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Soil moisture is a key variable in hydrology, meteorology and agriculture. Soil moisture, and surface soil
moisture in particular, is highly variable in space and time. Its spatial and temporal patterns in agricul-
tural landscapes are affected by multiple natural (precipitation, soil, topography, etc.) and agro-economic
(soil management, fertilization, etc.) factors, making it difficult to identify unequivocal cause and effect
relationships between soil moisture and its driving variables. The goal of this study is to characterize
and analyze the spatial and temporal patterns of surface soil moisture (top 20 cm) in an intensively used
agricultural landscape (1100 km2 northern part of the Rur catchment, Western Germany) and to deter-
mine the dominant factors and underlying processes controlling these patterns. A second goal is to ana-
lyze the scaling behavior of surface soil moisture patterns in order to investigate how spatial scale affects
spatial patterns. To achieve these goals, a dynamically coupled, process-based and spatially distributed
ecohydrological model was used to analyze the key processes as well as their interactions and feedbacks.
The model was validated for two growing seasons for the three main crops in the investigation area: Win-
ter wheat, sugar beet, and maize. This yielded RMSE values for surface soil moisture between 1.8 and
7.8 vol.% and average RMSE values for all three crops of 0.27 kg m�2 for total aboveground biomass
and 0.93 for green LAI. Large deviations of measured and modeled soil moisture can be explained by a
change of the infiltration properties towards the end of the growing season, especially in maize fields.
The validated model was used to generate daily surface soil moisture maps, serving as a basis for an auto-
correlation analysis of spatial patterns and scale. Outside of the growing season, surface soil moisture
patterns at all spatial scales depend mainly upon soil properties. Within the main growing season, larger
scale patterns that are induced by soil properties are superimposed by the small scale land use pattern
and the resulting small scale variability of evapotranspiration. However, this influence decreases at larger
spatial scales. Most precipitation events cause temporarily higher surface soil moisture autocorrelation
lengths at all spatial scales for a short time even beyond the autocorrelation lengths induced by soil prop-
erties. The relation of daily spatial variance to the spatial scale of the analysis fits a power law scaling
function, with negative values of the scaling exponent, indicating a decrease in spatial variability with
increasing spatial resolution. High evapotranspiration rates cause an increase in the small scale soil mois-
ture variability, thus leading to large negative values of the scaling exponent. Utilizing a multiple regres-
sion analysis, we found that 53% of the variance of the scaling exponent can be explained by a
combination of an independent LAI parameter and the antecedent precipitation.

� 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction fluxes (Entekhabi and Rodriguez-Iturbe, 1994). Soil moisture, and
Soil moisture is a key variable in hydrology, meteorology and
agriculture. Particularly surface soil moisture plays a critical role
in partitioning precipitation into infiltration and runoff (Western
et al., 1999b) and of solar energy into latent and sensible heat
surface soil moisture in particular, is highly variable in space and
time. Many factors control its spatial patterns and temporal
dynamics, such as topography, soil properties, aspect, land use,
management, vegetation, precipitation, solar radiation and specific
contributing area (Famiglietti et al., 1998; Hawley et al., 1983;
Hebrard et al., 2006; Korres et al., 2010; Rodriguez-Iturbe et al.,
2006; Svetlitchnyi et al., 2003; Western et al., 1998, 1999a).
Reynolds (1970) distinguished between static (e.g., soil texture,
topography) and dynamic (e.g., precipitation, vegetation) control-
ling factors. Many of these factors are interrelated and most of
these factors vary spatially and/or temporally, making it difficult

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jhydrol.2013.05.050&domain=pdf
http://dx.doi.org/10.1016/j.jhydrol.2013.05.050
mailto:karl.schneider@uni-koeln.de
http://dx.doi.org/10.1016/j.jhydrol.2013.05.050
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


90 W. Korres et al. / Journal of Hydrology 498 (2013) 89–102
to identify unequivocal cause and effect relationships between soil
moisture and its driving variables.

In situ measurements of soil moisture are very time consuming
and costly, particularly at larger scales. Therefore, great efforts
were undertaken to derive spatially distributed soil moisture maps
from remote sensing and/or modeling. Many studies have analyzed
the spatial structure of soil moisture and its scaling properties
using point measurements (e.g. Famiglietti et al., 1998; Western
et al., 1998), remotely sensed images (e.g. Kim and Barros, 2002;
Koyama et al., 2010; Rodriguez-Iturbe et al., 1995) and model gen-
erated maps (e.g. Manfreda et al., 2007; Peters-Lidard et al., 2001).
Controversial findings of the relationship between soil moisture
variability and mean soil moisture have been reported. Some stud-
ies found an increase of spatial variability with decreasing mean
soil moisture (Choi and Jacobs, 2011; Famiglietti et al., 1999; Koy-
ama et al., 2010), others found opposite trends (Famiglietti et al.,
1998; Western and Grayson, 1998) or were unable to detect a
trend (Hawley et al., 1983). Teuling and Troch (2005) showed that
both, soil properties and vegetation dynamics, can act to either cre-
ate or to destroy spatial variability. Rodriguez-Iturbe et al. (1995)
and Manfreda et al. (2007) showed a dependency of soil moisture
variability on mean soil moisture, which also varies with the spa-
tial scale of the analysis.

Autocorrelation length is often used to analyze the spatial struc-
ture of soil moisture fields. For a small grassland catchment, Wes-
tern et al. (1998) found shorter autocorrelation lengths on wet
days, related to the smaller spatial scale of lateral redistribution,
in contrast to longer autocorrelation lengths on dry dates, con-
nected to the larger scale of evapotranspiration as the dominant
driver. At the field scale (mainly on wheat fields) in a semi-arid cli-
mate, Green and Erskine (2004) found a spatial structure of surface
soil moisture, but no clear connection of the autocorrelation length
to dry or wet soil moisture conditions. Western et al. (2004) com-
pared autocorrelation lengths of soil moisture and terrain attri-
butes, indicating the important role of topography at one site
and the variation of soil properties at other sites. However these
studies focused on small catchments, mostly with homogeneous
vegetation. Therefore the influence of the interacting factors topog-
raphy, vegetation, soil and meteorology on soil moisture patterns
were not investigated.

The main objective of the current study is to characterize and
analyze the spatial and temporal patterns of surface soil moisture
in an intensively used agricultural landscape and to determine the
dominant factors and underlying processes controlling these pat-
terns. A second goal is to analyze the scaling behavior of soil mois-
ture patterns in order to investigate how spatial scale affects these
patterns. This is of particular interest for downscaling purposes in
order to prevent systematic biases in modeled water and energy
fluxes. To achieve these goals, the dynamically coupled, process-
based and spatially distributed ecohydrological modeling system
DANUBIA was used to analyze the key processes as well as their
interactions and feedbacks leading to spatial and temporal soil
moisture patterns. Based on the model results we assess the im-
pact of topography, soil, precipitation and vegetation on these pat-
terns. DANUBIA includes a hydrological process model, a plant
growth model and a nitrogen turnover model to generate a time
series of soil moisture maps for agricultural areas. These maps
were subsequently used to derive autocorrelation properties and
scaling behavior.

2. Materials and methods

2.1. The DANUBIA simulation system

The DANUBIA simulation system is a component and raster-
based modeling tool designed for coupling models of different
complexity and temporal resolution. The model framework con-
trols the temporal course of the simulation as well as the dynamic
exchange of data at runtime, thus enabling numerous dynamic
feedback effects of the various model components. In its complete
structure, DANUBIA consists of 17 components, representing natu-
ral as well as socio-economic processes (Barth et al., 2004; Barthel
et al., 2012). For the current study, only the ecohydrological com-
ponents regarding plant growth, soil nitrogen transformation,
hydrology, and energy balance were used. These components sim-
ulate fluxes of water, nitrogen and carbon in the soil–vegetation–
atmosphere system using physically-based process descriptions.
The relevant processes are computed at hourly or daily time steps.
Further information on the open source DANUBIA simulation sys-
tem is available at www.glowa-danube.de.

A complete description of the model is beyond the scope of this
paper and we refer to previous publications of the components in-
volved, namely Mauser and Bach (2009), Klar et al. (2008), Lenz-
Wiedemann et al. (2010) and Muerth and Mauser (2012). Thus,
we limit our model description here to the fundamental back-
ground needed to understand the model setup.
2.1.1. Hydrology and energy balance component
Vertical water fluxes are modeled using a modified Eagleson ap-

proach (Eagleson, 1978). The modification particularly pertains to
describing water fluxes in soil by a user defined number of soil lay-
ers. Percolation of the upper soil layer is interpreted as effective
precipitation for the downward layer. Here we used four soil layers
(0–5, 5–20, 20–60, 60–200 cm). The uppermost layer is needed to
properly model the water available for evaporation from the soil
surface. For other processes (e.g., transpiration, plant water uptake,
nitrogen turnover and transfer) only three layers are distinguished.
Thus, an aggregated top layer is used for these processes by calcu-
lating the weighted mean soil moisture of the 0–5 and the 5–20 cm
layer.

Volumetric soil moisture and matrix potential is calculated
according to the one-dimensional, concentration dependent diffu-
sivity equation (Philip, 1960). Eagleson (1978) presented an analyt-
ical solution of the Philips equation for simplified boundary
conditions to model the key processes of soil water movement,
namely infiltration, exfiltration, percolation and capillary rise. Each
layer is assumed to have homogeneous soil characteristics, de-
scribed by a set of parameters (e.g., thickness, soil texture, bulk
density, organic matter content). Based on these soil parameters,
hydraulic parameters are calculated using pedo-transfer functions
(Brooks and Corey, 1966; Rawls and Brakensiek, 1985; Wösten
et al., 1999). Evaporation from interception storage and from the
uppermost soil layer is described by a Penman–Monteith ap-
proach. For further details, see Mauser and Bach (2009) and Klar
et al. (2008).
2.1.2. Plant growth component
The crop growth model simulates water, carbon, and nitrogen

fluxes within the crops as well as the energy balance at leaf level.
It models photosynthesis, respiration, soil layer-specific water and
nitrogen uptake, dynamic allocation of carbon and nitrogen to four
plant organs (root, stem, leaf, harvest organ), as well as phenolog-
ical development and senescence. Resulting from the interplay of
these processes, transpiration is a function of available energy, sto-
matal conductance (controlled by soil moisture and CO2), and leaf
area (emerging from carbon and nitrogen dynamics). The main
concepts and algorithms are adopted from the models GECROS
(Yin and van Laar, 2005) and CERES (Jones and Kiniry, 1986) with
extensions from Streck et al. (2003a,b) for modeling phenological
development. For further details, see Lenz-Wiedemann et al.
(2010).
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2.1.3. Soil nitrogen component
The soil nitrogen transformation model (Klar et al., 2008) is

based on algorithms from the CERES maize model (Jones and Ki-
niry, 1986). The modeled nitrogen transformation processes are
mineralization from two organic carbon pools (easily decompos-
able fresh organic matter and stable humus pool), immobilization,
nitrification, denitrification, urea hydrolysis, and nitrate leaching.

2.2. Model validation

Prior to using the model for the analysis of surface soil moisture
patterns, the model was thoroughly validated. The model was
parameterized using field measurements (e.g., soil texture), data
from maps or literature. A site specific calibration of the model
was not performed.

2.2.1. Test site and field data
Field measurements for model validation were carried out at

the Selhausen test site (50�5201000N/6�270400E, Fig. 1) located in
the Rur catchment (Western Germany, see Section 2.3.1) for winter
wheat, sugar beet, and maize in the growing seasons 2007/2008
and 2008/2009. A meteorological measurement station and all test
fields are located within a 500 m radius of each other.

Continuous soil moisture measurements were taken in 10 cm
depth at two different locations at each of the three test fields with
FDR soil moisture stations (Delta-T Devices Ltd., Cambridge, UK).
The two measurement locations on each field were 5 m apart.
The absolute accuracy of measurements is ±3 vol.% with a relative
accuracy of ±1% (manufacturer specification, for probe calibration
information see Korres et al. (2010). Layer specific soil properties
(soil texture, bulk density) for three soil layers (0–30, 30–60, 60–
90 cm) were measured according to the sieve–pipette method after
DIN 19683-2, 1997 at 20 locations on the winter wheat field in
2007. The measured soil is classified as silt loam with 12% clay,
71% silt and 17% sand for the upper soil layer (mean values from
these 20 measurements). The second layer yielded the following
clay, silt and sand fractions: 17%, 68%, 15% and the lower soil layer
19%, 66%, 15%. According to the digital soil map provided by the
Geological Survey of North Rhine-Westphalia (scaled 1:50,000),
all measurement fields have the same soil texture. Thus, the mea-
sured mean values were used for all model validation runs with the
exception of the maize 2008 field, since the outcrop of an old river
terrace of the river Rhine leads to a high amount of gravel on this
particular field. Therefore on this field, the layer specific coarse
material content was estimated to be 35, 15, and 10 vol.%,
respectively.

Soil organic carbon and nitrogen (ammonium and nitrate) con-
tent was measured in the same depths at the start of each growing
season on all fields to provide field specific initial values for the
model. Organic carbon and total nitrogen content were determined
with an elemental analyzer (CNS Elemetaranalysator Vario EL, Ele-
mentar Analysesysteme GmbH, Hanau, Germany), ammonium and
nitrate with a reflectometer (RQflex plus Reflektrometer, Merk,
Darmstadt, Germany).

Organ specific fresh and dry biomass and nitrogen content, leaf
area index (LAI), phenological stage, plant height and plant density
were determined biweekly on up to 14 dates throughout the grow-
ing season. Organ specific biomass samples for stem, leaf, and the
harvested organ were taken at three locations within each field.
After drying of an organ-specific representative aliquot for 24 h
at a temperature of 105 �C, average dry biomass was determined.
LAI was measured using the LI-3000A Area Meter (LI-COR Biosci-
ence, Lincoln, NE, USA).

Hourly meteorological data (global radiation, precipitation, air
temperature, wind speed, air pressure and humidity) were mea-
sured at an eddy covariance station (Campbell Scientific, Inc.,
Logan, USA) located within the winter wheat field. Short data gaps
were filled with data from the meteorological tower at the Fors-
chungszentrum Jülich (50�54’37’’N/6�24’34’’E, distance to Selhau-
sen test fields: 5.1 km). Cloud cover data was taken from the
weather station Aachen (German National Weather Service,
50�47’58’’N/6�1’30’’E, distance to Selhausen test fields: 31.1 km).
Precipitation measurements were corrected according to Richter
(1995). Due to the close proximity of all test fields to the meteoro-
logical station in the winter wheat field, these meteorological mea-
surements were used in all validation runs.
2.2.2. Model parameterization and model validation runs
For model validation, the model was run in point mode (no spa-

tial distribution) for each crop and year. Initial conditions and agri-
cultural management were set as indicated in Table 1. Soil
moisture at the beginning of the model period is assumed to be
at field capacity. The model runs start at the first of October of
the previous year to make sure that the modeled soil moisture is
independent of the initial conditions. Soil parameters were set as
described in Section 2.2.1. The plant growth model was parameter-
ized according to Lenz-Wiedemann et al. (2010) except for param-
eters from the phenology model, which were adjusted to field
observations of the first year (Table 1).

Modeled surface soil moisture, biomass, and LAI were validated
against field measurements using three evaluation criteria, the
Root Mean Squared Error (RMSE), the Mean Absolute Error (MAE)
and the normalized measure ‘‘index of agreement’’ (Willmott,
1981). The IA is calculated as:

IA ¼ 1�
Pn

n¼1ðMi � OiÞ2Pn
i¼1½jMi � O

�
j þ jOi � O

�
j�

ð1Þ

where Mi and Oi are simulated and observed values, respectively. O
�

is the mean of the observed values and n is the number of data
points. A perfect fit between modeled and observed values would
result in an IA value of 1.
2.3. Patterns of surface soil moisture

2.3.1. The Rur catchment
The catchment of the river Rur is located in the western part of

Germany, covering a total area of 2364 km2 with about 140 km2

belonging to Belgium and 100 km2 to the Netherlands (Fig. 1).
The catchment is divided into two major landscape units. The
southern part is a low mountain range with forest and grassland
characterized by a rolling topography, a mean elevation of about
510 m above sea level, slopes up to 10� and a mean annual precip-
itation of about 1200 mm.

Our study focuses on the northern part of the Rur catchment
(1100 km2), since 46% of the area is farmland. The area is located
in the Belgium–Germany loess belt, where crops are grown on a
virtually flat terrain (slopes less than 4�). The main crops are win-
ter cereals (mainly winter wheat), sugar beet and maize. The fertile
loess plain has a mean elevation of about 100 m above sea level
and a mean annual precipitation of about 700 mm. The major soils
are Haplic Luvisols and Cumulic Anthrosols near the drainage lines,
both with silt loam textures. Soils with a loamy sand texture (Fimic
Anthrosols and Dystric Cambisols) are located on the northern
edge of the loess plain. Soils close to the Rur are Gleysols and Flu-
visols with silty loam and loamy sand textures. Thus, this investi-
gation area is particularly suitable to analyze the effects of
vegetation and land use dynamics as well as agricultural manage-
ment upon soil moisture patterns.
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Fig. 1. The Rur catchment with the land use map of 2009, separated into the fertile loess plain in the north and the low mountain range in the south. On the right side, soil
texture maps of the top 20 cm of the soil are depicted.
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2.3.2. Distributed model runs for northern part of the Rur catchment
Spatially distributed model runs for the year 2009 with a spatial

resolution of 150 m were carried out to produce surface soil mois-
ture data for the pattern analysis. Soil properties were derived
from a digital soil map (scaled 1:50,000, Geological Survey of North
Rhine-Westphalia) for each pixel and soil layer. Land use informa-
tion (Fig. 1) was gathered from a multitemporal land use classifica-
tion (Waldhoff, 2010). In the investigation area, 20,299 pixels are
classified as cropland (54% winter cereals (parameterized as winter
wheat), 41% sugar beet, 5% maize). For spatially distributed model
runs, meteorological data from 19 stations of the German National
Weather Service within or in direct proximity (<20 km) to the Rur
catchment were used to derive the necessary meteorological mod-
el input. The measurements were spatially interpolated using the
method described by Mauser and Bach (2009). Prior to interpola-
tion, precipitation data was corrected according to Richter
(1995). Data on agricultural cultivation as recorded at the
Selhausen test site for 2009 (Table 1) was applied throughout the
investigation area. To analyze the respective impact of the spatial
patterns of meteorological parameters, land use, and soil proper-
ties upon the surface soil moisture patterns, additional model runs
were performed using homogeneous inputs for (i) meteorology,
using measurements at Selhausen for the whole investigation area,
(ii) land use, assuming all agricultural pixels to be winter wheat
and (iii) soil texture, using the soil texture of the validation model
runs throughout the investigation area.

2.3.3. Pattern analysis
Modeled patterns of daily surface soil moisture on arable land

were analyzed in terms of structure, scaling properties and their
temporal variation.

2.3.3.1. Structure analysis. For the analysis of the structure of sur-
face soil moisture patterns, a global spatial autocorrelation coeffi-
cient (SAC) was calculated for different step widths. At a step
width of 1, each pixel is paired with its direct neighbors in four



Table 1
Initial biomass after sowing, management dates and parameters of the phenology model (Rmax: maximum daily phenological development rate, V1 denotes the phase from
emergence till spikelet initiation, V2 the subsequent phase until start of seed fill, R the seed fill period, see Lenz-Wiedemann et al. (2010)).

Crop and year (of
harvest)

Initial biomass
(g m�2)

Sowing/harvesting date
(DOY)

Fertilizer date
(DOY)

Feritilizer amount
(kg N ha�1)

Rmax, V1
(d�1)

Rmax, V2
(d�1)

Rmax, R
(d�1)

Mineral Organic

Sugar beet 2008 14.25 114/265 115 80 0.033 0.033 0.012
135 80

Sugar beet 2009 14.25 98/288 99 100 0.033 0.033 0.012
122 60

Winter wheat 2008 11.875 323/219 59 80 0.026 0.035 0.021
109 36
141 80

Winter wheat 2009 11.875 291/209 77 60 0.026 0.035 0.021
104 36
139 70

Maize 2008 4.225 123/277 124 170 0.039 0.039 0.034
Maize 2009 4.225 126/262 127 175 0.039 0.039 0.034

251 20
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directions (Fig. 2). Pairs with no data values (e.g., due to a non-agri-
cultural land use class) were discarded. The SAC was then calcu-
lated as the Pearson correlation coefficient over values of all
remaining pairs. For larger step widths, only pairs in the directions
of the rook’s move in chess were used (Fig. 2). Values of SAC were
only calculated for sets of pairs containing a minimum of 100 data
pairs, which was the case for all evaluated step widths up to 260. In
addition to the analysis of daily soil moisture patterns, the SAC was
calculated for spatially distributed soil properties (soil texture).
2.3.3.2. Scaling analysis. Starting from the model’s spatial resolu-
tion of 150 m, which is referred to as grain size 1, the scaling
behavior of surface soil moisture patterns was analyzed by aggre-
gating the pixels to an increasingly coarser grain size of 2
(2 � 2 pixels), 3 (3 � 3 pixels), and so forth up to grain size 37 (cor-
responding to a pixel size of 0.3 � 0.3 km2 to 5.55 � 5.55 km2).
According to Qi and Wu (1996), aggregation starts in the upper left
corner of the grid. Aggregated pixels were assigned the mean value
of the original pixels. Aggregated pixels were discarded if the to-
taled area of winter wheat, sugar beet, and maize occupied less
than 30% of the pixel area.
Fig. 2. Exemplary illustration of the pairing for the spatial autocorrelation
coefficient for two step widths. For step width 1, the center pixel in dark gray is
paired with its four neighbors (bold white arrows). For step width 2, the center
pixel is again paired with pixels in four directions, but the distance from the center
pixel is extended by one pixel (dashed black arrows). This is done for every pixel
and up to a step width of 260.
The scaling behavior of surface soil moisture can be quantified
by the slope of a power law relationship computed from the spatial
variance (Rodriguez-Iturbe et al., 1995):

r2
k ¼

k
k0

� �
r2

k0
ð2Þ

where k0 is the reference scale, k is the grain size, r2 the soil mois-
ture’s variance at scale k, and b is the scaling exponent of the scaling
function. b was derived by least square fitting to pairs of k and r2

k

from grain size 2 to 37, setting k0 to grain size 1. A small value of
b in absolute value corresponds to a high spatial correlation in the
data, a perfect correlation across all computed scales provides a
slope value of 0 while no correlation results in a value of �1 (Manf-
reda et al., 2007; Whittle, 1962).

3. Results and discussion

During the growing season, soil moisture dynamics are strongly
influenced by the water uptake of the vegetation. In turn, water de-
mand of the vegetation strongly depends upon vegetation type and
development state. Thus it is important, that vegetation dynamics
are adequately modeled regarding temporal dynamics as well as
spatial patterns. Therefore prior to discussing the results of the
model validation for surface soil moisture, we present the valida-
tion for the plant growth model.

3.1. Results of the model validation

3.1.1. Biomass and LAI
An overview about the temporal course of key plant parameters

(biomass and LAI) for different crops and years is provided in Fig. 3.
While the green LAI and the total biomass are of prime importance
in the given context, the plant growth model also provides organ
specific data for leaf, stem, root and grain. The latter parameters
are summarized in Table 2. Fig. 3 shows a very good agreement
of the measured and modeled dry matter biomass and LAI. Typi-
cally, the model results are within the range of the field measure-
ments denoted by the vertical bars (Fig. 3). Moreover, the model
results are very close to observed mean values, despite the large
within-field variability especially in the case of the green LAI for
sugar beet and winter wheat.

The modeled biomass buildup for winter wheat was slightly de-
layed in 2008, while the LAI was reproduced quite accurately. In
the case of sugar beet, deviations of modeled and measured green
LAI are evident from mid-July onwards in both years with a ten-
dency to overestimate in 2008 and underestimate in 2009. Biomass
was reproduced very well in 2008. Validation data of dry biomass
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for sugar beet in 2009 were not available. The modeled biomass
and LAI of maize agrees very well with the measurements.

Table 2 provides an overview about the performance of the
plant growth model. For all test fields, the average Root Mean
Square Error (RMSE) for the total aboveground biomass is
0.27 kg m�2, which indicates very good agreement between model
and measurement. Green LAI is also modeled quite well with an
average RMSE of 0.93. Additional measures of model performance
are given in Table 2. Moreover the results of the different organs
are modeled well, providing evidence that not only the bulk model
parameters, but also the processes leading to these results are
modeled suitably well.

Leaf area is a limiting factor for transpiration and carbon up-
take. Both processes are directly coupled due to common stomatal
conductance. The buildup of biomass in turn depends on carbon
uptake. Therefore, model performance with respect to green LAI
and biomass supports our confidence in the modeled transpiration
amounts.

Thus, we are confident that the model performance is suffi-
ciently accurate to adequately simulate key impacts of plant
growth dynamics upon the temporal course and spatial dynamics
of soil moisture.

3.1.2. Soil moisture: Detailed example
A comparison of modeled and measured soil moisture is pre-

sented in Fig. 4 for the example of sugar beet 2008. Since the model
was started on the first of October of the previous year, the model
results are independent of the assumed initial soil moisture condi-
tions. Due to tillage of the fields, the soil moisture probes were in-
stalled in mid-June. Thus no earlier measurements are available. To
show the spatial variability of the soil moisture measurements, the
measurements of both sampling locations per field are depicted in
the figures (Figs. 4 and 5). The statistical indices cited in the text
and in Table 3 refer to the average of these two measurements.

The modeled soil moisture in the uppermost layer (Fig. 4)
shows distinct peaks related to precipitation events followed by
characteristic decreases due to evapotranspiration from the soil
surface and percolation into the next soil layer when modeled soil
moisture exceeds field capacity (28.6 vol.%). The deeper soil layers
show a damped temporal course of the soil moisture. In June, the
sugar beet roots reach the lowest soil layer. This is when the mod-
eled soil moisture in the deepest layer starts to decline. A signifi-
cant recharge of the lowest soil layer was not modeled during
the vegetation period. Thus precipitation during the vegetation
period is entirely used for evapotranspiration and to a lesser de-
gree for surface runoff.

The model results for the uppermost soil layer agree very well
with the measurements at both measurement locations, particu-
larly until mid-July. Thereafter, the model overestimates soil
moisture especially immediately after precipitation events but
approximates observations in the drying phases. In contrast to
the preceding precipitation events where infiltration was only
slightly overestimated, in phase II the model simulates an infiltra-
tion which is more than twice as high as indicated by measured
soil moisture particularly during the precipitation event on 26
July 2008. Starting with that event, modeled soil moisture devi-
ates significantly from observations. During phase I, which we de-
fined as the time prior 16 July 2008, the RMSE is 1.3 vol.%,
thereafter (phase II) it increases to 2.0 vol.%, respectively (Table 3).
This change in model behavior can be attributed to a change in
soil surface properties affecting the infiltration properties. Possi-
ble processes leading to the changes at the soil surface might be
clogging of the pores by siltation or crust formation. However,
these processes might have occurred particularly on loess soils
as a result of the strong precipitation event on 10 July 2008 and
the following drying period. The model is not calibrated and mod-
el parameters are derived from measured soil texture and pedo-
transfer functions. It appears, that at the beginning of the year,
this parameterization results in a suitable representation of the
infiltration process, while the infiltration process appears to be re-
tarded in the second half of the year. As the soil properties are de-
rived from pedo-transfer functions, a change in surface properties
is not represented by the model. To test the assumption of a
change of the soil surface conditions, we ran the model for sugar
beet 2008 assuming a reduced infiltration capacity of 1.8 mm h�1

instead of the original values between 6 and 8 mm h�1. This
change resulted in an improvement of the RMSE from 2.0 vol.%
to 1.7 vol.% for phase II, while the overall RMSE for the whole per-
iod improved from 1.8 vol.% to 1.6 vol.%. A similar effect can be
observed for maize 2008 (starting on the same date) and maize
2009 after 6 July 2009. For winter wheat, this effect was not ob-
served (Fig. 5).
3.1.3. Soil moisture: overview
The modeled and measured course of surface soil moisture for

all crops for 2008 and 2009 is shown in Fig. 5. For sugar beet
2008 as well as for winter wheat 2008, measured values are repro-
duced well with RMSE values of 1.8 and 2.1 vol.%, respectively
(compare Table 3 and Fig. 5). In the case of winter wheat 2009,
RMSE is higher with a value of 2.6 vol.% which is mainly due to
overestimation after 27 June 2009. In the case of maize 2008, the
model slightly overestimates the measured soil moisture. This
may be related to the very high percentage of coarse material in
the soil of the maize field 2008 (outcrop of gravel from a former
river terrace) causing also relatively low observed surface soil
moisture between 6 and 24 vol.% compared to the other validation
examples. For both years, the modeled surface soil moisture and
the measurements agree well during the first part of the year
(phase I). After 16 July 2008 and after 9 July 2009 (beginning of
phase II), model results for sugar beet and maize systematically
deviate from the measurements: The amplitude of the modeled
surface soil moisture is henceforth significantly larger than the ob-
served data. As indicated above in the detailed example of the su-
gar beet 2008, this behavior hints towards a change in soil surface
properties for root crops. Calibrating the infiltration capacity for
maize, comparable to sugar beet 2008, RMSE improved during
phase II from 7.2 vol.% in 2008 to 3.3 vol.% and from 9.8 vol.% in
2009 to 1.7 vol.% yielding an overall RMSE for the whole period
of 3.2 vol.% in 2008 and 2.1 vol.% in 2009. The RMSE between mod-
eled and observed surface soil moisture for both years and all crops
ranges from 1.8 to 7.8 vol.% (see Table 3). Considering only phase I
for root crops, the RMSE shows values between 1.3 and 3.0 which
indicates (a) the good performance of the model and (b) that a
change in infiltration conditions occurred for root crop fields and
that this effect should be taken into account. As shown above,
modeled surface soil moisture has a much lower RMSE at the
beginning of the measurements. Therefore, it can be assumed that
the RMSE for the whole year is lower than in the validation period.
However, an appropriate model to account for the observed change
in infiltration conditions is not available.

All results presented above were derived using measured soil
parameters from the test site Selhausen. For spatially distributed
model runs, a digital soil map provided by the Geological Survey
of North Rhine-Westphalia was used. The soil map provides gener-
alized information of the soil texture, thus resulting in a larger
uncertainty of the soil parameters as compared to the soil param-
eterization based on field measurements. Using data from the dig-
ital soil map instead of the measured soil data to estimate the
model parameters for the test fields in Selhausen yielded an
average RMSE of 5.5 vol.% and thus a decrease by 2.1 vol.%. The
maize 2008 field was disregarded in this analysis, since it is an



0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

May Jun Jul Aug Sep Oct NovMay Jun Jul Aug Sep Oct Nov
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0

2

4

6

8

SepJulMayMarJan

 d
ry

 m
at

te
r [

 k
g 

m
-2
]

0.0

0.5

1.0

1.5

2.0

G
re

en
 L

AI

0

2

4

6

8
2008

0

2

4

6

8

May Jun Jul Aug Sep Oct Nov
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

May Jun Jul Aug Sep Oct Nov
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

0

2

4

6

8

SepJulMayMarJan
0.0

0.5

1.0

1.5

2.0

G
re

en
 L

AI

0

2

4

6

8

0

2

4

6

8

Winter wheat Sugar beet Maize

2009

 d
ry

 m
at

te
r [

 k
g 

m
-2
]

Fig. 3. Green LAI and aboveground biomass (living leaf, stem and harvest organ dry biomass) for winter wheat, sugar beet and maize for the years (of harvest) 2008 and 2009.
Measured values (field means) are depicted as dots, bars represent the span of the measurements, and modeled values are displayed as lines. Field measurements of the sugar
beet biomass in 2009 were not available.
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exceptional case due to its high gravel content and thus is atypical
for most of the agricultural area. In general, utilizing the model
parameterization based upon the soil map resulted in an overesti-
mation of the soil moisture. This is due to the higher percentage of
clay in the soil texture from the soil map, which results in higher
field capacities by approx. 5 vol.% as compared to the measured soil
texture.

The validation shows that the model simulates plant growth,
plant water uptake, and surface soil moisture with sufficient accu-
racy and thus provides suitable base data for the analysis of surface
soil moisture patterns. However, discrepancies between modeled
and observed soil moisture, especially in phase II of the growing
season, should to be taken into account in further analyses, since
these were not corrected in the spatially distributed model runs,
since a model to account for these abrupt changes in infiltration
properties is currently not available.

3.2. Soil moisture patterns in the Rur catchment

3.2.1. Model results
Fig. 6 shows the temporal course of the spatial mean soil mois-

ture along with the precipitation and evaporation for the investiga-
tion area for 2009. The mean surface soil moisture calculated from
the 20,299 pixels is highly responsive to precipitation events. The
average spatial mean soil moisture during the main growing sea-
son (defined from DOY 103, when LAI of the winter wheat reaches
2, to DOY 288, when sugar beet is harvested) is 26.4 vol.% (Min.:
21.0 vol.%, Max.: 32.6 vol.%). For the rest of the year it is
28.9 vol.% (Min.: 25.0 vol.%, Max.: 33.8 vol.%). The difference in
the average soil moisture is mainly due to evapotranspiration.
The spatial coefficient of variation (CV, Fig. 6) describes the
(mean-) normalized variability of soil moisture and increases dur-
ing the course of dry periods, while precipitation events lead to a
reduction of the CV. Very low CV values are observed in winter
and spring until the end of March and in late fall and winter with
values around 12%. A period of high CV starts in April with a peak
(22%) in the beginning of June, due to the strong spatial variability
of water uptake related to the differences in phenological develop-
ment of winter wheat and sugar beet/maize. After establishment of
canopy closure (LAI > 2) by sugar beet and maize, these differences
decrease and the CV declines to values of around 14% in mid-July.
The second increase of the CV that starts in mid-August and peaks
at 23% in the beginning of October is again caused by the different
phenological development of wheat and sugar beet/maize. Wheat
is harvested earlier (DOY 209), thus the differences in evapotrans-
piration of bare soil (harvested winter wheat) and the later



Table 2
Results of the model validation for the crop growth model. Indices are the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Index of Agreement (IA).
Aboveground biomass is defined here as the sum of living leaf, stem, and harvest organ dry biomass.

Crop and year (of harvest) Winter wheat 2008 Winter wheat 2009 Sugar beet 2008 Sugar beet 2009 Maize 2008 Maize 2009

RMSE MAE IA RMSE MAE IA RMSE MAE IA RMSE MAE IA RMSE MAE IA RMSE MAE IA

Plant variables
Green LAI 0.49 0.40 0.98 0.96 0.74 0.96 1.25 1.05 0.84 1.91 1.40 0.81 0.41 0.34 0.85 0.58 0.46 0.95
Living leaf (g m�2) 96 85 0.75 41 30 0.96 301 248 0.65 144 109 0.90 70 63 0.63 72 58 0.85
Stem (g m�2) 99 84 0.95 239 125 0.90 141 115 0.91 183 106 0.91
Harvest organ (g m�2) 101 74 0.99 318 235 0.90 237 198 0.98 117 76 0.99 120 68 0.99
Aboveground biomass

(g m�2)
278 156 0.96 188 130 0.98 348 217 0.97 194 122 0.98 328 166 0.96
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harvested crops (DOY 262 for maize and DOY 288 for sugar beet)
together with the low precipitation amounts result in an increase
of the CV until the end of September. In general a highly significant
negative exponential relationship between the CV and the mean
surface soil moisture (msm) can be found (p-value: 0.01):
CV ¼ 97:495e�0:069msm ðR2 ¼ 0:75Þ ð3Þ

In agreement with findings of other studies (Choi and Jacobs,
2007, 2011; Famiglietti et al., 1999; Koyama et al., 2010) the vari-
ability of surface soil moisture patterns increases with decreasing
mean soil moisture. Some studies also found positive relationships
between mean soil moisture and soil moisture variability. How-
ever, these investigations were conducted on hill slopes or at small
catchments scale with homogeneous land use (grassland) and with
significant slopes (Famiglietti et al., 1998; Western and Grayson,
1998). The combined effects of soil texture, vegetation, topogra-
phy, and scale of analysis may lead to different relationships be-
tween spatial variability and mean soil moisture (Famiglietti
et al., 1998).

The average CV over time (CV separately calculated for the
whole year time series of every pixel and then averaged over all
pixels) is highest for the second layer (layer 1: 11.0%, layer 2:
14.0% and layer 3: 11.4%) due to the replenishing effect of precip-
itation in the top soil layer and the larger thickness and water stor-
age capacity of the bottom layer. The dependence of the temporal
soil moisture upon precipitation events and soil layer depth be-
comes evident by calculating the temporal CV for a 10 days moving
window. The highest short time temporal variability was found for
the uppermost soil layer (CV: 5.7%), while layer 2 provides a CV-va-
lue of 2.6% and layer 3 1.0%.

The spatial distribution and variability of the modeled surface
soil moisture is shown exemplarily for 2 days: 29 January 2009
(DOY 29) and 21 August 2009 (DOY 233) (Fig. 7). For reasons of
comparability, the dates were chosen with the condition that no
precipitation occurred in the whole catchment on five consecutive
prior days. DOY 29 shows a slightly higher mean value of 27.4 vol.%
as compared to 25.6 vol.% on DOY 233. Both maps show very dry
areas in the sandy north-western part and very wet areas mostly
in proximity to the river Rur. The high values are due to soils with
high organic content or high clay content. The general soil mois-
ture patterns are determined by the pattern of the soil texture, par-
ticularly on DOY 29 (compare Fig. 1). While large scale soil
moisture patterns relating to the soil texture are still discernible
in summer, strong small scale variability can also be observed.
The large small scale variability in late August is due to small scale
land use patterns and the related differences of evapotranspiration,
which range from low values of bare soil (harvested winter wheat)
to high values for late season other crops (sugar beet, maize). The
spatial CV (13.1% for DOY 29, 17.2% for DOY 233) supports this vi-
sual impression.
3.2.2. Spatial patterns
The spatiotemporal patterns of surface soil moisture were ana-

lyzed using the spatial autocorrelation coefficient (SAC) for each
day of 2009 at step widths (compare Fig. 2) ranging from 1 to
260 pixels (from 150 m distance to 39 km). In Fig. 8, SAC is shown
as a color coded two-dimensional graph. The temporal change of
autocorrelation is easily visible by tracing the same color code
along the time axis. The step width at a certain value of SAC is
the autocorrelation length. In order to relate the SAC of the surface
soil moisture to influencing parameters, the SAC for soil texture, as
well as time series of precipitation and evapotranspiration (mean
and standard deviation) are presented. To separate the influences
of land use, weather, and soil texture on surface soil moisture pat-
terns, we conducted simulations of reduced complexity by respec-
tively keeping one of these variables spatially homogeneous
(Fig. 8B–D). The spatial autocorrelation for soil moisture was com-
puted for: (A) the reference run which represents the full complex-
ity of the investigation area, (B) a uniform land use model run, with
winter wheat occupying all 20,299 pixels, (C) a uniform meteorol-
ogy model run using the measured meteorological values at the
Selhausen test site throughout the investigation area, and (D) a
homogeneous soil model run assuming the soil properties from
Selhausen for each pixel in the investigation area.

In general, SAC declines with increasing step width (Fig. 8) but
the course of this decline and therefore the autocorrelation length
changes throughout the year. For the first and last quarter of the
year, where fields are fallow, all simulations – except for the homo-
geneous soil simulation – show similar autocorrelation lengths,
resembling autocorrelation lengths for soil clay content. As an
example, at step with 10 on DOY 75 we calculated an SAC value
of 0.46 for surface soil moisture comparable to 0.5 for clay content.
This indicates the dominating pattern generating role of the soil in
the given period. On the other hand, differences between the re-
duced complexity simulations and the full simulation are notice-
able: The homogeneous land use simulation (Fig. 8B) lacks
periods of very low SAC values, the homogeneous meteorology
simulation (Fig. 8C) lacks distinctive spikes after precipitation
events, and the homogeneous soil simulation (Fig. 8D) shows much
higher SAC values. These differences are now examined in more
detail.

Considerable deviation between the full simulation (Fig. 8A)
and the homogeneous land use simulation (Fig. 8B) starts around
DOY 100 where SAC drops below 0.8 at a step width of 1. From this
time on, significant evapotranspiration of winter wheat becomes
noticeable, which in the full simulation increases spatial variability
as the sugar beet and maize areas still lie fallow or are just planted.
This also shows up in the standard deviation of evapotranspiration
that is much smaller in the homogeneous land use simulation
(Fig. 8B). As described in the methods section soil physical proper-
ties for the model runs are derived by pedo-transfer functions from
soil texture maps. This accounts for the landscape scale variability
of soil properties. The small scale variability of soil properties is
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likely being underestimated in these maps. As a consequence of
this simplification in the model runs, the autocorrelation values
of the surface soil moisture patterns induced by the soil pattern
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change from phase I to phase II.
might be overestimated. The spatial variability caused by differ-
ences in water uptake between the different crops is much larger
than that resulting from weather or soil. After harvest of winter
wheat on DOY 209, ongoing evapotranspiration of maize and sugar
beet contrasted by fallow winter wheat area causes the very low
autocorrelation lengths (e.g. SAC value of 0.15 at step width 10
on day 275). These conditions persist until the soil-like patterns re-
emerge after all crops are harvested on DOY 288.

In contrast to the full simulation (Fig. 8A), the homogeneous
weather simulation (Fig. 8C) does not show the short distinct in-
creases of spatial autocorrelation after precipitation events. During
these peaks, autocorrelation lengths rise beyond those for clay con-
tent (e.g. SAC value of 0.62 at step width 10 on day 220 compared
to an SAC value of 0.5 for clay content). Without the spatial vari-
ability of precipitation, the soil is filled at identical rates of precip-
itation thus preserving or restoring the prevailing patterns induced
by the soil. The large scale pattern of precipitation is superimposed
on the otherwise prevailing patterns causing increase of correla-
tion lengths (compare Fig. 8A and B). This increase differs between
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Jul Aug Sep Oct Nov

IIesahP

Phase II

and maize for the years (of harvest) 2008 and 2009. The dashed line indicates the



Table 3
Results of the model validation for surface soil moisture. Indices are the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the Index of Agreement (IA). Phase
I + II denotes the indices for the validation over the whole measurement period. The phase change is defined on 16 July (DOY 198) for the year 2008 and 9 July (DOY 190) for the
year 2009 and divides the validation period.

Crop and year (of harvest) Winter wheat 2008 Winter wheat 2009 Sugar beet 2008 Sugar beet 2009 Maize 2008 Maize 2009

RMSE MAE IA RMSE MAE IA RMSE MAE IA RMSE MAE IA RMSE MAE IA RMSE MAE IA

Soil moisture (vol.%)
Phase I + II 2.1 1.6 0.92 2.6 2.0 0.77 1.8 1.4 0.91 6.4 5.6 0.54 7.8 6.7 0.57
Phase I 1.3 1.0 0.95 2.5 2.0 0.67 3.0 2.8 0.78 2.5 2.3 0.75
Phase II 2.0 1.5 0.87 7.2 6.6 0.47 9.8 9.5 0.31
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precipitation events, due to the changing spatial variability and
amount of the precipitation and preceding soil moisture condi-
tions. The increase is even more pronounced in the homogeneous
land use simulation (Fig. 8B), where the pattern is not disturbed
by the small scale spatial variability due to transpiration by differ-
ent crops.

The high autocorrelation lengths in the homogeneous soil sim-
ulation (Fig. 8D) occur outside the main growing season. In that
period of time due to the absence of a soil induced pattern and
no significant spatial variability of evapotranspiration, soil mois-
ture patterns are predominantly determined by large scale precip-
itation patterns. Outside the main growing season, in times when
no precipitation occurs, soil moisture is characterized by very sim-
ilar absolute values near field capacity. The absence of precipita-
tion removes all large scale variability induced by the
precipitation and thus causing very low autocorrelation lengths
(e.g., Fig. 8D at about DOY 30 and 355). During the growing season,
the high spatial variability of surface soil moisture due to the het-
erogeneous evapotranspiration persists even during precipitation
events preventing high autocorrelation lengths as noticed outside
the growing season. Mainly two precipitation events within the
growing season result in noticeable autocorrelation lengths. Fol-
lowing these events, starting from overall low soil moisture condi-
tions, the large scale autocorrelation structure of these strong
precipitation events is stored in the soil moisture pattern for a
longer time period, until it is diminished due to drying caused by
evapotranspiration.

Model validation revealed an overestimation of surface soil
moisture in the second phase of the growing season for sugar beet
and especially for maize. The higher soil moisture makes sugar beet
and maize pixels more similar to fallow pixels (winter wheat pixels
after harvest). This counteracts the small scale variability of surface
soil moisture induced by differences between bare soil and the
remaining crops. Without the overestimation, the small scale differ-
ences between bare soil and sugar beet or maize were larger, leading
to an increased degradation of the larger autocorrelation lengths.
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In summary, it can be stated that in the beginning of the year at
times when the overall soil moisture is high, the surface soil mois-
ture patterns depend upon the soil properties (spatial differences
of field capacity). In the main growing season, the larger scale pat-
tern induced by soil properties is diminished by the small scale
land use pattern and the resulting small scale variability of evapo-
transpiration. Due to their high autocorrelation lengths, precipita-
tion events enlarge soil moisture autocorrelation lengths for a
short time even beyond the range induced by soil properties. The
strength of this effect depends upon the variability and precipita-
tion amount of the events and upon preceding soil moisture condi-
tions. After the growing season, the patterns are again mainly
determined by the soil properties.
3.2.3. Scaling
The scaling behavior of patterns is of importance when data are

to be scaled down to finer resolutions. Downscaling can be accom-
plished for instance by relating the global spatial variance of sur-
face soil moisture to the desired scale using a power law
relationship (see Section 2.3.3). Fitting the power law function to
grain sizes from 2 to 37 for each day of the year resulted in highly
significant correlations with R2 between 0.94 and 0.99. The value of
the scaling exponent b varies between �0.17 and �0.62 in the
course of the year (Fig. 9) representing the changing scaling behav-
ior of surface soil moisture patterns, which in the analysis above
was shown to depend on varying influences of weather, soil, and
land use. More negative values of b occur during periods of high
small scale spatial variability. Large negative values denote a
strong change of surface soil moisture variance with spatial scale,
whereas less negative b-values indicate periods of little change of
soil moisture variability with spatial scale. The annual course of
b closely resembles the autocorrelation lengths found in the pat-
tern analysis stressing a strong relationship between autocorrela-
tion and scaling behavior of spatial variance as described by
Whittle (1962). Outside the growing period, b-values found in
the current study range from �0.17 to �0.31. This is similar to val-
ues found by Rodriguez-Iturbe et al. (1995) and Manfreda et al.
(2007). The computed b-values for temporal invariant soil param-
eters (e.g., �0.23 for clay content, �0.21 for sand content, all with
R2 > 0.91) suggest a controlling effect of the soil parameters on the
scaling behavior particularly outside of the growing season. How-
ever within the growing season, the b-values are well below this
range, indicating the strong impact of vegetation dynamics upon
the scaling properties of surface soil moisture. As shown above,
these low values are caused by the land use pattern and the result-
ing heterogeneous evapotranspiration particularly towards the end
of the growing season. Large precipitation events reset the b-values
to values around or even smaller absolute values than �0.25.

To be useable for downscaling, the value of b for a particular day
has to be derivable from external variables. A linear equation was
fitted to the time series of b and spatial mean surface soil moisture
(msm, vol.%) resulting in the following highly significant (p-value:
0.01) relationship:

b ¼ 0:0158 msm� 0:7486 ðR2 ¼ 0:24Þ ð4Þ

The low R2 value indicates only a weak tendency to less nega-
tive values of b at higher mean surface soil moisture, thus showing
a limited usability in practical downscaling approaches. Compara-
ble to our study, Manfreda et al. (2007) detected only weak trends
over short time periods between mean surface soil moisture values
and b, due to the highly variable influence of precipitation and
evapotranspiration. A significant influence of drying and wetting
cycles on the b-values as in the study of Manfreda et al. (2007)
could not be detected.

In order to better understand the main factors determining and
predicting the scaling exponent b we analyzed its dependency upon
different independent variables. We found that both, the area
averaged precipitation cumulated over the previous 20 days (sum-
Precip, in mm) and a parameter which expresses the spatial
variability of the LAI (devLAI), yield significant correlations to the
b-value. To calculate devLAI, we used the results of the validation
model run from our test fields for the different crops. From this data
a mean LAI of the investigation area was calculated as area
weighted average over the different crops. The area weights are
taken from the land use classification. devLAI was calculated as
an area weighted average of the deviation of the individual crop’s
LAI from the mean. This procedure makes sure, that devLAI can be



Fig. 8. Spatial autocorrelation coefficient (SAC) of surface soil moisture for different step widths for four different model runs: (A) the reference run which represents the full
complexity of the investigation area, (B) a homogeneous land use model run, with winter wheat occupying all 20,299 pixels, (C) a uniform meteorology model run using the
measured meteorological values at Selhausen throughout the investigation area, and (D) a homogeneous soil model run assuming the soil properties from the Selhausen test
site for each pixel in the investigation area. The temporally constant SAC of soil parameters (fraction of silt, sand, and clay; the same for all model runs) is depicted above and
the course of precipitation and evapotranspiration (spatial mean and standard deviation of the investigation area) to the right of the corresponding model run.
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derived scale independently from generally available independent
data. A linear regression analysis provided highly significant (p-va-
lue: 0.01) relationships between sumPrecip and b (R2 = 0.19) and
devLAI and b (R2 = 0.38). These results show that the plant related
parameter (devLAI) has more predictive power for the scaling
parameter b over the whole year than the mean soil moisture state.
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Fig. 9. Scaling exponent b of the scaling function for every DOY in 2009.
This indicates once again the importance of the plant controlled
water fluxes to explain the soil moisture patterns. Combining the
two parameters yields a highly significant (p-value: 0.01), multiple
linear relationship:

b ¼ 0:02 sumPrecip� 0:032 devLAI� 0:351 ðR2 ¼ 0:53Þ ð5Þ

Thus 53% of the variance of the scaling exponent b can be attrib-
uted to the spatial variability of the LAI and to the antecedent pre-
cipitation. A multiple regression analysis using devLAI and msm
results in an R2 value of 0.44.

4. Conclusions

A dynamically coupled, process-based and spatially distributed
ecohydrological model was used to analyze the key processes as
well as their interactions and feedbacks leading to spatial and tem-
poral soil moisture patterns. Based on the model results the impact
of soil, precipitation, and vegetation on these patterns was as-
sessed. Because of the strong influence of vegetation water uptake
during the growing season in an agricultural landscape, the plant
growth model was validated during two growing seasons for the
three main crops in the investigation area: Winter wheat, sugar
beet, and maize. The average RMSE for the total aboveground
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biomass yields a value of 0.27 kg m�2, and 0.93 for green LAI sup-
porting our confidence to adequately simulate the key impacts of
plant growth dynamics upon the temporal course and spatial
dynamics of soil moisture. The validation of surface soil moisture
yields RMSE values that range from 1.8 to 7.8 vol.% for both years
and all crops. However, a change in soil infiltration, which was dis-
cernible in the field measurements, lead to significantly larger
RMSE values for root crops at the end of the growing season. Con-
sidering only the first phase of the measurements for root crops,
the RMSE shows values between 1.3 and 3.0 vol.%. Possible pro-
cesses leading to the observed changes in soil infiltration might
be clogging of the pores by siltation or crust formation. The valida-
tion shows that the model simulates plant growth, plant water up-
take, and surface soil moisture with suitable accuracy and thus can
provide a suitable base data for the analysis of surface soil mois-
ture patterns and their scaling properties in the northern part of
the Rur catchment.

In the northern part of the Rur catchment, the average spatial
mean soil moisture during the main growing season is, as ex-
pected, lower (26.4 vol.%) as compared to 28.9 vol.% outside the
main growing season of 2009. These differences are mainly due
to evapotranspiration. A highly significant negative exponential
relationship between the coefficient of variation and the mean sur-
face soil moisture was found, meaning that the variability of sur-
face soil moisture increases with decreasing mean soil moisture.

To analyze the patterns of surface soil moisture and their scal-
ing properties, an autocorrelation analysis was conducted. At the
beginning and the end of the year when the overall soil moisture
is high, surface soil moisture patterns depend mainly on the soil
properties (field capacity). During the main growing season, the
patterns resulting from soil properties were modified by patterns
resulting from the small scale land use pattern and the resulting
small scale variability of evapotranspiration. With increasing spa-
tial scales, land use related impacts decrease due to averaging of
the small scale evapotranspiration variability. Due to their high
autocorrelation lengths, precipitation events increase soil moisture
autocorrelation at all spatial scales and even beyond the autocorre-
lation lengths resulting from the soil properties. The strength of
this effect depends on the variability and amount of the precipita-
tion and upon the preceding soil moisture conditions. Scaling prop-
erties found in this study depend further on the specific field sizes
and management structures in the northern part of the Rur catch-
ment. While the particular scaling properties may not apply to
areas with a significantly different agricultural structure, the gen-
eral finding of field size dominated spatial soil moisture patterns
during the main growing period should also apply to other regions.
The scale of our investigation was chosen to account for the small
scale variability of surface soil moisture caused by heterogeneous
land use.

Fitting the daily spatial variance of surface soil moisture to scale
for grain sizes between 2 and 37 using a power law relationship
yields daily values of the scaling exponent b between �0.17 and
�0.62. Large negative values of b occur during periods of high
small scale spatial variability and denote a strong decrease of sur-
face soil moisture variability with increasing scale, while less neg-
ative b-values indicate periods of reduced scale dependency. Large
negative b-values occur mainly during dry periods in summer,
which indicate again the influence of small scale variability of
evapotranspiration during the growing season. 53% of the variance
of the scaling exponent b can be explained by an independent LAI
parameter to account for the small scale variability of plant con-
trolled water fluxes and a precipitation parameter to account for
the temporal variability of the precipitation. This indicates a poten-
tial to assess the subscale surface soil moisture heterogeneity from
coarse scale data. Understanding the subscale soil moisture heter-
ogeneity is, for example, particularly relevant to better utilize
coarse scale soil moisture data derived from SMOS or future SMAP
satellite measurements.
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