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The engineering of microbial strains for the production of small

molecules of biotechnological interest is a time-consuming,

laborious and expensive process. This can be mostly attributed

to the fact that good producers cannot be readily obtained by

high-throughput screening approaches since increased

product formation usually does not confer a clear phenotype to

producing strain variants. Recently, advances were made in the

design and construction of genetically encoded RNA aptamer-

based or transcription factor-based biosensors for detecting

small molecules at the single-cell level. The first promising

examples for the application of these molecular biosensors in

combination with fluorescent-activated cell sorting as a high-

throughput screening device demonstrated the value and

potential of these new tools for microbial strain development.
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Introduction
The metabolic power of microorganisms to produce small

molecules of biotechnological interest from simple sub-

strates is truly amazing! However, to date, only a few

compounds — such as amino acids for applications in

food and feed industries — have been microbially pro-

duced at scales exceeding 5 000 000 tons/year. Against

the background of dwindling crude oil resources, which

represent the basis of our contemporary chemical indus-

try, it is expected that many more small molecules will

have to be produced by microorganisms from renewable

resources in the future. Initially, improvement in the

industrial properties of microorganisms was limited to
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random mutagenesis and selection, but increasing knowl-

edge of the microbial physiology and its regulation, along

with the advent of recombinant DNA technology and new

DNA sequencing technologies, have dramatically

expanded the capabilities to also rationally modify the

cellular metabolism for increased synthesis of a specific

metabolite. As a result of this development, a tremendous

number of different genetic variations of a microbial pro-

duction strain can be easily constructed by various

methods, either in vivo or in vitro. However, whether strains

are randomly mutated or rationally engineered, each

genetic variant generally has to be cultivated and evaluated

for its productivity individually, employing costly and low-

throughput methods such as chromatography or mass

spectrometry. The reason for this is that the synthesis of

the majority of small molecules of biotechnological interest

does not confer a conspicuous phenotype to the producing

cells that would allow interfacing with high-throughput

(HT) screening technologies. Among the few exceptions

are natural chromophores, such as carotenoids [1], or small

molecules whose production can be linked to the formation

of a colored pigment, as is the case for L-tyrosine, which can

be enzymatically converted to the pigment melanin [2]. In

such cases, color formation enables direct screening for

more intensely colored colonies or cultures using standard

assay techniques in a medium-throughput format (micro-

titer plates or agar plates, respectively).

More powerful in terms of throughput is linking small

metabolite production to survival or fitness of the produ-

cing microorganism. In a few cases, this can be easily

achieved if the target compound is essential for growth of

the producer (e.g. by employing classical anti-metabolite

selection) or growth of a co-cultivated auxotrophic repor-

ter strain. Other examples include the application of

transcriptional regulators that recognize the desired pro-

duct and respond by expression of a reporter gene, con-

ferring resistance to an antibiotic [3]. The drawback of

such strategies relying on survival or improved fitness of a

producer is the limited applicability if a production strain,

which already produces the small metabolite in question,

has to be further improved.

Whereas the laborious and time-consuming screening of

microorganisms on agar plates or in microtiter plates

practically limits the screenable library size to 106 clones,

fluorescence-activated cell sorting (FACS) enables

the evaluation of very large libraries comprising up to

109 clones [4]. Here, tens of thousands of cells can be

analyzed per second at the single-cell level for size and
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fluorescent signals in response to excitation with laser

light of a set wavelength. In principle, FACS can be

directly applied for the engineering of microorganisms

to produce small molecules, which are either fluorescent

or can be stained with fluorescent dyes. For example,

FACS was successfully used to isolate improved microbial

producers of the fluorescent carotenoid astaxanthin from a

library of more than 106 clones in only one hour, offering a

throughput that was about two orders of magnitude higher

and screening that was substantially faster than conven-

tional screenings in microtiter plates [5]. In cases where

target compounds are non-fluorescent, dyes detecting

physiology-associated changes in response to increased

product formation can be applied. This was shown, for

example, by staining viable cells accumulating the biode-

gradable polyester poly-3-hydroxybutyrate with nile red

[6] or Bacillus brevis producing gramicidin S with fluor-

escein isothiocyanate [7]. Regrettably, the majority of

biotechnologically interesting small molecules are either

non-fluorescent or appropriate dyes are not available.

However, in living cells a broad spectrum of different

metabolites is detected by an extensive repertoire of

natural sensor devices such as riboswitches, transcription

factors or enzymes. Recently, genetically encoded bio-

sensors on the basis of such cellular regulatory elements

were developed, which specifically translate the intra-

cellular concentration of a target compound into a graded

fluorescence output by driving the expression of auto-

fluorescent proteins (AFPs). In combination with FACS,

biosensors have the potential to completely change the

way microbial production strains will be engineered in

the future. This review will summarize the advances

made over the last five years in the emerging field of

biosensor-based FACS screening of microbial production

strains.

RNA-based biosensors
Riboswitches are RNA-based gene regulatory elements

that couple an RNA sensing function, encoded in an

aptamer, to a gene-regulatory output. Ligand binding to

the aptamer directs a structural change within the RNA

molecule and thereby modulating the activity of the gene-

regulatory domain. By this means, ligand binding can affect

translation efficiency (e.g. by modulating the availability

of a ribosome binding site), mRNA or protein stability or,

in the case of ribozymes, even control the enzymatic

activity of the particular RNA molecule itself [8].

For the construction of an RNA-based small-molecule

sensor, researchers can either take advantage of nature by

transferring a known aptamer structure from its native

context into a synthetic circuit, or use molecular evolution

and/or computational design to generate new RNA com-

ponent functions de novo [9,10]. The diversity of RNA-

based control mechanisms in living cells has inspired

many applications of synthetic RNA devices. In one
www.sciencedirect.com 
study, Win and Smolke applied a natural xanthine-

responsive RNA device controlling expression of gfp
(green fluorescent protein, GFP) for metabolite detection

in single yeast cells [11] (Figure 1a). The endogenous

conversion of added xanthosine to xanthine in cells

harboring this particular RNA sensor resulted in an

increase in fluorescence, which directly correlated with

product accumulation as confirmed by LC–MS. The

same group used an engineered RNA switch based on

a theophylline-responsive aptamer to screen large

libraries of mutated caffeine demethylases for increased

enzyme activity and product selectivity, employing

FACS [12��]. Seven iterative rounds of FACS screening

in combination with flow cytometry plate-based screen-

ing yielded an enzyme variant with 33-fold increased

enzyme activity and 22-fold increased product selectivity.

This approach offers a major advantage over conventional

directed evolution techniques: the enzyme activity is

directly optimized in vivo. Although this is an example

of biosensor-guided engineering of a single protein, the

principle might be directly transferable to the engineer-

ing of whole metabolic pathways or host systems.

As early as a decade before the first description of natural

riboswitches [13], metabolite-binding aptamers were

generated in vitro by the ‘systematic evolution of ligands

by exponential enrichment’ (SELEX) method [14,15].

Using SELEX, a pool of about 1013–15 randomized

sequences can be screened for binding to an immobilized

metabolite in vitro. Immobilization of the metabolite often

requires its modification to introduce reactive groups for

coupling. Consequently, aptamers selected in vitro might

not function in the more complex in vivo environment.

Recently, RNA aptamers that intracellularly bind fluor-

ophores and thus mimic AFPs were developed [16]. The

subsequent fusion of such a fluorophore-binding aptamer

(output domain) to an additional aptamer that specifically

binds a small molecule (sensing-domain) via a stem

sequence (transducer) rendered the fluorescence depend-

ent on the presence of the small molecule [17�]
(Figure 1b). These biosensors allow for the imaging of

dynamic changes and cell-to-cell variation of intracellular

small-molecule levels (e.g. ADP and S-adenosylmethio-

nine) but they have not yet been used for HT screenings.

Transcription factor-based biosensors
Many transcription factors (TFs) control a promoter’s

transcriptional output in response to binding of a small

molecule, thereby reporting on the concentration of the

molecule in the cell. Such TFs have long been used to

construct whole-cell biosensors for the detection of

environmental pollutants, such as arsenite [18] or poly-

chlorinated biphenyls [19], by linking ligand concen-

trations to the expression of reporter proteins [20].

An early example, employing transcription factors in a

non-environmental but biotechnological context was
Current Opinion in Biotechnology 2014, 26:148–154
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Schematic representation of different biosensors and their respective modes of action. The biosensors are depicted in their OFF state (left) and ON

state (right) in the presence of the small metabolite of interest (red dot). (a) RNA-based biosensors. In the absence of the small metabolite, a cis-acting

ribozyme is active (purple star) and rapidly degrades the mRNA encoding the green fluorescent protein (GFP) (low fluorescence). The presence and

binding of the small molecule to an aptamer in the same molecule favors the misfolded and inactive conformation of the ribozyme. In consequence, the

mRNA is more stable, resulting in higher gfp expression and increased fluorescence. This principle was used to design biosensors for theophylline and

tetracycline [11,12]. (b) RNA mimics of GFP. A fluorescence signal first requires small-metabolite binding to an aptamer, which then promotes the

proper folding of an additional fluorophore-binding aptamer in the same RNA molecule. With biosensors following this design principle, concentrations

of various small molecules such as ADP and S-adenosylmethionine could be monitored [16,17]. (c) TF-based biosensors. In response to the presence

of the small metabolite, a transcriptional regulator (encoded by reg) binds to the yfp promoter and activates expression of the yellow fluorescent

protein (YFP). Such TF-based biosensors have been constructed on the basis of the regulators LysG [24��] and Lrp [25�] of C. glutamicum to detect

elevated intracellular amino acid concentrations. (d) FRET biosensors. These biosensors take advantage of the Förster resonance energy transfer

(FRET), and are based on autofluorescent protein pairs, such as the cyan fluorescent protein (CFP) and the yellow fluorescent protein (YFP) which

function as FRET donor and acceptor, respectively. Both proteins are separated by a sensory domain, which undergoes conformational

rearrangements upon small-metabolite binding and thus modulates the ratio of CFP/YFP fluorescence. As an example, a maltose FRET sensor was

developed using the periplasmic maltose binding protein from E. coli [33].
published by Witholt and co-workers. They utilized a

mutant of the transcriptional activator NahR from Pseu-
domonas putida for the specific detection of benzoate and

2-hydroxybenzoate production in Escherichia coli [3].

Here, the NahR mutant controlled the expression of

reporter genes, such as the tetracycline resistance gene
Current Opinion in Biotechnology 2014, 26:148–154 
tetA, which allowed for the selection of clones capable of

reducing benzaldehyde and 2-hydroxybenzaldehyde.

Clones with improved reduction of added benzaldehyde

and 2-hydroxybenzaldehyde could be selected on tetra-

cycline-containing agar plates at a ratio of 10�6 from a

large library of 107. More recently, this approach was
www.sciencedirect.com
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Schematic representation of biosensor-based FACS screening of

microorganisms producing small metabolites. First, a genetically diverse

culture of microorganisms harboring a biosensor is generated. After

cultivation, cells showing fluorescence in response to elevated

intracellular metabolite concentrations are sorted by FACS and collected

(e.g. in microtiter plates). Subsequently, selected cells can be

characterized in detail in terms of product formation or underlying

(genomic) mutations [24,25�].
extended towards the HT screening of microorganisms

producing small molecules at the single-cell level by

employing TFs that induce the product-dependent

expression of AFPs in combination with FACS. Pro-

duct-induced gene expression (PIGEX) was one of the

first examples to exploit a TF for product-dependent gfp
expression in a FACS-based HT screening of large

libraries [21]. For this purpose, metagenomic libraries from

activated sludge were screened in E. coli for the expression

of functional benzamidases, which hydrolyze benzamide

to benzoate, the latter being an effector for the transcrip-

tional regulator BenR from P. putida. In another example, a

biosensor based on a variant of the transcriptional activator

AraC was used in E. coli to detect clones with increased

intracellular mevalonate concentrations, an important pre-

cursor for the production of isoprenoids [22�]. Interest-

ingly, AraC does not naturally recognize mevalonate and

first had to be engineered to induce gene expression in the

presence of this molecule. In a subsequent study, AraC

was engineered to recognize triacetic acid lactone, an

important intermediate in organic synthesis and involved

in polyketide synthesis [23]. This TF-based biosensor

might also be suitable for the HT screening for improved

microbial triacetic acid lactone producers.

TF-based biosensors have been intensively used to

engineer the industrial amino acid producer Corynebacter-
ium glutamicum towards increased productivities. Eggel-

ing and co-workers described the construction and

application of an L-lysine biosensor on the basis of the

TF LysG, which activates expression of the basic amino

acid exporter LysE in response to elevated intracellular

levels of basic amino acids [24��] (Figure 1c). The plas-

mid-based biosensor comprising the gene for LysG and

the promoter sequence of lysE in front of the enhanced

yellow fluorescent protein gene eyfp as reporter gene was

used to screen a library of more than 107 mutagenized C.
glutamicum cells by FACS for increased fluorescence,

yielding numerous L-lysine producers (Figure 2). The

genome sequencing of several clones that do not harbor

mutations in genes known to contribute to L-lysine syn-

thesis identified novel genetic targets for the metabolic

engineering of L-lysine overproducers. Similarly, Frunzke

and co-workers used the L-leucine-responsive transcrip-

tion factor Lrp of C. glutamicum to detect intracellular

accumulation of L-methionine and branched-chain amino

acids L-leucine, L-isoleucine and L-valine [25�]. The

biosensor is composed of a transcriptional fusion of the

promoter of brnFE to eyfp. In its native context, the

operon brnFE encodes an amino acid permease, which

facilitates the export of these amino acids. FACS was

successfully employed to isolate producers of L-valine and

other branched-chain amino acids after random mutagen-

esis of C. glutamicum. In general, the construction of

biosensors on the basis of TFs controlling specific

small-molecule exporter proteins seems to be a promising

strategy, since several other sensors, for example for
www.sciencedirect.com Current Opinion in Biotechnology 2014, 26:148–154
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L-serine or O-acetyl-L-serine sensors were constructed

following the same design principle [24��]. This can be

explained by the fact that TFs have evolved to report on

intracellular amino acid accumulation with a binding

constant typically in the low millimolar range. Con-

sequently, they can be easily used for the construction

of biosensors suitable for discriminating microbial pro-

ductions with significantly elevated intracellular amino

acid levels (mM range) from wild-type cells (intracellular

amino acid levels ranging from nM to high mM).

Additional examples of TF-based biosensors for detect-

ing biotechnologically relevant small molecules in com-

bination with flow cytometry include sensors for fatty acid

CoA thioesters, 2-hydroxybenzoate, adipate and succi-

nate, which might be suitable for FACS screening [26,27].

Of special interest is a 1-butanol sensor on the basis of the

TF BmoR from P. putida because 1-butanol can be

detected in a linear dynamic range from 0.01 mM to

40 mM in E. coli [27]. The drawback of this biosensor is

the broad specificity for other short (branched) alcohol

ligands such as 2-methyl-1-butanol and 1-hexanol, ren-

dering it less feasible for the specific detection of 1-

butanol. Very recently, a hybrid promoter-regulator sys-

tem for malonyl-CoA sensing in E. coli was constructed,

which could potentially control and optimize carbon flux

leading to robust biosynthetic pathways for the pro-

duction of malonyl-CoA-derived compounds [28].

The combination of TF-based biosensors with FACS also

opens up new possibilities for the HT genome engineer-

ing of microbial producers at the single-cell level. As a first

example, Eggeling and co-workers used oligonucleotide

recombineering for the site saturation of a key residue in

the murE gene involved in cell wall synthesis and pre-

viously identified to be beneficial for increased L-lysine

production in C. glutamicum [29]. By using their afore-

mentioned LysG-based L-lysine biosensor and FACS

screening, several murE mutants could be isolated which

accumulate significantly more L-lysine than the ancestor

strains assayed.

FRET biosensors
Intracellular small molecule concentrations can also be

determined by fluorescent biosensors which make use of

Förster resonance energy transfer (FRET) induced upon

small-molecule binding [30–32]. These biosensors are

usually based on AFP pairs, such as the cyan fluorescent

protein (CFP) and the yellow fluorescent protein (YFP),

which function as FRET donor and acceptor, respectively

(Figure 1d). Both proteins are separated by a sensory

domain, which undergoes conformational rearrangement

after ligand binding. In the ligand-free state, CFP fluor-

escence dominates. The binding of a ligand results in

structural changes of the sensory domain, which reduces

the distance between CFP and YFP, and, as a consequence,

leads to increased YFP fluorescence due to FRET. The
Current Opinion in Biotechnology 2014, 26:148–154 
large family of periplasmic-binding proteins, in particular,

have been successfully exploited as ligand-binding

domains due to their Venus-flytrap structural reorganiza-

tion upon the binding of ligands such as maltose [33].

While FRET biosensors are superior over TF-based

biosensors in terms of short signal response, as they do

not require the immanent time lag between the induction

of gene expression and the AFP signal, FRET biosensing

principles have not been considered for the HT screening

of small-molecule producers to date. The reasons for this

might be relatively low absolute signals, quantified as

emission ratios of FRET acceptor over donor. Further-

more, FRET biosensors monitor changes in ligand con-

centrations in the nanomolar to micromolar range, making

them unfeasible for the detection of higher concen-

trations usually encountered when engineering microbial

strains for the production of small molecules. In fact, only

a few FRET biosensors have been developed for bio-

technologically interesting products, e.g. L-tryptophan

[34] or L-glutamate [35], but none have been used in

HT screens to date.

Conclusions
The metabolic engineering of microorganisms for the

production of small molecules is a highly complex pro-

cess, and product yields are dictated by a host of

parameters, which are still difficult to predict. Therefore,

HT screening that goes beyond the screening capabilities

of microtiter plates is highly desired. Genetically encoded

biosensors, which transform the presence of otherwise

inconspicuous small molecules into an optical output at

the single-cell level, in combination with FACS meet this

demand, and will prove to be a valuable tool in metabolic

engineering. Currently, such biosensors are usually con-

structed on the basis of natural genetic circuits, taking

advantage of the ligand specificities of either RNA apta-

mers or TFs. Over the last few years, great progress has

been made in this emerging field, and many more FACS-

compatible biosensors are expected to become available

in the near future.

However, several significant challenges still remain, repre-

senting opportunities for the development of a new gener-

ation of biosensors. Since current biosensors rely on natural

genetic circuits, they can only recognize a very limited

number of cellular metabolites, and are unable to detect

compounds not naturally synthesized by the cell. None-

theless, these compounds are of special interest, as a

myriad of small molecules (polymer building blocks, fine

chemicals, etc.) currently produced from crude oil by

chemical means have to be microbially produced from

renewable resources in the future. Hence, biosensors have

to be engineered to also specifically detect such heter-

ologous compounds in microbes. These custom-made

biosensors should be very specific for the respective target

molecule and should exhibit a large dynamic range to make
www.sciencedirect.com
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them useful tools for metabolic engineering. Furthermore,

the application of biosensors in combination with FACS is

currently limited to a few microorganisms, such as E. coli, S.
cerevisiae and C. glutamicum. Therefore, expansion of this

screening concept to other platform organisms of industrial

biotechnology is highly desired.

It should also be noted that the application of the geneti-

cally encoded biosensors described here is not limited to

HT screening by FACS. They can be also used for the

online monitoring of metabolite production by live cell

imaging using microfluidic lab-on-a-chip devices [36],

and they could represent suitable tools for the monitoring

of population dynamics [37].
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