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Abstract

For a simple graph G, let NCD(G) = min{|N(u) UN@)| +d(w) : u,v,w € V(G),uv € E(G), wv or wu ¢ E(G)}. In this
paper, we prove that if NC D(G) > |V (G)]|, then either G is Hamiltonian-connected, or G belongs to a well-characterized class of
graphs. The former results by Dirac, Ore and Faudree et al. are extended.
© 2008 Published by Elsevier Ltd
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1. Introduction

Graphs considered in this paper are finite and simple. Undefined notations and terminologies can be found in [1].
In particular, we use V(G), E(G), k(G), §(G) and o (G) to denote the vertex set, the edge set, the connectivity, the
minimum degree and the independence number of G, respectively. If G is a graph and u, v € V(G), then a path in
G from u to v is called a (u, v)-path of G. If v € V(G) and H is a subgraph of G, then Ny (v) denotes the set of
vertices in H that are adjacent to v in G. Thus, dg (v), the degree of v relative to H, is [Ny (v)|. We also write d(v)
for dg (v) and N (v) for N (v). If C and H are subgraphs of G, then N¢(H) = U,cv(u) Nc(u), and G — C denotes
the subgraph of G induced by V(G) — V(C). For vertices u, v € V(G), the distance between u and v, denoted by
d(u, v), is the length of a shortest (u, v)-path in G, or oo if no such path exists. Let P,, = x1x7 - - - x;, denote a path
of order m. Define N;,:” (u) = {xit1 € V(Pp) : xi € Np,(w)} and Np (u) = {xj—1 € V(Py) : xi € Np, (u)}. That
means if x; € Np, (1), then |N;m (u)| = |Np, ()| — 1 andif x,, € Np, (u), then |N;~,:n (u)| = INp, ()| — 1.

For a graph G, define NC(G) = min{|[N(u) U Nw)| : u,v € V(G),uv ¢ E(G)} and NCD(G) =
min{|Nu) U N@)| +d(w) : u,v,w € V(G),uv € E(G), wv or wu € E(G)}.

Let G and H be two graphs. We use G U H to denote the disjoint union of G and H and G \/ H to denote the
graph obtained from G U H by joining every vertex of G to every vertex of H. We use K, and K to denote the
complete graph on n vertices and the empty graph on n vertices, respectively. Let G, denote the family of all simple
graphs of order n. For notational convenience, we also use G, to denote a simple graph of order n. As an example,
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G € {K3, K5}. Define G; : Gy, to be the family of 2-connected graphs each of which is obtained from G, U G, by
joining every vertex of G, to some vertices of G, so that the resulting graph G satisfies NCD(G) > |V(G)| =n+2.
For notational convenience, we also use G : G, to denote a member in the family.

A graph G is Hamiltonian if it has a spanning cycle, and Hamiltonian-connected if for every pair of vertices u, v €
V(G), G has a spanning (u, v)-path. There have been intensive studies on sufficient degree and/or neighborhood
union conditions for Hamiltonian graphs and Hamiltonian-connected graphs. The following is a summary of these
results that are related to our study.

Theorem 1.1. Let G be a simple graph on n vertices.

(i) (Dirac, [2]). If §(G) > n/2, then G is Hamiltonian.
(i) (Ore, [3]). If d(u) + d(v) > n for each pair of nonadjacent vertices u, v € V(G), then G is Hamiltonian.
(iii) (Faudree et al., [4]). If G is 3-connected, and if NC(G) > (2n + 1)/3, then G is Hamiltonian-connected.
(iv) (Faudree et al., [5]). If G is 2-connected, and if NC(G) > n, then G is Hamiltonian.
(v) (Wei, [6]). If G is a 2-connected, and if min{d(u) + d(v) + d(w) — |[N@w) N Nw) N N(w)| : u,v,w €
V(G), uv, vw, wu &€ E(G)} > n+1, then G is Hamiltonian-connected with some well-characterized exceptional
graphs.

Motivated by the results above, this paper aims to investigate the Hamiltonian and Hamiltonian-connected
properties of graphs with relatively large NC D(G). The main theorem is the following.

Theorem 1.2. If G is a 2-connected graph with n vertices and if NC D(G) > n, then one of the following must hold:

(1) G is Hamiltonian-connected,
(11) G e {GZ . (Ks ) Kh)7 Gn/2 \/ K,i/za G2 . (Ks ) Kh U Kt)a G3 \/(KS ) Kh ) Kt)}

LetG = G, : (Ks UK, UK;),and let x be a vertex in K and y a vertex in K. Then d(x) +d(y) < |V (G)|. Also,
G3 \/(Ks U K U K;) satisfies the condition that d(x) + d(y) > n for any two nonadjacent vertices x, y if and only
if s = h =t = 1. Thus Corollary 1.3 below follows from Theorem 1.2 immediately and it extends Theorem 1.1(ii).

Corollary 1.3. If G is a graph of order n satisfying d(x) + d(y) > n for every pair of nonadjacent vertices
x,y € V(G), then G is Hamiltonian-connected or G € {G2 : (Ks U Ky), G2 \ K’f/z}.

Since none of G : (KyUKy), Guj2 \ K;l'/z, G, : (KsUK, UK;) and G3 \/ (KU Kj, UK,) satisfies the condition
that d(x) +d(y) > n + 1 for every pair of nonadjacent vertices x, y, Theorem 1.2 also implies the following result of
Ore [4].

Corollary 1.4 (Ore, [7]). If G is a 2-connected graph of order n satisfying d(x) + d(y) > n + 1 for every pair of
nonadjacent vertices x,y € V(G), then G is Hamiltonian-connected.

As G : (KsUKy), G2 \V K;/z and G3 \/(K; UK, UK,) are all Hamiltonian, Theorem 1.2 implies the following
Theorem 1.5.

Theorem 1.5. If G is a 2-connected graph with n vertices such that NCD(G) > n, then G is Hamiltonian or
G e{Gy: (KsUKp UKy}

Clearly, Theorem 1.5 extends Theorem 1.1(iv). Note that for any graph G, NCD(G) > NC(G)+38(G). Moreover,
if G = K3 \/(K; UK, UK,) and if max{s, h, t} # min{s, k, 1}, then NC(G)+68(G) < |V(G)|— 1. Thus Theorem 1.2
also implies the following result.

Corollary 1.6. If G is a 2-connected graph with n vertices such that NC(G) + §(G) > n, then G is Hamiltonian-
connected or G € {G, : (K; U Kp), Gn/z \/ K;/z, Gy : (Ks UKpUKy), Gj \/(K(n_3)/3 U K(n_g)/::, U K(n_3)/3)}.



Z. Kewen et al. / Computers and Mathematics with Applications 55 (2008) 2707-2714 2709

2. Proof of Theorem 1.2

For a path P, = x1x2--- X, we use [x;, x;] to denote the section x;x; 1 ---x; of the path P, if i < j, and to
denote the section x;x;_1 - - - x; of the path P, if i > j. For notational convenience, we also use [x;, x;] to denote the
vertex set of this path. If P is an (x, y)-path and P, is a (y, z)-path in a graph G such that V(P;) N V(P2) = {y},
then P; P, denotes the (x, z)-path of G induced by E(P1) U E(P>).

Let G be a 2-connected graph on n vertices such that

NCD(G) > n. ey

We shall assume that G is not Hamiltonian-connected to show that Theorem 1.2(ii) must hold. Thus there exist
x,y € V(G) such that G does not have a spanning (x, y)-path. Let

P, = x1x2 - - - x;,; be alongest (x, y)-path in G, 2)

where x; = x and x,, = y. Since P,, is not a Hamiltonian path, G — P, has at least one component.

Lemma 2.1. Suppose that H is a component of G — Py,. Then each of the following holds.

(1) Viwithl <i <m, if x; € Np,(H) \ {x1, X}, then x;11 & Np,(H) and xi_1 & Np, (H); if x1 € Np, (H),
then xo ¢ Np, (H), and if x,, € Np, (H), then x,,_1 & Np, (H).

(i) If x;,xj € Np,(H) with 1 <i < j <m, then x;y1xj41 &€ E(G); if xj,xj; € Np,(H)with]l <i < j <m,
then x;_1xj—1 & E(G). Consequently, both N;,"m (H) and N;m (H) are independent sets.

(iii) Let xj,x; € Np,(H) with 1 < i < j < m. If x;xj11 € E(G) for some vertex x; € [Xji2,Xm],
then x;_1xit1 & E(G) and x;—1 ¢ Np,(H); if x;xj11 € E(G) for some vertex x;, € [xj11,x;], then
Xe1Xi+1 € E(G).

(iii)" Let x;, xj € Np,(H)ywithl < i < j < m If x;x;(—1 € E(G) for some vertex x;, € [x1,x;-2],
then x;p1xj—1 & E(G) and x,+1 € Np,(H); if x;xi—1 € E(G) for some vertex x; € [xj1+1,X;], then
X—1xj-1 € E(G).

(iv) If x;,xj € Np,(H) with1 <i < j < m, thenno vertex of G — (V(P,) UV (H)) is adjacent to both x; 1 and
Xjy1, if xi,xj € Np,(H) with1 < i < j < m, then no vertex of G — (V(Py) U V(H)) is adjacent to both
Xi—1and xj_1.

(v) Suppose that u € V(H) and {x1,xn} € Np, (). If x;,x; € Np,(H) with1 < i < j < m, then for any
v e V(G)\(N;{m(H)U{u}), vxit1 € E(G) orvxjy1 € E(G), if x;,x; € Np,(H)with1 <i < j < m, then
foranyv € V(G) \ (N;m(H) Ufu}), vxi—1 € E(G) orvxj_1 € E(G).

Proof. (i), (ii) and (iv) follow immediately from the assumption that P,, is a longest (x1, x,,)-path in G. It remains
to show that (iii) and (v) must hold. Since x;, x; € Np, (H), 3x], x} € V(H) such that x;x], xjx;. € E(G). Let P’
denote an (x;, x})-path in H.

(iii) Suppose that the first part of (iii) fails. Then there exists a vertex x; € {xji2,X;43,..., Xy} such that
xxj+1 € E(G) and x,_1x;41 € E(G). Then [x1, x; 1P’ [xj, xig1] [x:—1, xj411[xs, X ] is a longer (x1, x,,)-path,
contrary to (2). Hence x;xj11 ¢ E(G). Next we assume that x,_ is adjacent to some vertex x;_, € V(H). Let P”
denote an (xt’_l,x})—path in H. Then [x1, x;1P"[x;—1, xj+11[xs, xn] is a longer (x1, x,,)-path, contrary to (2). The
proof for (iii)’ is similar, and so it is omitted.

(v) For vertices x;,x; € Np,(H) with 1 < i < j < m, by Lemma 2.1(i), we have x;y1 & N(u),
Xj+1 & N(u) and by Lemma 2.1(ii), we have x;y1x;11 ¢ E(G). By (2), N(viy1) N (N;‘m (H) U {u}) = 0 and
NN (N?,:n (H)U{u}) = ¥, and so N(v;+1) UN(;41) € V(G) — (N;’,:”(H) U {u}). Furthermore, d(u) <
|Np, (H)| = |N;m (H) U {u}]. It follows that |N (v;+1) UN ;)| +du) < |V(G)| — |N;,;(H) U{u}| +dw) <n.
Since x;j41xj11 € E(G),uxit1 € E(G),uxj;1 &€ E(G), by (1), IN(;i4+1) UN(@;41)| +d(u) > n and so we have
N@i+1) UN@;41) = V(G) — (N;,“”Z(H) U {u}), which implies Vv € V(G) \ (N;m (H) U {u}), vxj+1 € E(G) or
vxjt1 € E(G). Similarly, if x;,x; € Np,(H) with 1 < i < j < m, then for any v € V(G) \ (N;m(H) U {u}),
vxj_1 € E(G) orvx;_1 € E(G). This proves (v). O
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Lemma 2.2. Each of the following holds.

(1) If there is a component H of G — P, such that Np,,(H) = {x1, X»,}, then G[{x2, x3, ..., Xn—1}] is a complete
subgraph.
(i) If Np,,(G — Py) = {x1, X}, then G — Py, has at most 2 components.
(iii) If Np,,(G — Py) = {x1, X}, then every component of G — Py, is a complete subgraph.
(iv) If Np, (G = Pu) = (X1, X}, then G € (G2 : (Ky UKp), G2 : (Ks UKy UK)),

Proof. (i) Suppose, to the contrary, that G[{x2, x3, ..., X;;—1}] is not a complete subgraph. Then there exist x;, x; €
{x2,x3,...,xm—1} such that x;x; ¢ E(G). Since Np,, (G — Py) = {x1,xp}, then (N(x;) U N(x;)) N (V(H) U
{xi,xj}) = ¥ and so |[N(x;) U N(x;)| < [V(G) \ V(H)| — l{xi,x;}|. Let u € V(H). Then ux; ¢ E(G)
and ux; ¢ E(G). Furthermore, we have d(u) < |V(H) \ {u}| + [{x1, xn}|, and so [N(x;) U N(x;)| + d(u) <
IV(G)\ V(H)| — [{xi, x;j}| + |V (H) \ {u}| + [{x1, xn}| <n — 1, contrary to (1).

(i) Suppose that G — P, has at least three components Hy, H» and Hiz. Let u € V(H;) and v € V(H3).
Then uv ¢ E(G). Since Np, (G — P,) = {x1,x,}, then we have uxo ¢ E(G),vxy ¢ E(G). Again by
Np, (G — Py) = {x1, xm}, we have N(u) U N(v) < (V(H1) — {u}) U (V(H2) — {v}) U {x1, xpn} and N(x2) <
V(Pn) — {x2} and so [N(u) U N()| + d(x2) < |[V(H) \ {u}l + [V(H) \ {v}| + {x1, xp} + [V (P) \ {x2}| =
[V(H)|+ |V(H2)| + [V (Pn)| — 1 < n— 1, contrary to (1).

(iii) Let H be a component of G — Py, such thatu, v € V(H) butuv ¢ E(H). Since Np, (G — Pp) = {x1, Xm},
then ux, € E(G) and vx; € E(G) and N(u) U N(v) € (V(H) — {u, v}) U{x1, x»n}. Thus |[N(u) U N()| 4+ d(x2) <
[V (H) \ {u, v} + {x1, X} + [V (Pm) \ {x2}| < n — 1, contrary to (1).

(iv) The statement follows from (ii) and (iii). O

Lemma 2.3. Let H be a component of G — Py, such that Np, (H) = {x1, x;, xn} and u € V(H). Then each of the
following holds:

(1) If there are xp, x4 € V(Py) \ Np, (H) such that x,x; & E(G), then for any vertex v € V(G — H) \ {xp, x4},
either x,v € E(G) or x4v € E(G).
(1) G[{x2, x3,...,xi—1}]l and G[{xi+1, Xi42, - .., Xm—1}] are complete subgraphs.
(iii) If G — Py, = H = {u}, then G € {G3 \/(K1 U K;, U K;)}.

Proof. (i) Let x,, x;, € V(Py) \ Np, (H) such that x,x;, ¢ E(G). Then ux, ¢ E(G) and ux; ¢ E(G). Suppose,

to the contrary, that there is vy € V(G — H) \ {xp, x4} such that x,x; & E(G) and x,xx ¢ E(G). Then we have

IN(xp) UN(xg)l +dw) < [V(G)| = [V(H)| — {xp, xg, xk} +d(u) = |V(G)| — |[V(H)| <n — 1, contrary to (1).
(ii) To prove that G[{x2, x3, ..., x;—1}] is a complete subgraph, we need to prove the following claims.

Claim 1: vovy € E(G) foranyi — 1 > k > 4;v;i_1v; € E(G) forany3 > 1 >i — 3.

We prove that vyv, € E(G) forany i — 1 > k > 4 by induction on (i — 1) — k. First, we prove xox;_1 € E(G), that
is, the case when (i — 1) — k = 0. Suppose, to the contrary, that xox;_1 & E(G). Since xj+1 € V(Pp) \ {x2, xi—1},
then by (i), either x;1x2 € E(G) or x;+1x;—1 € E(G). By Lemma 2.1(ii), x;11x2 € E(G) and so x;+1x;—1 € E(G).
Similarly, we must have x,,_1x> € E(G). Since every vertex in {x;y2, X;43, ..., X,—1} must be adjacent to either
X or x;_1, then there exist two vertices xj, Xp+1 € {Xit+1, Xi+2,...,Xm—1} such that xp, x;41 are adjacent to
X2, xj—1 (or x;j_1, x2), respectively. It follows that G has a longer (x1, x,,)-path xju[x;, x;—11[x2, xi—11[x¢, Xm] (or
xiulxi, xr—11[xi—1, x21[x¢, X 1), contrary to (2). This shows that x,x;_1 € E(G). Now suppose that xox; € E(G)
for any £ > s > 4. We need to prove that x,x;_; € E(G). Suppose, to the contrary, that x,x;_; € E(G). Since
Xi+1 € V(Pw) \ {x2, x5_1}, by (i), either x;11x2 € E(G) or xj4+1x5—1 € E(G). By Lemma 2.1(ii), x2x;1+1 € E(G)
and so x;+1x5—1 € E(G). Thus G has a longer (x1, x,,)-path xju[x;, xs1[x2, xs—11[xi+1, Xm], contrary to (2). Hence
x2x5—1 € E(G) and so vavx € E(G) forany i — 1 > k > 4 by induction. Similarly, we can inductively prove that
vi—1v € E(G) forany 3 <[] <i —3.

Claim 2: xpxq € E(G) forany2 < p <g <i—1.

By Claim 1, vov; € E(G) foranyi — 1 > k > 4 and v;_jv; € E(G) forany3 > >i — 3.

Now suppose that forany 2 < p < p’andi —1 > g > ¢’, where p < p’ < ¢’ < ¢, we have x,x; € E(G) for
any2 <k <i—1and xyx; € E(G) forany 2 <! < i — 1. We want to prove that x,x,, € E(G). Suppose, to the
contrary, that x,yx, ¢ E(G). Since xj1 € V(Py) \ {x,, x4/}, by (i), either x;y1x,y € E(G) or x;j41xy € E(G). If
Xi+1Xp € E(G), then G has a longer (x1, xp,)-path xju[x;, xp11[x2, Xp/1[Xi+1, Xm] and if x; 1 x4 € E(G), then G
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has a longer (x1, x;z)-path xju[x;, x,411[x2, x4/ 1[xi 1, Xn ], contrary to (2) in either case. Hence x,/x, € E(G) and
s0 xpx4 € E(G) forany 2 < p < g <i — 1 by induction.
By Claim 2, G[{x3, x3, ..., xj—1}] is a complete subgraph.

Similarly, G[{x;+1, Xi+2, - - . , Xm—1}] is also a complete subgraph.

(iii) To prove (iii), we consider the following cases.
Case 1. There exists a vertex x; € {x2, x3, ..., xj—1} adjacent to some vertex x; € {Xj4+1, Xi42, -+ Xm—1}-

Let L = min{|{x2, x3,...,xi—1}|, {Xi+1, Xi+2, ..., Xxm—1}|}. First suppose that L = 1. Without loss of
generality, let [{x2, x3,...,x;—1}] = 1, thatisi = 3. If x, # x,_1, then G has a Hamiltonian (x{, x,,,) path

x1ux3x2[xp, x4][Xp41, Xm], contrary to (2). Thus x; = x,,—1. Since x1,x3 € Np, (), then by Lemma 2.1(ii), we
have xox4 € E(G) and so x,,—1 # x4. Since xox4 € E(G), then by (i), either x2x,, € E(G) or x4x,, € E(G).
If x2x,,, € E(G), then G has a Hamiltonian (x1, x;;) path xju[x3, x;—1]x2x,, and if x4x,, € E(G), then G has a
Hamiltonian (x1, x;,) path xjux3x2[xp,—1, X4]x, contrary to (2) in either case.

Hence we must have L > 2. If x;, & {x2,xj_1} or x5 & {xj41,%xn—1}, then by the facts that
G[{x2, x3,...,xi—1}] and G[{xj+1, Xj+2, ..., Xxpu—1}] are complete subgraphs, G has a Hamiltonian (xy, x,,) path
xiulxi, xe4111xr—1, X21x¢ [ X0, Xi+11[Xn+1, Xm], contrary to (2). Now let x; € {x2, x;—1} and x;, € {xj+1, Xm—1}. Since
X2, Xi+1 € fom(u) and x;_1,xu—1 € N;m(u), then by Lemma 2.1(ii), x2x;+1 ¢ E(G) and xj_1x,,—1 ¢ E(G).
Then either x;_1x;11 € E(G) or xpx,,—1 € E(G). First assume that x;_1x;j+1 € E(G). If xj_2xiy0 & E(G),
then by (i), either x;x;_» € E(G), whence xjux;x;_2[x;_3, X2]x;—1Xi+1[Xi+2, Xm] is a Hamiltonian (x1, x,,)-path or
Xixi+2 € E(G), whence [x1, x;—11x;i+1[Xi+3, Xm—1]xi42X;uxy, is a Hamiltonian (x1, x,,) path, contrary to (2) in either
case. If x;_2x;+2 € E(G), then xo = x;_» and xj42> = x;,—1 and soi = 4, m = 7. Then G has a Hamiltonian (x1, x,,)
path x1x2x6x5Xx3x4uX7, contrary to (2).

Now assume that x>x,, 1 € E(G).If x3x,,_» € E(G),then3 =i—1andm—2 =i+1,thatisi =4, m = 7. Then
G has a Hamiltonian (x1, x,,) path xjux4xs5x3x2x6x7, contrary to (2). If x3x,,_2 & E(G), by (1), either x3x,, € E(G),
whence G has a Hamiltonian (x1, x,,)-path xju[x;, x,—1]x2[x4, x;—1]x3x, Or Xp_2x,, € E(G), whence G has a
Hamiltonian (x1, x,,)-path xqu[x;, x21%m—1[Xm—3, Xi+1]1Xm—2Xm, contrary to (2) in either case.

Case 2. There is no vertex in {x», x3, ..., x;—1} adjacent to a vertex in {X; 11, Xi+2, ..., Xm—1}-

Since Np,(u) = {x1,Xi, Xn}, then uxp, ¢ E(G) and by Lemma 2.1(1), xou ¢ E(G). By the assumption of
Case 2, xox, € E(G) and N(x2) U N(u) < {x1,x3,X4,...,%i, Xy} and for any x5 € {xj41, Xit2, ..., Xm—1},
N(xp){x1, Xiy Xit1s -« Xh—15 Xh41> Xm—1, Xm}. Then by (1), we have n < |[N(x2) U Nw)| + d(xp) <
{x1, X3, ..o, Xiy X 3 4 X1, Xiy Xig1s - oo s Xhe1s Xht15 Xm—1Xm}| < n. Thus x;, must be adjacent to every vertex in
Np, (u). Since xj, is arbitrary, every vertex in {x;y1, Xi4+2, ..., X5} must be adjacent to every vertex in Np, (u) =
{x1, xi, x;n}. Similarly, every vertex in {x;, x3, ..., x;—1} must be adjacent to every vertex in Np, (1) = {x1, x;, X }.
This implies G € {G3 \/(K;1 UK, UK;)}. O

Lemma 2.4. Suppose that V(G — P,,) = {u}, d(u) > 4 and {x1, x} S Ng(u). Then G € {G,2 \/ Kf,ﬂ}.

Proof. Without loss of generality, let Ng (u) = {x1, xi, Xj, ..., Xr, X}, where 1 <i < j <r < m.Then j =rif
d(u) =4.
Case 1. xox,,1 € E(G).

Since x,,—2 € V(Pp) \ N;m (u) and 1 < i < j < m, then by Lemma 2.1(v), either x;_1x,,—2 € E(G) or
Xj_1Xm—2 € E(G). Without loss of generality, suppose x; —1x,—2 € E(G). Then xju[x;, xm—2][xi—1, X2]Xm—1Xm is a
Hamiltonian (x1, x,,)-path, a contradiction.

Case 2. xoxm—1 € E(G).

Then we consider two subcases x,4+1 # Xp;—1 and X1 = Xp—1.
Subcase 2.1. xp 41 # Xp—1.

Since x;—1 € V(Pn) \ N;,':ﬂ () and 1 < i < m, then by Lemma 2.1(v), either xpx,,—;1 € E(G) or
Xi+1Xm—1 € E(G). By the assumption of case 2, xox,,—1 ¢ E(G) and so we must have x;1x,,—1 € E(G). Since
Xr41 € V(Pm)\N;m (w)and1 <i < j < m,by Lemma 2.1(v), x,11x;—1 € E(G) orx,11xj-1 € E(G) (ifd(u) = 4,
then j = r). Then we consider the following two subcases.

Subcase 2.1.1 x,41x;—1 € E(G).

Since x; € V(Py) \ N;m () and 1 < j < m, then by Lemma 2.1(v), either x;x;_1 € E(G), whence G has a
Hamiltonian (x1, x,)-path [x1, x;1[x;—1, Xi+1]xm—1[xi—2, xjJuxy or x;x;,—1 € E(G), whence G has a Hamiltonian
(x1, xm)-path [x1, xi—11[xr+1, Xm—1] [xi, Xy Jux,,, contrary to (2) in either case.
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Subcase 2.1.2. x,41xj_1 € E(G).

Since x,42 € V(Py) \ N;,:n () and 1 < i < m, by Lemma 2.1(v), either x,4>x> € E(G), whence by the fact
that x,41x;_1 € E(G), G has a Hamiltonian (x1, x,;)-path xqu[x;, x,411[x;—1, x2] [xr42, Xm], or X, 12%i11 € E(G),
whence G has a Hamiltonian (x1, x,,)-path [xq, x; lu[x;, x,41] [xj—1, Xix+11[xr42, X ], contrary to (2) in either case.
Subcase 2.2 xy41 = Xp—1.

Note that both x,41 = x;,—1 € N?,:n (u) and x,41 = xp—1 € N;m (u). Let x;,x; € Np,(u) be such that
Np, ) N {xiq1, Xig2, ..., xj_l} = (), then we claim that x; | = Xj—1.

Otherwise, since x;+1 € V(Py,) \N;m (u)and 1 <i < m,thenby Lemma2.1(v), xj_1xj+1 € E(G) or X;y—1Xxj41 €
E(G). Since x,41 = Xp—1, then xj11x,—1 € E(G) and so x;y1xi—1 € E(G). Since x;4o € V(Py) \ N;:n (u)
and 1 < i < r < m, then by Lemma 2.1(v), x;12x2 € E(G), whence G has a Hamiltonian (x1, x,,)-path
xquxixit1lxi—1, x21[xix2, Xxm], or Xj40xpm—1 € E(G)(xi12%,+1 € E(G)), whence G has a Hamiltonian (x1, x,,)-path
[x1, xi—11xi41xiulx,, x;4+2]1x41Xxm, contrary to (2) in either case. Therefore, Np, (u) = {x1, x3, x5, x7,..., Xp—1}.
Since Py, is a longest (x1, x,,,)-path, then {u, x2, x4, X6 ..., ..., x,—2} is an independent set. Since for any x,, x, €
{x2,x4,%6...,...,xp—2}, we have n < |N(xp) U N(xg)| +d(u) < [{x1,x3,x5,%7,..., X1} +d(u) = n, then
every vertex in {x, x4, X6 . .., . . . , X,—2} must be adjacent to every vertex in {xg, x3, x5, X7, ..., X,—1}. Thus we can
get G € (G2 \/ Kfl/z}. O

Lemma 2.5. Suppose that for any u € V(G — Py,), both {x1, x,,} € Np, (u) and Np, (G — Pp) # {x1, X }. If there
exists a component H of G — Py, such that |V (H)| > 2, then G € {G3 \/(K; U K, U K;)}.

Proof. Without loss of generality, let Np, (H) = {x1, x;, xj, ..., Xr, Xp}.
Claim 1: |Np, (H)| = 3.

Otherwise, since G is a 2-connected graph, then |Np,(H)| = 2 or [Np,(H)| > 4. If [Np,(H)| = 2, then
Np,(H) = {x1,xn}. By Lemma 2.2(i), G[{x2, x3, ..., Xn—1}] is a complete subgraph. Since Np, (G — P,) #
{x1,xm} and G is 2-connected, then G — P, has a component S such that x; € Np, (S) \ {x1,x,} and
x; € Np,(S). Without loss of generality, suppose that 1 < i < j < m. Since x;,x; € Np,(H), Elxi’,x;. €
V(H) such that xixl.’,xjx;. € E(G). Let P’ denote an (xlf,x})-path in H. Hence G has a longer (xi, x,,;)-path
Ler, i1 1xiv1, xj—1]x; P’[xj, Xm], contrary to (2). Now suppose |[Np, (H)| > 4andu € V(H).Letv € V(H) \ {u}.
By Lemma 2.1(v), vx2 € E(G) or vx;11 € E(G). Since x; € Np, (v), then by Lemma 2.1(1), x ¢ Np, (v) and
so xi+1v € E(G). Since |Np, (H)| > 4, then there is x; € Np, (H) \ {x1, x;i, X»}. By the same argument, we have
Xjy1v € E(G) and so [x1, x; Julx}, xi11]v[xj41, xm] is a longer (x1, x,,)-path, contrary to (2).

Let Np, (H) = {x1, x;, x,n}. By Lemma 2.3(ii), we have the following Claim 2.

Claim 2: G[{x2, x3, ..., xm—1}] and G[{x;+1, Xi+2, . . ., Xm—1}] are all complete subgraphs.

Since G is 2-connected and |V (H)| > 2, then there are x|, x/ € V(H) such that x| # x/ and x1x{, x;x/ € E(G)
or there are x/', x,, € V(H) such that x!" # x,, and x;x/’, x,,x,, € E(G). Without loss of generality, suppose there are
x},x; € V(H) such that x| # x/ and x1x{, x;x; € E(G). Let P’ denote an (x}, x/)-path in H.

Claim 3: G — Py, is a connected subgraph.

Otherwise, let S be another component of G — P,,. By Lemma 2.3(i), every vertex in S must be adjacent to one of x»
and x;11. Since every vertex in § is adjacent to x;, by Lemma 2.1(i), no vertex in S can be adjacent to x; and so every
vertex in § must be adjacent to x; 1. If xox; 12 € E(G), then we can get a longer (x1, X, )-path x1 P'[x;, x21[xi 12, X1,
contrary to (2). Then we have xox; 42 ¢ E(G). By Lemma 2.3(i) and Lemma 2.1(i) again, every vertex in S must be
adjacent to x;47, contradicting Lemma 2.1(1).

Claim 4: H is a complete subgraph.

Otherwise, letu, v € V(H) such that uv ¢ E(G). Then we have | N (x2) UN (xj4+1)|+d(u) < |V(Pp)|+|V(H)|—
{x2, xi+1,u, v}| + |Np,(H)| <n — 1, contrary to (1).

Claim 5: For any u € V(H), u must be adjacent to every vertex of Np, (H).

Otherwise, there exists u € V (H) such that ux; ¢ E(G). Then [N (x2) UN (x;+1)|+d W) < |V(Pu)\{x2, xix1}+
|V(H) \ {u}| + |Np,(H) \ {x;}] < n — 1, contrary to (1). Similarly, for every vertex u in {x2, x3,...,x;—1} or
{xit1,Xi42, ..., Xu—1}, u must be adjacent to every vertex in Np, (H) = {x1, x;, x,,}. Then by Claims 1-5, we have
Ge{G3\/(Ks UK, UKy} O

Proof of Theorem 1.2. Let G be a 2-connected graph such that (1) holds. Suppose that G is not Hamiltonian-
connected and so we may assume that there exist x, y € V(G) such that G has no Hamiltonian (x, y)-path and such



Z. Kewen et al. / Computers and Mathematics with Applications 55 (2008) 2707-2714 2713

that (2) holds. We want to show that G € {G2 : (KsUK}), Gno\/ Krf/z, Gy (KsUKRUKy), G3 \/(Ks UK UKp)}.
We consider the following cases.
Case 1. There exists a vertex # in G — Py, such that ux; or ux,, € E(G).

Without loss of generality, suppose ux,, ¢ E(G). let G* be the component of G — P,, containing u. Since G is
2-connected, then |Np, (G*)| > 2.

Subcase 1.1. |[Np, (G*)| > 3.

In this case, there exist two distinct vertices x; 11, Xj+1 € N *+P,,(G*) such that x; 1 x j+1 € E(G). Then we have
the following claim.

Claim: For any vertex v € Ng_p,, (1) U N;‘m (), vxi+1 € E(G) and vxjy1 € E(G).

By Lemma 2.1(ii), for any vertex v € NP, (u), vx;y1 ¢ E(G) and vxj+1 ¢ E(G). Now suppose there is
v € Ng_p, (u) such that vx;11 € E(G) or vxj;1 € E(G). Without loss of generality, suppose that vx; 4| € E(G).
Since x; € Np, (G*), 3x] € V(G*) such that x;x] € E(G). Let P’ denote an (x/, v)-path in G*. Then we get a longer
(x1, xm)-path [x1, x; ] P1[xi+1, Xm], contrary to (2).

Since xjy1,xj41 € NTP,(G*), by Lemma 2.1(i), ux;11 ¢ E(G)and uxjy1 ¢ E(G). By the above Claim,
we have [N (xi+1) U N(xjr)| < [V(G)| — [NGg-p, (u) U N;fm(u)l — [{u}]. Since IN;fm(u)l = |Np, (u)|, then
ING—p, @) UNE ()] = [NG—p, () UNp, ()| = [N@)|and so [N (xi+1) UN (xj+1)] < [V(G)] — N @)| — [{u}| =
n — |N ()| — 1, which implies [N (x;4+1) U N(xj41)| +d(u) < n — 1, contrary to (1).

Subcase 1.2. |Np, (G*)| = 2.

If Np, (G*) # {x1, xn}, then by the argument similar to that in above Subcase 1.1, we can obtain a contradiction.
Then we have Np, (G*) = {x1, x;n}. By Lemma 2.2(i), G[{x2, X3, ..., Xp—1}] is complete subgraph.

If there exists a vertex x; € V(Py,) \ {x1, x,,} satisfying x; is adjacent to some vertex of G — P,,, then there exists a
component H of G — P,, — G* such that x; is adjacent to some vertex of H. Since G is 2-connected, then there exist
Xi41, Xj1+1 € N;,rm(H) Or Xj_1,Xj_1 € N;m(H). Since G[{x2, x3, ..., x;s—1}] is a complete subgraph, then x; 4 1x;41
and x; _1xj_1 € E(G), contrary to Lemma 2.1(ii). Then we have Np, (G — P,) = {x1, x;s}. By Lemma 2.2(iv), we
have G € {G, : (K; UKp), Gy : (Kg U K U Kp)}.

Case 2. For any vertex u in G — Py, u is adjacent to x| and x,,.

If Np, (G — Pn) = {x1, x5}, by Lemma 2.2(iv), we have G € {G> : (K; U K},), G2 : (Ks U Kj U Ky)}. In
the following, we suppose that Np, (G — P,) # {x1, xs}. Then there exists a component G* of G — P,, such that
Np, (G*) N (V(Pp) \ {x1, X }) # 0.

Subcase 2.1. |V(G — Pp)| = |{u}| = 1.

Since u is adjacent to x1 and x,, and Np, (u) N (V(Pp) \ {x1, xn}) # @, then d(u) > 3. If d(u) = 3, then by
Lemma 2.3(iii), G € {G3 \/(K1 U K}, U K;)}. If d(u) > 4, then by Lemma 2.4, G € {G,;2 \/ Krf/z}.

Subcase 2.2. |V(G — Py)| = 2.

If there exists a component H of G — P, such that |V (H)| > 2, then by Lemma 2.5, G € {G3 \/(K; U K, UK))}.
Now we suppose that for every component H of G — P, |[V(H)| = 1.

Claim: For any vertex u € V(G — Py), Np, (1) < 3.

Otherwise, let Np, (u) > 4 and Np, (u) = {x1,x;, xj,...,x,} With 1 <i < j < m. Since |V(G — P,)| = 2,
there exists a vertex v € V(G — Py) \ {u}. By Lemma 2.1(v), vxo € E(G) or vx;4+1 € E(G). Since x; € Np, (v),
then by Lemma 2.1(1), vxz ¢ E(G) and so vx;+1 € E(G). Similarly, vx;11 € E(G), contrary to Lemma 2.1(iv).

Since Np, (G*) N (V(Py) \ {x1,xn}) # 0, then there exists v € V(G — P,) such that [Np, (v)| = 3. Without
loss of generality, let Np, (v) = {x1, x;, xn}. Let w € V(G — Py) \ {v}. By Lemma 2.1(v), either wx, € E(G) or
wx;+1 € E(G). Since x; € Np,(w), then wxy ¢ E(G) and so wx;+; € E(G). Similarly, wx;—1 € E(G). Then
Xi—1,Xi+1, X1, X € Np,(w), namely, |Np, (w)| > 4, contrary to the claim that for any vertex u € V(G — Ppy),
Np,(u) <3. O
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