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Abstract Yeast tRNA (m7G46) methyltransferase contains two
protein subunits (Trm8 and Trm82). To address the RNA recog-
nition mechanism of the Trm8–Trm82 complex, we investigated
methyl acceptance activities of eight truncated yeast tRNAPhe

transcripts. Both the D-stem and T-stem structures were re-
quired for efficient methyl-transfer. To clarify the role of the
D-stem structure, we tested four mutant transcripts, in which ter-
tiary base pairs were disrupted. The tertiary base pairs were
important but not essential for the methyl-transfer to yeast
tRNAPhe transcript, suggesting that these base pairs support
the induced fit of the G46 base into the catalytic pocket.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

To date, more than 80 modified nucleosides have been found

in tRNA [1–4]. All of these modified nucleosides are produced

post-transcriptionally by specific tRNA modification enzymes

[5]. N7-Methylguanosine at position 46 (m7G46) of tRNA is

one of the most commonly modified nucleosides: it is widely

found in eukaryotes and bacteria as well as some Archaea

[3,4]. The m7G46 is located in the variable region in tRNA

and forms a tertiary base pair with the C13–G22 base pair

[6,7].

The m7G46 modification is produced by tRNA (m7G46)

methyltransferase [tRNA (guanine-N7-)-methyltransferase,

EC 2. 1. 1. 33] [5]. This enzyme activity was first detected in

a cell extract of Escherichia coli [8] and has been purified more

than 1000 fold [9]. The enzyme activity has also been purified

from Salmonella typhimurium [10] and Thermus flavus [11].

Furthermore, the tRNA m7G46 modification activity has been

detected in crude extracts from higher eukaryotes [12–14]. Re-

cently, it has been reported that yeast tRNA (m7G46) methyl-
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transferase is composed of two protein subunits (Trm8 and

Trm82) and their genes have been identified [15]. More re-

cently, bacterial genes have also been identified as trmB (clas-

sical name, yggH) from E. coli [16] and Aquifex aeolicus [17]. A

gene disruption mutant of yeast [15] or E. coli [16] has revealed

that the tRNA (m7G46) methyltransferase activity is not essen-

tial for cell viability. However, it has been reported that a yeast

double mutant strain lacking both trm8 and trm4 genes

showed rapid degradation of tRNAVal [18]. Thus, the m7G46

modification in yeast contributes to the stability of tRNA in

conjunction with the other modified nucleotide(s) around the

variable region in tRNA. Moreover, recently, we have re-

ported that a gene involved in m7G modification of tRNA is

required for infection by the phytopathogenic fungus Colleto-

trichum lagenarium [19].

Although eukaryote tRNA (m7G46) methyltransferases con-

tain two protein subunits (Trm8 and Trm82 in yeast [15];

METTL1 and WDR4 in human [15,20]), the enzymes from

eubacteria are composed of only TrmB protein [16,17,21].

TrmB has motifs conserved in S-adenosyl-LL-methionine (Ado-

Met) dependent methyltransferases, however, the amino acid

residues involved in the catalytic center of mRNA Cap m7G

methyltransferase (Abd1) are not found, suggesting that the

reaction mechanism of TrmB differs from that of Abd1 [16].

Recently, a site-directed mutagenesis study based on bioinfor-

matics elucidated amino acid residues required for substrate

binding and methyl-transfer [22]. More recently, the crystal

structure of Bacillus subtilis TrmB has revealed that eubacterial

TrmB is a unique Rossmann fold containing methyltransferase

(namely, Class I fold [23]) [21].

In previous work, we reported about the tRNA recognition

mechanism of A. aeolicus TrmB [17]. A. aeolicus is a hyper-

thermophilic eubacterium, which grows at close to 95 �C

[24]. The A. aeolicus enzyme has an extra C-terminal portion

and a shortened N-terminus as compared to its mesophilic

counterpart from E. coli [16] or B. subtilis [21]. Our previous

study revealed that the most important recognition sites of

the A. aeolicus enzyme are included in the T-arm structure of

tRNA [17], suggesting that A. aeolicus TrmB accesses the

G46 residue from the T-stem side. This eubacterial enzyme is

composed of only a TrmB subunit [17]. In contrast, the yeast

enzyme is a heterodimer composed of two protein subunits

(Trm8 and Trm82) [15]. In this report, we demonstrate differ-

ences in tRNA recognition mechanisms between eubacterial

and eukaryote tRNA (m7G46) methyltransferases.
blished by Elsevier B.V. All rights reserved.

https://core.ac.uk/display/82591664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


62

47.5

32.5

175

83

(kDa)

1600 K. Matsumoto et al. / FEBS Letters 581 (2007) 1599–1604
2. Materials and methods

2.1. Materials
[Methyl-14C]-AdoMet (1.95 GBq/mmol) and [methyl-3H]-AdoMet

(2.47 TBq/mmol) were purchased from ICN. Cold AdoMet was ob-
tained from Sigma. DE52 was a product of Whatman. Ni-NTA super-
flow resin came from Qiagen. Sephadex G-25 was from Pharmacia.
DNA oligomers were bought from Invitrogen, and T7 RNA polymer-
ase was from Toyobo, Japan. Other chemical reagents were of analyt-
ical grade.
25

16.5

Fig. 1. 12.5% SDS–PAGE analysis of the purified Trm8–Trm82
complex. Four micrograms of the purified Trm8–Trm82 complex was
analyzed by 12.5% SDS–PAGE. The gel was stained with Coomasie
brilliant blue.
2.2. Preparation of yeast tRNA (m7G46) methyltransferase
Yeast Trm8–Trm82 heterodimer was synthesized by a wheat germ

in vitro translation system [25–28]. Because there was a 6 · His tag se-
quence expressed at the N-terminus of Trm82, the synthesized enzyme
could be purified by Ni-NTA superflow column chromatography and
DE52 column chromatography [28]. The Trm8–Trm82 heterodimer
fractions were assessed by 12.5% SDS–polyacrylamide gel electropho-
resis, combined, and dialyzed against buffer A (50 mM Tris–HCl (pH
7.5), 5 mM MgCl2, 6 mM 2-mercaptoethanol, and 50 mM KCl). Glyc-
erol was added to the sample to a final concentration 50% and stored
at �30 �C until required.
2.3. Measurement of enzyme activity
A standard assay for enzyme purification was performed according

to a previously reported method with slight modifications [17]. Briefly,
0.1 lg protein, 0.1 A260unit yeast tRNAPhe transcript, and 37 lM 14C-
AdoMet were incubated for 30 min at 30 �C and then a filter assay per-
formed. Yeast tRNAPhe transcripts were prepared according to our
previous reports [17,29]. Before the assay, the transcripts were an-
nealed in the buffer (50 mM Tris–HCl (pH 7.5), 5 mM MgCl2, and
100 mM NaCl) by cooling from 70 �C to 40 �C. CD spectra were mea-
sured with a JASCO spectropolarimeter J-820 equipped with a JASCO
PTC-423L thermo-controller. Cuvettes with a 1 mm path length were
used. Each sample in the annealing buffer was pre-incubated at 15,
20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or 70 �C for 15 min and then the
spectrum was recorded from 300 to 200 nm at each temperature. The
scan was repeated three times. In order to visualize the methyl-transfer
reaction, we used 10% PAGE (7 M urea) and an imaging analyzer
system. Briefly, tRNA (0.3 A260 units) was incubated with 300 ng of
the purified heterodimer and 38 lM [methyl-14C]-AdoMet for 10 min
at 30 �C in 30 ll of buffer A, extracted with phenol, collected by
ethanol precipitation, and then loaded onto a 10% polyacrylamide
gel (7 M urea). The gel was stained with methylene blue and dried.
The incorporation of 14C-methyl groups into tRNA was monitored
with a Fuji Photo Film BAS2000 imaging analyzer. Apparent kinetic
parameters, Km and Vmax, were determined by a Lineweaver–Burk plot
of the methyl-transfer reaction as measured by a [methyl-3H]-AdoMet
filter assay: 1 lg of the protein, 38 lM AdoMet and various concentra-
tions of the transcript in 50 ll of buffer B were incubated for 5 min at
30 �C.
3. Results

3.1. Preparation of yeast tRNA (m7G46) methyltransferase

Yeast tRNA (m7G46) methyltransferase (Trm8–Trm82 het-

erodimer) was successfully synthesized by a wheat germ cell-

free protein synthesis system and purified as shown in Fig. 1.

The molecular ratio of the Trm8 and Trm82 proteins in this

sample was determined by measuring the band intensities in

the gel stained with Coomasie brilliant blue and found to be

0.94:1. The enzyme assay using yeast tRNAPhe transcript and
14C-AdoMet clearly showed that this fraction contained a

strong methyl-transfer activity (data not shown, see Fig. 2).

Kinetic parameters with yeast tRNAPhe transcript at 30 �C

were determined by a filter assay using 3H-AdoMet. The values

derived from this assay for Km and Vmax were 1.5 lM and

1.4 lmol mg�1 h�1, respectively (Table 1).
3.2. Methyl acceptance activities of truncated tRNA molecules

To address the recognition sites in tRNA, we prepared eight

truncated yeast tRNAPhe transcripts (Fig. 2), because three-

dimensional structure of yeast tRNAPhe was established [6,7].

The methyl acceptance activities of these truncated transcripts

by A. aeolicus tRNA (m7G46) methyltransferase were previ-

ously investigated: the transcripts F, G, and H in Fig 2 were

well methylated and transcripts C, E and I were slowly meth-

ylated [17]. After the annealing, we measured CD-spectra of

the transcripts at various temperatures (15, 20, 25, 30, 35,

40, 45, 50, 55, 60, 65 and 70 �C) to check the conformation.

For example, transcript C had a clear peak (260–280 nm) de-

rived from high order structures at 15–40 �C (data not shown).

The transcripts were incubated with 0.5 lg enzyme and 14C-

AdoMet at 15 or 30 �C for 10 min, and then were analyzed

by 10% polyacrylamide gel (7 M urea) electrophoresis: the

gel was stained with methylene blue to visualize the RNA mol-

ecules (Fig. 2 lower left panel) and then 14C-methyl group

incorporation monitored by autoradiography (Fig. 2 lower

right panel). Because the results at 15 �C showed the same ten-

dencies of the results at 30 �C, Fig. 2 shows only the results at

30 �C. As shown in Fig. 2A, methyl-transfer to full-length

yeast tRNAPhe was clearly detected, consistent with the result

of the filter assay. When truncated RNA corresponding to

positions from 34 to 48 (Fig. 2B) was tested, methyl-transfer

was not observed. This result demonstrates that Trm8–

Trm82 does not simply recognize the variable region sequence.

When the aminoacyl stem and D-arm were deleted (Fig. 2C),

methyl acceptance activity was not observed. Further, dele-

tions of the T-arm and the D-arm (Fig. 2D) gave the same re-

sult. Thus, the essential recognition site(s) seems to include in

the aminoacyl-stem, D-arm, and/or T-arm. To our surprise,

deletion of the nucleotides from 1 to 18 gave complete loss

of methyl acceptance activity (Fig. 2E). In our previous study,

this transcript was well methylated by A. aeolicus TrmB [17].

Thus, this result demonstrates the importance of the D-arm

structure in RNA recognition by Trm8–Trm82. In fact, dele-

tion of the D-arm (Fig. 2F) resulted in complete loss of methyl

acceptance activity. In contrast, deletion of the aminoacyl-

stem (Fig. 2G) or anticodon-arm (Fig. 2H) did not produce

such a severe effect, although the methyl acceptance activities

were decreased. These results show that one of the essential

sites exists in the D-arm structure. Kinetic parameters for these
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Fig. 2. Methyl-transfer assay of truncated yeast tRNAPhe transcripts. Full-length yeast tRNAPhe transcript (A) and truncated tRNA molecules (B–I)
are shown as clover-leaf models. The position 46 is shown in the full-length transcript. Lower panels show the result of the gel assay. After the
methyl-transfer reaction, the transcripts were analyzed by 10% polyacrylamide gel (7 M urea) electrophoresis. The gel was stained with methylene
blue (left panel) and then incorporation of 14C-methyl groups was monitored by autoradiography (right panel). The bands of transcripts are shown
by the transcript names (A–I).

Table 1
Kinetic parameters for tRNAPhe variants

Transcript Features Km (lM) Vmax (lmol mg�1 h�1) Relative Vmax/Km (%)

A Full length 1.5 ± 0.04 1.4 ± 0.10 100
B Corresponding to nucleotides (34-48) Not detectable
C Deletions of aminoacyl-stem and D-arm Not detectable
D Deletions of T-arm and D-arm Not detectable
E Deletions of nucleotides (1–18) Not detectable
F Deletion of D-arm Not detectable
G Deletion of aminoacyl-stem 3.7 ± 0.46 0.63 ± 0.20 19
H Deletion of anticodon-arm 1.4 ± 0.08 0.85 ± 0.03 66
I Deletion of T-arm Not detectable
J Disruption of C13–G22–G46 tertiary base pair 0.50 ± 0.05 0.24 ± 0.10 52
K Disruption of D-arm structure Not detectable
L Disruption of T-arm structure Not detectable
M Disruption of tertiary base pairs between D- and T-arms 0.35 ± 0.05 0.11 ± 0.03 33
N Substitution of U47 by A 1.26 ± 0.47 0.28 ± 0.08 24
O Substitution of C48 by A 0.25 ± 0.01 0.04 ±0.01 17

‘‘Not detectable’’ means that methyl-transfer was not observed in the experiments shown in Figs. 2 and 3.
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truncated RNA molecules were measured by filter assay with
3H-AdoMet (Table 1). In addition, the deletion of T-arm
structure (Fig. 2I) gave a complete loss of the methyl accep-

tance activity. Thus, the T-arm structure is one of the essential
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recognition sites of Trm8–Trm82. This feature is shared by A.

aeolicus TrmB [17]. These experimental results suggest that the

D-arm structure as well as the T-arm structure plays a key role

in tRNA recognition by Trm8–Trm82. Thus, the recognition

requirements of yeast Trm8–Trm82 for the G46 base are stric-

ter than those of A.aeolicus TrmB.

3.3. Methyl acceptance activities of D-arm mutant transcripts

These results prompted us to investigate the effects of muta-

tions in the D- or T-arm. We therefore prepared four mutant

transcripts (Fig. 3). In the L-shaped tRNA structure, the

m7G46 base forms a tertiary base pair with the C13–G22 base

pair in the D-stem. When this C13–G22 base pair was dis-

rupted, methyl acceptance activity was considerably decreased

but not lost (Fig. 3J). Thus, the C13–G22 base pair is impor-

tant but not essential for the recognition by Trm8–Trm82.

When the D-stem structure was disrupted (Fig. 3K), methyl

acceptance activity was hardly detectable. Thus, the D-stem

structure is very important and is a semi-essential recognition

site of Trm8–Trm82. When the T-stem structure was dis-

rupted, methyl acceptance activity was completely lost

(Fig. 3L), demonstrating that the T-stem structure is essential

for recognition. We also disrupted the interaction between the

T- and D-loops (Fig. 3M). The methyl acceptance activity of

this mutant transcript was severely decreased, suggesting that

the locations of the D-arm and the T-arm in tRNA affect

RNA recognition by Trm8–Trm82, although these positions
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Fig. 3. Methyl-transfer assay of mutant yeast tRNAPhe transcripts. The
incorporations were monitored by the same method in Fig. 2. The lane label
Fig. 2A. The lanes (J–M) correspond to the transcripts (J–M).
are not essential. Kinetic parameter analysis revealed these de-

creases in the methyl acceptance activities toward the mutant

transcripts to be mainly caused by decreases in Vmax values

(Table 1).

3.4. The m7G46 modification in native yeast tRNA molecules

In order to consider native m7G46 modification patterns, we

retrieved all yeast tRNA sequence data from the databases

[3,4,30]. The m7G46 modification in yeast is only found in

tRNA species, which have an N44N45G46pyrimidine (Py)

47Py48 sequence in the variable region. In the sequence,

Py47 and Py48 are often modified to D47 and m5C48, respec-

tively. Only one exception is tRNAAla, which has an

A44G45G46D47C48 sequence: G46 is not modified to

m7G46. This tRNA has a unique base pair, U13–G22, in the

D-stem. The U13–G22 base pair in tRNAAla probably sepa-

rates G22 from G46, and the tertiary base pair between

G22–G46 seems to be disrupted or changed. We prepared

tRNAAla transcript and analyzed its methyl acceptance activ-

ity. The tRNAAla transcript was not methylated in the tested

conditions including a long incubation (24 h). This result coin-

cides with native tRNAAla modification and is in line with the

importance of the C13–G22–G46 tertiary base pair, however it

could not be explained only by the tertiary base pair, because

yeast tRNAPhe mutant transcript J was methylated (Fig. 3).

This discrepancy suggests existence of negative determinant

in the tRNAAla sequence, which does not exist in yeast
. .

G
C
G
G
A
U
U

UA
GCUC

A
GU

U
G
G G A

G AGC
G

C
C
A
G
A

C
U
G A A

G
A
U
C
U
G
G G

GA
U

C

A
A

U
U
C
G
C
A

A
C
C

C
CU

U C CU

C UC

U U
C
G

AUC

L
G
C
G
G
A
U
U

UA
GCUC

A
GU

U
U
UU A

G AGC
G

C
C
A
G
A

C
U
G A A

G
A
U
C
U
G
G G

GA
U

C

A
A

U
U
C
G
C
A

A
C
C

C
G A

U G GU
C AC

U U C
G

AUC

M

J MW
ild

 t
yp

e 
(A

)

K L

mutation sites are highlighted as closed letters. The methyl group
ed ‘‘Wild-type (A)’’ is the wild-type yeast tRNAPhe transcript shown in



K. Matsumoto et al. / FEBS Letters 581 (2007) 1599–1604 1603
tRNAPhe transcript. Furthermore, in yeast tRNA species,

tRNAPro1, tRNAPro2, tRNAVal1 and tRNAVal2 have an

m7G46 modification and unique nucleotides, W13 and U22,

in the D-arm. The tertiary base pair, C13–G22–G46, does

not exist in these tRNA species, although it may be replaced

by a W13–U22–G46 tertiary base pair. We prepared the

tRNAVal1 transcript and tested its methyl acceptance activity.

This transcript was methylated very slowly during a long incu-

bation (24 h), however we could not measure the initial veloc-

ity correctly: the initial velocity was estimated to be below

0.05% of that to yeast tRNAPhe transcript. This result strongly

suggests that the other factor(s) such as modified nucleotide(s)

in tRNAVal1 precursor, another protein and/or RNA is in-

volved in tRNAVal1 recognition by Trm8–Trm82. The W13

modification may be required for efficient methylation by

Trm8–Trm82, because this modification occurs in tRNAPro1,

tRNAPro2, tRNAVal1 and tRNAVal2. Moreover, to clarify

whether the Py47 and Py48 are essential for Trm8–Trm82 rec-

ognition or not, we made two mutant yeast tRNAPhe tran-

scripts, which were substituted U47 or C48 by A. The U47A

mutant transcript was well methylated (Table 1). On the other

hand, the C48A mutant transcript was decreased its methyl

acceptance activity through decrease of Vmax value (Table 1).

Because the substitution of C48 by A disrupts the G15–C48

tertiary base pair, this structural perturbation of the variable

region seems to cause the decrease of the methyl acceptance

activity. Thus, we confirmed that the Py47 is not important

and the Py48 is required for efficient methylation.
4. Discussion

In this study, we have demonstrated that the major recogni-

tion sites of Trm8–Trm82 are the D- and T-stem structures.

The G46–C13–G22 tertiary base pair is not essential but

important for efficient methyl-transfer. The G18–U55 and

G19–C56 tertiary base pairs are not essential, however disrup-

tion of the T- and D-loop interaction causes a severe decrease

in methyl acceptance activity. Because these disruptions of the

tertiary base pairs perturb the distance and angle of the G46

base from the T-stem, Trm8–Trm82 would seem to recognize

the G46 base from the T-stem side. This feature is shared with

the A. aeolicus TrmB [17]. In the current study, the importance

of the D-stem structure in the recognition mechanism of the

Trm8–Trm82 was unexpected. In the mechanism, the base pair

at position 13 and 22 seems to play a key role. Recently, Alex-

androv et al. have reported the systematic double deletion mu-

tants of tRNA modification enzyme genes in yeast [18]. In their

study, trm4–trm8, pus7–trm8 and dus3–trm8 double deletion

mutants showed rapid degradations of tRNAVal1: trm4, pus7

and dus3 genes are encoded tRNA (m5C34, 40, 48, 49) methyl-

transferase [31], tRNA (W13, 35) synthase [32], and tRNA

(D47) synthase [33], respectively. Their results clearly demon-

strate that the modified nucleotides around the variable region

contribute the in vivo stability of tRNA. In the current study,

requirement of the other factor(s) for efficient methylation of

the tRNAVal1 was suggested. To clarify these issue, further

studies, especially elucidations of relationship between modi-

fied nucleotide(s) and recognition mechanism by modification

enzyme(s), are necessary. Taking the experimental results to-

gether, we concluded that Trm8–Trm82 has stricter require-

ments for the recognition of the G46 base than A. aeolicus
TrmB. The measurement of kinetic parameters revealed that

the decreases in methyl acceptance activities were mainly

caused by decreases in Vmax values, suggesting that the enzyme

captures the truncated or mutated tRNA molecule in the same

manner as a full-length wild type transcript, but that the in-

duced fit of the G46 base into the catalytic pocket is slow

down.

There is a clear structural difference between eukaryotic and

bacterial tRNA (m7G46) methyltransferase: the eukaryotic en-

zyme is a heterodimer [15], while bacterial enzyme is a mono-

mer [16] or homodimer [21]. In the case of the yeast enzyme,

amino acid sequence analysis strongly suggests that the Trm8

protein functions as a catalytic subunit [15]. However, the role

of the Trm82 subunit is still unclear. The tRNA docking model

reported in the B. subtilis TrmB crystal study suggests that the

one TrmB protein captures one tRNA molecule without sup-

port from the other subunit [21]. As described above, because

yeast Trm8–Trm82 has stricter recognition requirements for

the tRNA molecule than bacterial TrmB, the tRNA contact re-

gions in Trm8–Trm82 seem to be increased. Thus, a part of the

Trm82 subunit may be in contact with the tRNA molecule. To

clarify these issues, more detailed studies are necessary.
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