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I. INTRODUCTION 

In probability theory [I], an event, A, is a member of a a-field, CY, of subsets 
of a sample space ~2. A probability measure, P, is a normed measure over a 
measurable space (Q, GY); that is, P is a real-valued function which assigns 
to every A in Gk’ a probability, P(A), such that (a) P(A) > 0 for all A E a, 
(b) P(Q) = 1; and (c) P is countably additive, i.e., if {Ai} is any collection 
of disjoint events, then 

P 5 Ai = i P(A,). 
f 1 

(1) 
i=l i=l 

The notions of an event and its probability constitute the most basic 
concepts of probability theory. As defined above, an event is a precisely 
specified collection of points in the sample space. By contrast, in everyday 
experience one frequently encounters situations in which an “event” is a 
fuzzy rather than a sharply defined collection of points. For example, the 
ill-defined events: “It is a warm day,” “x is approximately equal to 5;” “In 
twenty tosses of a coin there are several more heads than tails,” are fuzzy 
because of the imprecision of the meaning of the underlined words. 

By using the concept of a fuzzy set [2], the notions of an event and its 
probability can be extended in a natural fashion to fuzzy events of the type 
exemplified above. It is possible that such an extension may eventually 
significantly enlarge the domain of applicability of probability theory, espe- 
cially in those fields in which fuzziness is a pervasive phenomenon. 

The present note has the limited objective of showing how the notion of a 
fuzzy event can be given a precise meaning in the context of fuzzy sets. Thus, 
it consists mostly of definitions and is largely preliminary in nature. We make 
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no attempt to formulate our definitions in the most general setting, nor do 
we attempt to explore in detail any of the paths along which classical probabil- 
ity theory may be generalized through the use of concepts derived from the 
notion of a fuzzy event. 

II. FUZZY EVENTS 

We shall assume for simplicity that .Q is an Euclidean n-space Rn. Thus 
our probability space will be assumed to be a triplet (RN, Of, P), where a 
is the o-field of Bore1 sets in A* and P is a probability measure over Rn. A 
point in R” will be denoted by x. 

Let A E csl. Then, the probability of A can be expressed as 

P(A) = j-, dP 

or equivalently 

P(A) = j R" P.&) dP 

(21 

where pLA denotes the characteristic function of A (am = 0 or 1) and E&J 
is the expectation of pA . 

Equation (3) equates the probability of an event A with the expectation of 
the characteristic function of A. It is this equation that can readily be general- 
ized to fuzzy events through the use of the concept of a fuzzy set. 

Specifically, a fuzzy set A in Rn is defined by a characteristic function 
pA : Rn --f [0, l] which associates with each x in Rn its “grade of member- 
ship,” pA(x), in A. To distinguish between the characteristic function of a 
nonfuzzy set and the characteristic function of a fuzzy set, the latter will be 
referred to as a membership function. A simple example of a fuzzy set in R1 is 
A = {X / x > O}. A membership function for such a set might be subjectively 
defined by, say, 

CL‘&) = (1 + x-y, X20 

? 0, x < 0. (4 

We are now ready to define a fuzzy event in An. 

DEFINITION. Let (Rf+, 6l?, P) be a probability space in which G! is the 
a-field of Bore1 sets in Rn and P is a probability measure over RR”. Then, a 
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fuzzy event in Rn is a fuzzy set A in Rn whose membership function, 
p4(pA : R* -+ [0, l]), is Bore1 measurable. 

The probability of a fuzzy event A is defined by the Lebesgue-Stieltjes 
integral: 

P(A) = //A(X) dp 

= E(PA). (5) 

Thus, as in (3), the probability of a fuzzy event is the expectation of its 
membership function. The existence of the Lebesgue-Stieltjes integral (5) 
is insured by the assumption that pA is Bore1 measurable. 

The above definitions of a fuzzy event and its probability form a basis for 
generalizing within the framework of the theory of fuzzy sets a number of 
the concepts and results of probability theory, information theory and related 
fields. In many cases, the manner in which such generalization can be accom- 
plished is quite obvious. We shall illustrate this in the sequel by a few simple 
examples. 

There are several basic notions relating to fuzzy sets which we shall need 
in our discussion. These are summarized below. A more detailed discussion 
of these and other notions may be found in [2]. 

Containment A C B o P~(A(x) < &x) Vx (6) 

Equality A = B e am = am Vx (7) 

Complement A’ = complement of A o am, = 1 - am Vx 63) 

Union A u B = union of A and B o p&x) = Max[p,,(x), ps(x)] Vx 

(9) 
Intersection A n B = intersection of A and B 

* ~~~~(4 = Mink44 441 Vx 
Product AB = product of A and B o p&(x) = pA(x) ~lg(x) Vx 

SumA@B=sumofAandB 

(11) 

-3 PA&) = P‘4(4 + 44 - CL&4 P&) vcc (12) 

We are now ready to draw some elementary conclusions from (5)-(12). 
First, as an immediate consequence of (6), we have 

ACB*P(A)<P(B) (13) 

Similarly, as immediate consequences of (9)-(12), we have the identities 

P(A u B) = P(A) + P(B) - P(A n B) (14) 

P(A @B) = P(A) + P(B) - P(AB). (15) 
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A level set, A(a), of a fuzzy set A is a non-fuzzy set defined by 

44 = ix I PAW < 4 (16) 

A fuzzy set A will be said to be a Bore1 fuzzy set if all of its level sets (for 
0 < a: < 1) are Bore1 sets. Since the membership function of a fuzzy event 
is measurable, it follows that all of the level sets associated with a fuzzy event 
are Bore1 sets and hence that a fuzzy event is a Bore1 fuzzy set. 

It is well-known that if PA and pB are Bore1 measurable, so are Max 
[PA, CLB], Min [PA ,PB], PA + PB and PAPB [31. The Same holds,more gene- 
rally, for any infinite collection of Bore1 measurable functions. Consequently, 
we can assert that, like the Bore1 sets, Bore1 fuzzy sets form a u-field with 
respect to the operations (8), (9) and (10). In this connection, it should be 
noted that fuzzy sets obey the distributive law. 

but not 

(A u B) n C = (A n C) u (B n C) (17) 

(A@B)C=AC@BC. (18) 

Employing induction and making use of (14) and (15), we obtain for fuzzy 
sets the familiar identities for nonfuzzy sets: 

CA, =CP(A,)--‘P(ApAj)+ 
1 i 

***+(-l)“P (IAi 
i=l i.j i, 1 

(19) 

P(A, @ *** @ A,) = c P(A,) - c P(A,A,) + *** + (- 1)” P(A, *.* A,). 
2 i.i 

(20) 

In a similar fashion, (14) and (15) yield the generalized Boole inequalities 
for fuzzy sets 

P fi Ai < f P(A,) 
( 1 i=l i=l 

P(A, 0 A, @I *a*) < 2 P(A,). 
i-1 

(21) 

(22) 

We turn next to the notion of independence of fuzzy events. Specifically, 
let A and B be two fuzzy events in a probability space (R”, GY, P). Then A 
and B will be said to be independent if 

P(AB) = P(A) P(B). (23) 
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Note that in defining independence we employ the product AB rather 
than the intersection A n B. 

An immediate consequence of the above definition is the following: 
Let Sz, = R”, Q, = R” and let P be the product measure PI x Pz , where PI 
and Pz are probability measures on Q, and QR, , respectively. Let A, and A, 
be events in Q, and fin, characterized by the membership functions 

PAN& , x2> = PA~W and CLA,@~ , 2 x ) = am,, respectively. Then A, and 
A, are independent events in the sense of (23). Note that this would not be 
true if independence were defined in terms of P(A n B) rather than P(AB). 

To be consistent with (23), the conditional probability of A given B is 
defined by 

provided P(B) > 0. Note that if A and B are independent, then 
P(A I B) = P(A), as in the case of nonfuzzy independent events. 

Many of the basic notions in probability theory, such as those of the mean, 
variance, entropy, etc., are defined as functionals of probability distributions. 
The concept of a fuzzy event suggests that it may be of interest to define these 
notions in a more general way which relates them to both a fuzzy event and a 
probability measure. For example, the mean of a fuzzy event A relative to a 
probability measure P may be defined as follows: 

1 
mP(A) = P(A) I RU w4(4 dP (25) 

where pLA is the membership function of A and P(A) serves as a normalizing 
factor. Similarly, the variance of a fuzzy event in R1 relative to a probability 
measure P may be defined as 

1 
__ Gp2(A) = p(A) I 

R1 (x -- mp(AN2 ~44 dP 

The subscript P in (25) and (26) may b e omitted when the dependence on 
P of the quantities in question is implied by the context. 

Turning to the notion of entropy, we note that its usual definition in 
information theory is as follows: Let x be a random variable which takes the 
values x1 ,..., X, with respective probabilities p, ,..., p, . Then, the entropy 
of x-or, more properly, the entropy of the distribution P = {p, ,..., p,}- 
is given by 

fw = - ip,logp+ 
i-l 

(27) 
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This definition suggests that the entropy of a fuzzy subset, A, of the finite 
set (xi ,..., x~} with respect to a probability distribution P = {p, ,...,p,} 
be defined as follows 

fwu = - i PAW Pi 1% Pi , (28) 
i-l 

where pA is the membership function of A. Note that whereas (27) 
expresses the entropy of a distribution P, (28) represents the entropy of a 
fuzzy event A with respect to the distribution P. Thus, (28) does not reduce 
to (27) when A is nonfuzzy, unless A is taken to be the whole space {x1 ,..., xn}. 
Intuitively, W(A) may be interpreted as the uncertainty associated with 
a fuzzy event. 

Let x and y be independent random variables with probability distributions 
p = h ,**-, 14 and Q = lql ,..., qm}, respectively. One of the basic properties 
of the joint entropy of x and y is that when x and y are independent, we can 
write 

W%Y) = w4 + H(Y)* (29) 

It is easy to verify that for fuzzy events this identity generalizes to 

WQ(AB)= P(A)W(A) + P(B)HQ(B), 

where 

PQ = GwJ, i=l ,*-*, n, j = l,..., m 

f’(A) = f PA( 
i-l 

i=l 

and 

(30) 

Note that (30) reduces to (29) when A = {xr ,..., x,J and B = {yl ,..., ym}. 
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The foregoing examples are intended merely to demonstrate possible ways 
of defining some of the elementary concepts of probability theory in a more 
general setting in which fuzzy events are allowed. It appears that there are 
many concepts and results in probability theory, information theory and 
related fields which admit of such generalization. 
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