12
hi(t) = A Q@ v1(s)ds — f/ @ —F—v1(s)ds + / ra-1 v1(s)ds
t(T—t) [T(T—s5)973 (62T — 4t3 — T3) T (T —s)12
+ 1 . Tq-2 v1(s)ds + 5  TG-3 v1(s)ds.

By (H7), we have
dy(F(t, x), F(t, %) = m(t)|x(t) — x(t)].
So, there exists w € F(t, x(t)) such that
lv1 () — w| = m(O)[x(t) —x(@©)], t<[0,T]
DefineV : [0, T] — £(R) by
V() ={w € R: vy () — w| = m(0)[x(t) — x(0)[}.

Since the multivalued operator V(t) N F(t, X(t)) is measurable [27, Proposition II1.4], there exists a function v, (t) which is
a measurable selection for V. So v, (t) € F(t, X(t)) and for each t € [0, T], we have |v{(t) — vy (t)| < m(t)|x(t) — x(t)].
Foreacht € [0, T], let us define

— 1 _ 1 _ T g2
hy(t) = / =97 va(s)ds — 7/ a=9s7 v2(s)ds + (I —26) (T s v2(s)ds
0

I (q) '@ 4 o I'@—1
t(T—1t) [T (T—s)093 (6t2T — 4t> —T3) [T (T —s)1*
+ 1 . Tq-2 vy (s)ds + 5  TG-3 vy (s)ds.

Thus, for each t € [0, T], it follows by (2.5) that

— )1 T —5s)d1
|h1(f)—h2(f)|§/( ) [v1(s) — vz(S)Ids—ff( ) [v1(s) — va(s)lds

0 F( ) 1"'( )
T-2 T —s)i2 t(T — T (T — )93
( 2 t) O (F(qs—)l) [v1(s) — va(s)|ds + t( - t) 0 (r(qs—)Z) [v1(s) — v2(s)|ds
L6040 - (T o9t
48 s (-3 [v1(s) — v2(s)|ds
T (3 (@-DI@- D+ 111 [T )
=T (5* e ) /0 m(s)x - %|ds.
Hence,
qul 3 -1 -1 2+11 ~
1 = POl = rq) (5 + : )[(q48 ) ]> Ml 11X — Xl oo-

Analogously, interchanging the roles of x and x, we obtain

dn(22(x), 2(x)) < Tllx — Xlloo
91 (3 (q—Dl(q—1*+11] _
< -+ Il llx — Xl oo-
I'(q) 48
Since 2 is a contraction, it follows by Lemma 4.3 that §2 has a fixed point x which is a solution of (1.2). This completes
the proof. O

Example 4.1. Consider the anti-periodic fractional inclusion boundary value problem given by

cD15/4x(t) e F(t,x(t)), tel0,1],
O =—x(1), X0 =—X(1), X'©O=-xX(1, 0=,

whereT =1, g = 15/4,andF : [0, 1] x R — £ (R) is a multivalued map given by
3

X
x3+3

X
x— F(t,x) = +t3 43, —+t+1].
x+1
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For f € F, we have

x3

+3

X
If] < max +34+3, —+t+1) <5 xeR.
x3 x+1

Thus,
IF@, )lp =sup{lyl :y € F(t,x)} =5 =pO)¢¥(lIxll), XER,
with p(t) = 1, ¥ (||x||lc) = 5. Further, using the condition
F@M (3 (@-DI@—1>+11]\"
ﬁ ~ + > l,
Ty (M) lipll,

2 48
we find that M > %é/@. Clearly, all the conditions of Theorem 4.1 are satisfied. So there exists at least one solution of

problem (4.3) on [0, 1].

Remark 4.1. The new existence results for a class of fourth-order nonlinear differential inclusions with anti-periodic
boundary conditions follow as a special case by taking g = 4 in the results of this section.
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