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Abstract

For a simple graph G, let NC D(G) = min{|N (u) ∪ N (v)| + d(w) : u, v, w ∈ V (G), uv 6∈ E(G), wv or wu 6∈ E(G)}. In this
paper, we prove that if NC D(G) ≥ |V (G)|, then either G is Hamiltonian-connected, or G belongs to a well-characterized class of
graphs. The former results by Dirac, Ore and Faudree et al. are extended.
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1. Introduction

Graphs considered in this paper are finite and simple. Undefined notations and terminologies can be found in [1].
In particular, we use V (G), E(G), κ(G), δ(G) and α(G) to denote the vertex set, the edge set, the connectivity, the
minimum degree and the independence number of G, respectively. If G is a graph and u, v ∈ V (G), then a path in
G from u to v is called a (u, v)-path of G. If v ∈ V (G) and H is a subgraph of G, then NH (v) denotes the set of
vertices in H that are adjacent to v in G. Thus, dH (v), the degree of v relative to H , is |NH (v)|. We also write d(v)

for dG(v) and N (v) for NG(v). If C and H are subgraphs of G, then NC (H) = ∪u∈V (H) NC (u), and G − C denotes
the subgraph of G induced by V (G) − V (C). For vertices u, v ∈ V (G), the distance between u and v, denoted by
d(u, v), is the length of a shortest (u, v)-path in G, or ∞ if no such path exists. Let Pm = x1x2 · · · xm denote a path
of order m. Define N+

Pm
(u) = {xi+1 ∈ V (Pm) : xi ∈ NPm (u)} and N−

Pm
(u) = {xi−1 ∈ V (Pm) : xi ∈ NPm (u)}. That

means if x1 ∈ NPm (u), then |N−

Pm
(u)| = |NPm (u)| − 1 and if xm ∈ NPm (u), then |N+

Pm
(u)| = |NPm (u)| − 1.

For a graph G, define NC(G) = min{|N (u) ∪ N (v)| : u, v ∈ V (G), uv 6∈ E(G)} and NC D(G) =

min{|N (u) ∪ N (v)| + d(w) : u, v, w ∈ V (G), uv 6∈ E(G), wv or wu 6∈ E(G)}.
Let G and H be two graphs. We use G ∪ H to denote the disjoint union of G and H and G

∨
H to denote the

graph obtained from G ∪ H by joining every vertex of G to every vertex of H . We use Kn and K c
n to denote the

complete graph on n vertices and the empty graph on n vertices, respectively. Let Gn denote the family of all simple
graphs of order n. For notational convenience, we also use Gn to denote a simple graph of order n. As an example,

∗ Corresponding author at: Department of Mathematics, Qiongzhou University, Wuzhishan, Hainan, 572200, China.
E-mail address: kewen@bxemail.com (Z. Kewen).

0898-1221/$ - see front matter c© 2008 Published by Elsevier Ltd
doi:10.1016/j.camwa.2007.10.018

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82591892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
mailto:kewen@bxemail.com
http://dx.doi.org/10.1016/j.camwa.2007.10.018


2708 Z. Kewen et al. / Computers and Mathematics with Applications 55 (2008) 2707–2714

G2 ∈ {K2, K c
2}. Define G2 : Gn to be the family of 2-connected graphs each of which is obtained from G2 ∪ Gn by

joining every vertex of G2 to some vertices of Gn so that the resulting graph G satisfies NC D(G) ≥ |V (G)| = n +2.
For notational convenience, we also use G2 : Gn to denote a member in the family.

A graph G is Hamiltonian if it has a spanning cycle, and Hamiltonian-connected if for every pair of vertices u, v ∈

V (G), G has a spanning (u, v)-path. There have been intensive studies on sufficient degree and/or neighborhood
union conditions for Hamiltonian graphs and Hamiltonian-connected graphs. The following is a summary of these
results that are related to our study.

Theorem 1.1. Let G be a simple graph on n vertices.

(i) (Dirac, [2]). If δ(G) ≥ n/2, then G is Hamiltonian.

(ii) (Ore, [3]). If d(u) + d(v) ≥ n for each pair of nonadjacent vertices u, v ∈ V (G), then G is Hamiltonian.

(iii) (Faudree et al., [4]). If G is 3-connected, and if NC(G) ≥ (2n + 1)/3, then G is Hamiltonian-connected.

(iv) (Faudree et al., [5]). If G is 2-connected, and if NC(G) ≥ n, then G is Hamiltonian.

(v) (Wei, [6]). If G is a 2-connected, and if min{d(u) + d(v) + d(w) − |N (u) ∩ N (v) ∩ N (w)| : u, v, w ∈

V (G), uv, vw,wu 6∈ E(G)} ≥ n+1, then G is Hamiltonian-connected with some well-characterized exceptional
graphs.

Motivated by the results above, this paper aims to investigate the Hamiltonian and Hamiltonian-connected
properties of graphs with relatively large NC D(G). The main theorem is the following.

Theorem 1.2. If G is a 2-connected graph with n vertices and if NC D(G) ≥ n, then one of the following must hold:

(i) G is Hamiltonian-connected,

(ii) G ∈ {G2 : (Ks ∪ Kh), Gn/2
∨

K c
n/2, G2 : (Ks ∪ Kh ∪ Kt ), G3

∨
(Ks ∪ Kh ∪ Kt )}.

Let G = G2 : (Ks ∪ Kh ∪ Kt ), and let x be a vertex in Ks and y a vertex in Kh . Then d(x)+d(y) < |V (G)|. Also,
G3

∨
(Ks ∪ Kh ∪ Kt ) satisfies the condition that d(x) + d(y) ≥ n for any two nonadjacent vertices x, y if and only

if s = h = t = 1. Thus Corollary 1.3 below follows from Theorem 1.2 immediately and it extends Theorem 1.1(ii).

Corollary 1.3. If G is a graph of order n satisfying d(x) + d(y) ≥ n for every pair of nonadjacent vertices
x, y ∈ V (G), then G is Hamiltonian-connected or G ∈ {G2 : (Ks ∪ Kh), Gn/2

∨
K c

n/2}.

Since none of G2 : (Ks ∪ Kh), Gn/2
∨

K c
n/2, G2 : (Ks ∪ Kh ∪ Kt ) and G3

∨
(Ks ∪ Kh ∪ Kt ) satisfies the condition

that d(x) + d(y) ≥ n + 1 for every pair of nonadjacent vertices x, y, Theorem 1.2 also implies the following result of
Ore [4].

Corollary 1.4 (Ore, [7]). If G is a 2-connected graph of order n satisfying d(x) + d(y) ≥ n + 1 for every pair of
nonadjacent vertices x, y ∈ V (G), then G is Hamiltonian-connected.

As G2 : (Ks ∪ Kh), Gn/2
∨

K c
n/2 and G3

∨
(Ks ∪ Kh ∪ Kt ) are all Hamiltonian, Theorem 1.2 implies the following

Theorem 1.5.

Theorem 1.5. If G is a 2-connected graph with n vertices such that NC D(G) ≥ n, then G is Hamiltonian or
G ∈ {G2 : (Ks ∪ Kh ∪ Kt )}.

Clearly, Theorem 1.5 extends Theorem 1.1(iv). Note that for any graph G, NC D(G) ≥ NC(G)+δ(G). Moreover,
if G = K3

∨
(Ks ∪ Kh ∪ Kt ) and if max{s, h, t} 6= min{s, h, t}, then NC(G)+δ(G) ≤ |V (G)|−1. Thus Theorem 1.2

also implies the following result.

Corollary 1.6. If G is a 2-connected graph with n vertices such that NC(G) + δ(G) ≥ n, then G is Hamiltonian-
connected or G ∈ {G2 : (Ks ∪ Kh), Gn/2

∨
K c

n/2, G2 : (Ks ∪ Kh ∪ Kt ), G3
∨

(K(n−3)/3 ∪ K(n−3)/3 ∪ K(n−3)/3)}.
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2. Proof of Theorem 1.2

For a path Pm = x1x2 · · · xm , we use [xi , x j ] to denote the section xi xi+1 · · · x j of the path Pm if i < j , and to
denote the section xi xi−1 · · · x j of the path Pm if i > j . For notational convenience, we also use [xi , x j ] to denote the
vertex set of this path. If P1 is an (x, y)-path and P2 is a (y, z)-path in a graph G such that V (P1) ∩ V (P2) = {y},
then P1 P2 denotes the (x, z)-path of G induced by E(P1) ∪ E(P2).

Let G be a 2-connected graph on n vertices such that

NC D(G) ≥ n. (1)

We shall assume that G is not Hamiltonian-connected to show that Theorem 1.2(ii) must hold. Thus there exist
x, y ∈ V (G) such that G does not have a spanning (x, y)-path. Let

Pm = x1x2 · · · xm be a longest (x, y)-path in G, (2)

where x1 = x and xm = y. Since Pm is not a Hamiltonian path, G − Pm has at least one component.

Lemma 2.1. Suppose that H is a component of G − Pm . Then each of the following holds.

(i) ∀i with 1 < i < m, if xi ∈ NPm (H) \ {x1, xm}, then xi+1 6∈ NPm (H) and xi−1 6∈ NPm (H); if x1 ∈ NPm (H),
then x2 6∈ NPm (H), and if xm ∈ NPm (H), then xm−1 6∈ NPm (H).

(ii) If xi , x j ∈ NPm (H) with 1 ≤ i < j < m, then xi+1x j+1 6∈ E(G); if xi , x j ∈ NPm (H) with 1 < i < j ≤ m,
then xi−1x j−1 6∈ E(G). Consequently, both N+

Pm
(H) and N−

Pm
(H) are independent sets.

(iii) Let xi , x j ∈ NPm (H) with 1 ≤ i < j < m. If xt x j+1 ∈ E(G) for some vertex xt ∈ [x j+2, xm],
then xt−1xi+1 6∈ E(G) and xt−1 6∈ NPm (H); if xt x j+1 ∈ E(G) for some vertex xt ∈ [xi+1, x j ], then
xt+1xi+1 6∈ E(G).

(iii)′ Let xi , x j ∈ NPm (H) with 1 < i < j ≤ m. If xt xi−1 ∈ E(G) for some vertex xt ∈ [x1, xi−2],
then xt+1x j−1 6∈ E(G) and xt+1 6∈ NPm (H); if xt xi−1 ∈ E(G) for some vertex xt ∈ [xi+1, x j ], then
xt−1x j−1 6∈ E(G).

(iv) If xi , x j ∈ NPm (H) with 1 ≤ i < j < m, then no vertex of G − (V (Pm)∪ V (H)) is adjacent to both xi+1 and
x j+1; if xi , x j ∈ NPm (H) with 1 < i < j ≤ m, then no vertex of G − (V (Pm) ∪ V (H)) is adjacent to both
xi−1 and x j−1.

(v) Suppose that u ∈ V (H) and {x1, xm} ⊆ NPm (u). If xi , x j ∈ NPm (H) with 1 ≤ i < j < m, then for any
v ∈ V (G) \ (N+

Pm
(H) ∪ {u}), vxi+1 ∈ E(G) or vx j+1 ∈ E(G); if xi , x j ∈ NPm (H) with 1 < i < j ≤ m, then

for any v ∈ V (G) \ (N−

Pm
(H) ∪ {u}), vxi−1 ∈ E(G) or vx j−1 ∈ E(G).

Proof. (i), (ii) and (iv) follow immediately from the assumption that Pm is a longest (x1, xm)-path in G. It remains
to show that (iii) and (v) must hold. Since xi , x j ∈ NPm (H), ∃x ′

i , x ′

j ∈ V (H) such that xi x ′

i , x j x ′

j ∈ E(G). Let P ′

denote an (x ′

i , x ′

j )-path in H .
(iii) Suppose that the first part of (iii) fails. Then there exists a vertex xt ∈ {x j+2, x j+3, . . . , xm} such that

xt x j+1 ∈ E(G) and xt−1xi+1 ∈ E(G). Then [x1, xi ]P ′
[x j , xi+1] [xt−1, x j+1][xt , xm] is a longer (x1, xm)-path,

contrary to (2). Hence xt x j+1 6∈ E(G). Next we assume that xt−1 is adjacent to some vertex x ′

t−1 ∈ V (H). Let P ′′

denote an (x ′

t−1, x ′

j )-path in H . Then [x1, x j ]P ′′
[xt−1, x j+1][xt , xm] is a longer (x1, xm)-path, contrary to (2). The

proof for (iii)′ is similar, and so it is omitted.
(v) For vertices xi , x j ∈ NPm (H) with 1 ≤ i < j < m, by Lemma 2.1(i), we have xi+1 6∈ N (u),

x j+1 6∈ N (u) and by Lemma 2.1(ii), we have xi+1x j+1 6∈ E(G). By (2), N (vi+1) ∩ (N+

Pm
(H) ∪ {u}) = ∅ and

N (v j+1) ∩ (N+

Pm
(H) ∪ {u}) = ∅, and so N (vi+1) ∪ N (v j+1) ⊆ V (G) − (N+

Pm
(H) ∪ {u}). Furthermore, d(u) ≤

|NPm (H)| = |N+

Pm
(H) ∪ {u}|. It follows that |N (vi+1) ∪ N (v j+1)| + d(u) ≤ |V (G)| − |N+

Pm
(H) ∪ {u}| + d(u) ≤ n.

Since xi+1x j+1 6∈ E(G), uxi+1 6∈ E(G), ux j+1 6∈ E(G), by (1), |N (vi+1) ∪ N (v j+1)| + d(u) ≥ n and so we have
N (vi+1) ∪ N (v j+1) = V (G) − (N+

Pm
(H) ∪ {u}), which implies ∀v ∈ V (G) \ (N+

Pm
(H) ∪ {u}), vxi+1 ∈ E(G) or

vx j+1 ∈ E(G). Similarly, if xi , x j ∈ NPm (H) with 1 < i < j ≤ m, then for any v ∈ V (G) \ (N−

Pm
(H) ∪ {u}),

vxi−1 ∈ E(G) or vx j−1 ∈ E(G). This proves (v). �
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Lemma 2.2. Each of the following holds.

(i) If there is a component H of G − Pm such that NPm (H) = {x1, xm}, then G[{x2, x3, . . . , xm−1}] is a complete
subgraph.

(ii) If NPm (G − Pm) = {x1, xm}, then G − Pm has at most 2 components.
(iii) If NPm (G − Pm) = {x1, xm}, then every component of G − Pm is a complete subgraph.
(iv) If NPm (G − Pm) = {x1, xm}, then G ∈ {G2 : (Ks ∪ Kh), G2 : (Ks ∪ Kh ∪ Kt )}.

Proof. (i) Suppose, to the contrary, that G[{x2, x3, . . . , xm−1}] is not a complete subgraph. Then there exist xi , x j ∈

{x2, x3, . . . , xm−1} such that xi x j 6∈ E(G). Since NPm (G − Pm) = {x1, xm}, then (N (xi ) ∪ N (x j )) ∩ (V (H) ∪

{xi , x j }) = ∅ and so |N (xi ) ∪ N (x j )| ≤ |V (G) \ V (H)| − |{xi , x j }|. Let u ∈ V (H). Then uxi 6∈ E(G)

and ux j 6∈ E(G). Furthermore, we have d(u) ≤ |V (H) \ {u}| + |{x1, xm}|, and so |N (xi ) ∪ N (x j )| + d(u) ≤

|V (G) \ V (H)| − |{xi , x j }| + |V (H) \ {u}| + |{x1, xm}| ≤ n − 1, contrary to (1).
(ii) Suppose that G − Pm has at least three components H1, H2 and H3. Let u ∈ V (H1) and v ∈ V (H2).

Then uv 6∈ E(G). Since NPm (G − Pm) = {x1, xm}, then we have ux2 6∈ E(G), vx2 6∈ E(G). Again by
NPm (G − Pm) = {x1, xm}, we have N (u) ∪ N (v) ⊆ (V (H1) − {u}) ∪ (V (H2) − {v}) ∪ {x1, xm} and N (x2) ⊆

V (Pm) − {x2} and so |N (u) ∪ N (v)| + d(x2) ≤ |V (H1) \ {u}| + |V (H2) \ {v}| + |{x1, xm}| + |V (Pm) \ {x2}| =

|V (H1)| + |V (H2)| + |V (Pm)| − 1 ≤ n − 1, contrary to (1).
(iii) Let H be a component of G − Pm such that u, v ∈ V (H) but uv 6∈ E(H). Since NPm (G − Pm) = {x1, xm},

then ux2 6∈ E(G) and vx2 6∈ E(G) and N (u) ∪ N (v) ⊆ (V (H) − {u, v}) ∪ {x1, xm}. Thus |N (u) ∪ N (v)| + d(x2) ≤

|V (H) \ {u, v}| + |{x1, xm}| + |V (Pm) \ {x2}| ≤ n − 1, contrary to (1).
(iv) The statement follows from (ii) and (iii). �

Lemma 2.3. Let H be a component of G − Pm such that NPm (H) = {x1, xi , xm} and u ∈ V (H). Then each of the
following holds:

(i) If there are x p, xq ∈ V (Pm) \ NPm (H) such that x pxq 6∈ E(G), then for any vertex v ∈ V (G − H) \ {x p, xq},
either x pv ∈ E(G) or xqv ∈ E(G).

(ii) G[{x2, x3, . . . , xi−1}] and G[{xi+1, xi+2, . . . , xm−1}] are complete subgraphs.
(iii) If G − Pm = H = {u}, then G ∈ {G3

∨
(K1 ∪ Kh ∪ Kt )}.

Proof. (i) Let x p, xq ∈ V (Pm) \ NPm (H) such that x pxq 6∈ E(G). Then ux p 6∈ E(G) and uxq 6∈ E(G). Suppose,
to the contrary, that there is vk ∈ V (G − H) \ {x p, xq} such that x pxk 6∈ E(G) and xq xk 6∈ E(G). Then we have
|N (x p) ∪ N (xq)| + d(u) ≤ |V (G)| − |V (H)| − |{x p, xq , xk}| + d(u) = |V (G)| − |V (H)| ≤ n − 1, contrary to (1).

(ii) To prove that G[{x2, x3, . . . , xi−1}] is a complete subgraph, we need to prove the following claims.
Claim 1: v2vk ∈ E(G) for any i − 1 ≥ k ≥ 4; vi−1vl ∈ E(G) for any 3 ≥ l ≥ i − 3.

We prove that v2vk ∈ E(G) for any i −1 ≥ k ≥ 4 by induction on (i −1)−k. First, we prove x2xi−1 ∈ E(G), that
is, the case when (i − 1) − k = 0. Suppose, to the contrary, that x2xi−1 6∈ E(G). Since xi+1 ∈ V (Pm) \ {x2, xi−1},
then by (i), either xi+1x2 ∈ E(G) or xi+1xi−1 ∈ E(G). By Lemma 2.1(ii), xi+1x2 6∈ E(G) and so xi+1xi−1 ∈ E(G).
Similarly, we must have xm−1x2 ∈ E(G). Since every vertex in {xi+2, xi+3, . . . , xm−1} must be adjacent to either
x2 or xi−1, then there exist two vertices xh, xh+1 ∈ {xi+1, xi+2, . . . , xm−1} such that xh, xh+1 are adjacent to
x2, xi−1 (or xi−1, x2), respectively. It follows that G has a longer (x1, xm)-path x1u[xi , xt−1][x2, xi−1][xt , xm] (or
x1u[xi , xt−1][xi−1, x2][xt , xm]), contrary to (2). This shows that x2xi−1 ∈ E(G). Now suppose that x2xk ∈ E(G)

for any k ≥ s > 4. We need to prove that x2xs−1 ∈ E(G). Suppose, to the contrary, that x2xs−1 6∈ E(G). Since
xi+1 ∈ V (Pm) \ {x2, xs−1}, by (i), either xi+1x2 ∈ E(G) or xi+1xs−1 ∈ E(G). By Lemma 2.1(ii), x2xi+1 6∈ E(G)

and so xi+1xs−1 ∈ E(G). Thus G has a longer (x1, xm)-path x1u[xi , xs][x2, xs−1][xi+1, xm], contrary to (2). Hence
x2xs−1 ∈ E(G) and so v2vk ∈ E(G) for any i − 1 ≥ k ≥ 4 by induction. Similarly, we can inductively prove that
vi−1vl ∈ E(G) for any 3 ≤ l ≤ i − 3.
Claim 2: x pxq ∈ E(G) for any 2 ≤ p < q ≤ i − 1.

By Claim 1, v2vk ∈ E(G) for any i − 1 ≥ k ≥ 4 and vi−1vl ∈ E(G) for any 3 ≥ l ≥ i − 3.
Now suppose that for any 2 ≤ p < p′ and i − 1 ≥ q > q ′, where p < p′ < q ′ < q, we have x pxk ∈ E(G) for

any 2 ≤ k ≤ i − 1 and xq xl ∈ E(G) for any 2 ≤ l ≤ i − 1. We want to prove that x p′ xq ′ ∈ E(G). Suppose, to the
contrary, that x p′ xq ′ 6∈ E(G). Since xi+1 ∈ V (Pm) \ {x p′ , xq ′}, by (i), either xi+1x p′ ∈ E(G) or xi+1xq ′ ∈ E(G). If
xi+1x p′ ∈ E(G), then G has a longer (x1, xm)-path x1u[xi , x p′+1][x2, x p′ ][xi+1, xm] and if xi+1xq ′ ∈ E(G), then G
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has a longer (x1, xm)-path x1u[xi , xq ′+1][x2, xq ′ ][xi+1, xm], contrary to (2) in either case. Hence x p′ xq ′ ∈ E(G) and
so x pxq ∈ E(G) for any 2 ≤ p < q ≤ i − 1 by induction.

By Claim 2, G[{x2, x3, . . . , xi−1}] is a complete subgraph.
Similarly, G[{xi+1, xi+2, . . . , xm−1}] is also a complete subgraph.
(iii) To prove (iii), we consider the following cases.

Case 1. There exists a vertex xt ∈ {x2, x3, . . . , xi−1} adjacent to some vertex xh ∈ {xi+1, xi+2, . . . , xm−1}.
Let L = min{|{x2, x3, . . . , xi−1}|, |{xi+1, xi+2, . . . , xm−1}|}. First suppose that L = 1. Without loss of

generality, let |{x2, x3, . . . , xi−1}| = 1, that is i = 3. If xh 6= xm−1, then G has a Hamiltonian (x1, xm) path
x1ux3x2[xh, x4][xh+1, xm], contrary to (2). Thus xh = xm−1. Since x1, x3 ∈ NPm (u), then by Lemma 2.1(ii), we
have x2x4 6∈ E(G) and so xm−1 6= x4. Since x2x4 6∈ E(G), then by (i), either x2xm ∈ E(G) or x4xm ∈ E(G).
If x2xm ∈ E(G), then G has a Hamiltonian (x1, xm) path x1u[x3, xm−1]x2xm and if x4xm ∈ E(G), then G has a
Hamiltonian (x1, xm) path x1ux3x2[xm−1, x4]xm , contrary to (2) in either case.

Hence we must have L ≥ 2. If xt 6∈ {x2, xi−1} or xh 6∈ {xi+1, xm−1}, then by the facts that
G[{x2, x3, . . . , xi−1}] and G[{xi+1, xi+2, . . . , xm−1}] are complete subgraphs, G has a Hamiltonian (x1, xm) path
x1u[xi , xt+1][xt−1, x2]xt [xh, xi+1][xh+1, xm], contrary to (2). Now let xt ∈ {x2, xi−1} and xh ∈ {xi+1, xm−1}. Since
x2, xi+1 ∈ N+

Pm
(u) and xi−1, xm−1 ∈ N−

Pm
(u), then by Lemma 2.1(ii), x2xi+1 6∈ E(G) and xi−1xm−1 6∈ E(G).

Then either xi−1xi+1 ∈ E(G) or x2xm−1 ∈ E(G). First assume that xi−1xi+1 ∈ E(G). If xi−2xi+2 6∈ E(G),
then by (i), either xi xi−2 ∈ E(G), whence x1uxi xi−2[xi−3, x2]xi−1xi+1[xi+2, xm] is a Hamiltonian (x1, xm)-path or
xi xi+2 ∈ E(G), whence [x1, xi−1]xi+1[xi+3, xm−1]xi+2xi uxm is a Hamiltonian (x1, xm) path, contrary to (2) in either
case. If xi−2xi+2 ∈ E(G), then x2 = xi−2 and xi+2 = xm−1 and so i = 4, m = 7. Then G has a Hamiltonian (x1, xm)

path x1x2x6x5x3x4ux7, contrary to (2).
Now assume that x2xm−1 ∈ E(G). If x3xm−2 ∈ E(G), then 3 = i −1 and m−2 = i +1, that is i = 4, m = 7. Then

G has a Hamiltonian (x1, xm) path x1ux4x5x3x2x6x7, contrary to (2). If x3xm−2 6∈ E(G), by (i), either x3xm ∈ E(G),
whence G has a Hamiltonian (x1, xm)-path x1u[xi , xm−1]x2[x4, xi−1]x3xm or xm−2xm ∈ E(G), whence G has a
Hamiltonian (x1, xm)-path x1u[xi , x2]xm−1[xm−3, xi+1]xm−2xm , contrary to (2) in either case.
Case 2. There is no vertex in {x2, x3, . . . , xi−1} adjacent to a vertex in {xi+1, xi+2, . . . , xm−1}.

Since NPm (u) = {x1, xi , xm}, then uxh 6∈ E(G) and by Lemma 2.1(i), x2u 6∈ E(G). By the assumption of
Case 2, x2xh 6∈ E(G) and N (x2) ∪ N (u) ⊆ {x1, x3, x4, . . . , xi , xm} and for any xh ∈ {xi+1, xi+2, . . . , xm−1},
N (xh){x1, xi , xi+1, . . . , xh−1, xh+1, xm−1, xm}. Then by (1), we have n ≤ |N (x2) ∪ N (u)| + d(xh) ≤

|{x1, x3, . . . , xi , xm}| + |{x1, xi , xi+1, . . . , xh−1, xh+1, xm−1xm}| ≤ n. Thus xh must be adjacent to every vertex in
NPm (u). Since xh is arbitrary, every vertex in {xi+1, xi+2, . . . , xm} must be adjacent to every vertex in NPm (u) =

{x1, xi , xm}. Similarly, every vertex in {x2, x3, . . . , xi−1} must be adjacent to every vertex in NPm (u) = {x1, xi , xm}.
This implies G ∈ {G3

∨
(K1 ∪ Kh ∪ Kt )}. �

Lemma 2.4. Suppose that V (G − Pm) = {u}, d(u) ≥ 4 and {x1, xm} ⊆ NG(u). Then G ∈ {Gn/2
∨

K c
n/2}.

Proof. Without loss of generality, let NG(u) = {x1, xi , x j , . . . , xr , xm}, where 1 < i < j ≤ r < m. Then j = r if
d(u) = 4.
Case 1. x2xm−1 ∈ E(G).

Since xm−2 ∈ V (Pm) \ N−

Pm
(u) and 1 < i < j < m, then by Lemma 2.1(v), either xi−1xm−2 ∈ E(G) or

x j−1xm−2 ∈ E(G). Without loss of generality, suppose xi−1xm−2 ∈ E(G). Then x1u[xi , xm−2][xi−1, x2]xm−1xm is a
Hamiltonian (x1, xm)-path, a contradiction.
Case 2. x2xm−1 6∈ E(G).

Then we consider two subcases xr+1 6= xm−1 and xr+1 = xm−1.
Subcase 2.1. xr+1 6= xm−1.

Since xm−1 ∈ V (Pm) \ N+

Pm
(u) and 1 < i < m, then by Lemma 2.1(v), either x2xm−1 ∈ E(G) or

xi+1xm−1 ∈ E(G). By the assumption of case 2, x2xm−1 6∈ E(G) and so we must have xi+1xm−1 ∈ E(G). Since
xr+1 ∈ V (Pm)\ N−

Pm
(u) and 1 < i < j < m, by Lemma 2.1(v), xr+1xi−1 ∈ E(G) or xr+1x j−1 ∈ E(G) (if d(u) = 4,

then j = r ). Then we consider the following two subcases.
Subcase 2.1.1 xr+1xi−1 ∈ E(G).

Since xi ∈ V (Pm) \ N−

Pm
(u) and 1 < j < m, then by Lemma 2.1(v), either xi x j−1 ∈ E(G), whence G has a

Hamiltonian (x1, xm)-path [x1, xi ][x j−1, xi+1]xm−1[xi−2, x j ]uxm or xi xm−1 ∈ E(G), whence G has a Hamiltonian
(x1, xm)-path [x1, xi−1][xr+1, xm−1] [xi , xr ]uxm , contrary to (2) in either case.
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Subcase 2.1.2. xr+1x j−1 ∈ E(G).
Since xr+2 ∈ V (Pm) \ N+

Pm
(u) and 1 < i < m, by Lemma 2.1(v), either xr+2x2 ∈ E(G), whence by the fact

that xr+1x j−1 ∈ E(G), G has a Hamiltonian (x1, xm)-path x1u[x j , xr+1][x j−1, x2] [xr+2, xm], or xr+2xi+1 ∈ E(G),
whence G has a Hamiltonian (x1, xm)-path [x1, xi ]u[x j , xr+1] [x j−1, xi+1][xr+2, xm], contrary to (2) in either case.
Subcase 2.2 xr+1 = xm−1.

Note that both xr+1 = xm−1 ∈ N+

Pm
(u) and xr+1 = xm−1 ∈ N−

Pm
(u). Let xi , x j ∈ NPm (u) be such that

NPm (u) ∩ {xi+1, xi+2, . . . , x j−1} = ∅, then we claim that xi+1 = x j−1.
Otherwise, since xi+1 ∈ V (Pm)\ N−

Pm
(u) and 1 < i < m, then by Lemma 2.1(v), xi−1xi+1 ∈ E(G) or xm−1xi+1 ∈

E(G). Since xr+1 = xm−1, then xi+1xm−1 6∈ E(G) and so xi+1xi−1 ∈ E(G). Since xi+2 ∈ V (Pm) \ N+

Pm
(u)

and 1 < i < r < m, then by Lemma 2.1(v), xi+2x2 ∈ E(G), whence G has a Hamiltonian (x1, xm)-path
x1uxi xi+1[xi−1, x2][xi+2, xm], or xi+2xm−1 ∈ E(G)(xi+2xr+1 ∈ E(G)), whence G has a Hamiltonian (x1, xm)-path
[x1, xi−1]xi+1xi u[xr , xi+2]xr+1xm , contrary to (2) in either case. Therefore, NPm (u) = {x1, x3, x5, x7, . . . , xn−1}.
Since Pm is a longest (x1, xm)-path, then {u, x2, x4, x6 . . . , . . . , xn−2} is an independent set. Since for any x p, xq ∈

{x2, x4, x6 . . . , . . . , xn−2}, we have n ≤ |N (x p) ∪ N (xq)| + d(u) ≤ |{x1, x3, x5, x7, . . . , xn−1}| + d(u) = n, then
every vertex in {x2, x4, x6 . . . , . . . , xn−2} must be adjacent to every vertex in {x1, x3, x5, x7, . . . , xn−1}. Thus we can
get G ∈ {Gn/2

∨
K c

n/2}. �

Lemma 2.5. Suppose that for any u ∈ V (G − Pm), both {x1, xm} ⊆ NPm (u) and NPm (G − Pm) 6= {x1, xm}. If there
exists a component H of G − Pm such that |V (H)| ≥ 2, then G ∈ {G3

∨
(Ks ∪ Kh ∪ Kt )}.

Proof. Without loss of generality, let NPm (H) = {x1, xi , x j , . . . , xr , xm}.
Claim 1: |NPm (H)| = 3.

Otherwise, since G is a 2-connected graph, then |NPm (H)| = 2 or |NPm (H)| ≥ 4. If |NPm (H)| = 2, then
NPm (H) = {x1, xm}. By Lemma 2.2(i), G[{x2, x3, . . . , xm−1}] is a complete subgraph. Since NPm (G − Pm) 6=

{x1, xm} and G is 2-connected, then G − Pm has a component S such that xi ∈ NPm (S) \ {x1, xm} and
x j ∈ NPm (S). Without loss of generality, suppose that 1 < i < j ≤ m. Since xi , x j ∈ NPm (H), ∃x ′

i , x ′

j ∈

V (H) such that xi x ′

i , x j x ′

j ∈ E(G). Let P ′ denote an (x ′

i , x ′

j )-path in H . Hence G has a longer (x1, xm)-path
[x1, xi−1][xi+1, x j−1]xi P ′

[x j , xm], contrary to (2). Now suppose |NPm (H)| ≥ 4 and u ∈ V (H). Let v ∈ V (H) \ {u}.
By Lemma 2.1(v), vx2 ∈ E(G) or vxi+1 ∈ E(G). Since x1 ∈ NPm (v), then by Lemma 2.1(i), x2 6∈ NPm (v) and
so xi+1v ∈ E(G). Since |NPm (H)| ≥ 4, then there is x j ∈ NPm (H) \ {x1, xi , xm}. By the same argument, we have
x j+1v ∈ E(G) and so [x1, xi ]u[x j , xi+1]v[x j+1, xm] is a longer (x1, xm)-path, contrary to (2).

Let NPm (H) = {x1, xi , xm}. By Lemma 2.3(ii), we have the following Claim 2.
Claim 2: G[{x2, x3, . . . , xm−1}] and G[{xi+1, xi+2, . . . , xm−1}] are all complete subgraphs.

Since G is 2-connected and |V (H)| ≥ 2, then there are x ′

1, x ′

i ∈ V (H) such that x ′

1 6= x ′

i and x1x ′

1, xi x ′

i ∈ E(G)

or there are x ′′

i , x ′′
m ∈ V (H) such that x ′′

i 6= x ′′
m and xi x ′′

i , xm x ′′
m ∈ E(G). Without loss of generality, suppose there are

x ′

1, x ′

i ∈ V (H) such that x ′

1 6= x ′

i and x1x ′

1, xi x ′

i ∈ E(G). Let P ′ denote an (x ′

1, x ′

i )-path in H .
Claim 3: G − Pm is a connected subgraph.

Otherwise, let S be another component of G−Pm . By Lemma 2.3(i), every vertex in S must be adjacent to one of x2
and xi+1. Since every vertex in S is adjacent to x1, by Lemma 2.1(i), no vertex in S can be adjacent to x2 and so every
vertex in S must be adjacent to xi+1. If x2xi+2 ∈ E(G), then we can get a longer (x1, xm)-path x1 P ′

[xi , x2][xi+2, xm],
contrary to (2). Then we have x2xi+2 6∈ E(G). By Lemma 2.3(i) and Lemma 2.1(i) again, every vertex in S must be
adjacent to xi+2, contradicting Lemma 2.1(i).
Claim 4: H is a complete subgraph.

Otherwise, let u, v ∈ V (H) such that uv 6∈ E(G). Then we have |N (x2)∪ N (xi+1)|+d(u) ≤ |V (Pm)|+|V (H)|−

|{x2, xi+1, u, v}| + |NPm (H)| ≤ n − 1, contrary to (1).
Claim 5: For any u ∈ V (H), u must be adjacent to every vertex of NPm (H).

Otherwise, there exists u ∈ V (H) such that uxi 6∈ E(G). Then |N (x2)∪ N (xi+1)|+d(u) ≤ |V (Pm)\{x2, xi+1}|+

|V (H) \ {u}| + |NPm (H) \ {xi }| ≤ n − 1, contrary to (1). Similarly, for every vertex u in {x2, x3, . . . , xi−1} or
{xi+1, xi+2, . . . , xm−1}, u must be adjacent to every vertex in NPm (H) = {x1, xi , xm}. Then by Claims 1–5, we have
G ∈ {G3

∨
(Ks ∪ Kh ∪ Kt )}. �

Proof of Theorem 1.2. Let G be a 2-connected graph such that (1) holds. Suppose that G is not Hamiltonian-
connected and so we may assume that there exist x, y ∈ V (G) such that G has no Hamiltonian (x, y)-path and such
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that (2) holds. We want to show that G ∈ {G2 : (Ks ∪ Kh), Gn/2
∨

K c
n/2, G2 : (Ks ∪ Kh ∪ Kt ), G3

∨
(Ks ∪ Kh ∪ Kt )}.

We consider the following cases.
Case 1. There exists a vertex u in G − Pm such that ux1 or uxm 6∈ E(G).

Without loss of generality, suppose uxm 6∈ E(G). let G∗ be the component of G − Pm containing u. Since G is
2-connected, then |NPm (G∗)| ≥ 2.
Subcase 1.1. |NPm (G∗)| ≥ 3.

In this case, there exist two distinct vertices xi+1, x j+1 ∈ N+ Pm(G∗) such that xi+1x j+1 6∈ E(G). Then we have
the following claim.
Claim: For any vertex v ∈ NG−Pm (u) ∪ N+

Pm
(u), vxi+1 6∈ E(G) and vx j+1 6∈ E(G).

By Lemma 2.1(ii), for any vertex v ∈ N+ Pm(u), vxi+1 6∈ E(G) and vx j+1 6∈ E(G). Now suppose there is
v ∈ NG−Pm (u) such that vxi+1 ∈ E(G) or vx j+1 ∈ E(G). Without loss of generality, suppose that vxi+1 ∈ E(G).
Since xi ∈ NPm (G∗), ∃x ′

i ∈ V (G∗) such that xi x ′

i ∈ E(G). Let P ′ denote an (x ′

i , v)-path in G∗. Then we get a longer
(x1, xm)-path [x1, xi ]P1[xi+1, xm], contrary to (2).

Since xi+1, x j+1 ∈ N+ Pm(G∗), by Lemma 2.1(i), uxi+1 6∈ E(G)and ux j+1 6∈ E(G). By the above Claim,
we have |N (xi+1) ∪ N (x j+1)| ≤ |V (G)| − |NG−Pm (u) ∪ N+

Pm
(u)| − |{u}|. Since |N+

Pm
(u)| = |NPm (u)|, then

|NG−Pm (u)∪ N+

Pm
(u)| = |NG−Pm (u)∪ NPm (u)| = |N (u)| and so |N (xi+1)∪ N (x j+1)| ≤ |V (G)|− |N (u)|− |{u}| =

n − |N (u)| − 1, which implies |N (xi+1) ∪ N (x j+1)| + d(u) ≤ n − 1, contrary to (1).
Subcase 1.2. |NPm (G∗)| = 2.

If NPm (G∗) 6= {x1, xm}, then by the argument similar to that in above Subcase 1.1, we can obtain a contradiction.
Then we have NPm (G∗) = {x1, xm}. By Lemma 2.2(i), G[{x2, x3, . . . , xm−1}] is complete subgraph.

If there exists a vertex xi ∈ V (Pm)\ {x1, xm} satisfying xi is adjacent to some vertex of G − Pm , then there exists a
component H of G − Pm − G∗ such that xi is adjacent to some vertex of H . Since G is 2-connected, then there exist
xi+1, x j+1 ∈ N+

Pm
(H) or xi−1, x j−1 ∈ N−

Pm
(H). Since G[{x2, x3, . . . , xm−1}] is a complete subgraph, then xi+1x j+1

and xi−1x j−1 ∈ E(G), contrary to Lemma 2.1(ii). Then we have NPm (G − Pm) = {x1, xm}. By Lemma 2.2(iv), we
have G ∈ {G2 : (Ks ∪ Kh), G2 : (Ks ∪ Kh ∪ Kt )}.
Case 2. For any vertex u in G − Pm , u is adjacent to x1 and xm .

If NPm (G − Pm) = {x1, xm}, by Lemma 2.2(iv), we have G ∈ {G2 : (Ks ∪ Kh), G2 : (Ks ∪ Kh ∪ Kt )}. In
the following, we suppose that NPm (G − Pm) 6= {x1, xm}. Then there exists a component G∗ of G − Pm such that
NPm (G∗) ∩ (V (Pm) \ {x1, xm}) 6= ∅.
Subcase 2.1. |V (G − Pm)| = |{u}| = 1.

Since u is adjacent to x1 and xm and NPm (u) ∩ (V (Pm) \ {x1, xm}) 6= ∅, then d(u) ≥ 3. If d(u) = 3, then by
Lemma 2.3(iii), G ∈ {G3

∨
(K1 ∪ Kh ∪ Kt )}. If d(u) ≥ 4, then by Lemma 2.4, G ∈ {Gn/2

∨
K c

n/2}.
Subcase 2.2. |V (G − Pm)| ≥ 2.

If there exists a component H of G − Pm such that |V (H)| ≥ 2, then by Lemma 2.5, G ∈ {G3
∨

(Ks ∪ Kh ∪ Kt )}.
Now we suppose that for every component H of G − Pm , |V (H)| = 1.
Claim: For any vertex u ∈ V (G − Pm), NPm (u) ≤ 3.

Otherwise, let NPm (u) ≥ 4 and NPm (u) = {x1, xi , x j , . . . , xm} with 1 < i < j < m. Since |V (G − Pm)| ≥ 2,
there exists a vertex v ∈ V (G − Pm) \ {u}. By Lemma 2.1(v), vx2 ∈ E(G) or vxi+1 ∈ E(G). Since x1 ∈ NPm (v),
then by Lemma 2.1(i), vx2 6∈ E(G) and so vxi+1 ∈ E(G). Similarly, vx j+1 ∈ E(G), contrary to Lemma 2.1(iv).

Since NPm (G∗) ∩ (V (Pm) \ {x1, xm}) 6= ∅, then there exists v ∈ V (G − Pm) such that |NPm (v)| = 3. Without
loss of generality, let NPm (v) = {x1, xi , xm}. Let w ∈ V (G − Pm) \ {v}. By Lemma 2.1(v), either wx2 ∈ E(G) or
wxi+1 ∈ E(G). Since x1 ∈ NPm (w), then wx2 6∈ E(G) and so wxi+1 ∈ E(G). Similarly, wxi−1 ∈ E(G). Then
xi−1, xi+1, x1, xm ∈ NPm (w), namely, |NPm (w)| ≥ 4, contrary to the claim that for any vertex u ∈ V (G − Pm),
NPm (u) ≤ 3. �
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