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SUMMARY

The enveloped dsRNA bacteriophages f6 and
f8 are the two most distantly related members
of the Cystoviridae family. Their structure and
function are similar to that of the Reoviridae
but their assembly can be conveniently studied
in vitro. Electron cryomicroscopy and three-
dimensional icosahedral reconstruction were
used to determine the structures of the f6 virion
(14 Å resolution), f8 virion (18 Å resolution), and
f8 core (8.5 Å resolution). Spikes protrude 2 nm
from the membrane bilayer in f6 and 7 nm in f8.
In the f6 nucleocapsid, 600 copies of P8 and 72
copies of P4 interact with the membrane,
whereas in f8 it is only P4 and 60 copies of a
minor protein. The major polymerase complex
protein P1 forms a dodecahedral shell from 60
asymmetric dimers in both viruses, but the a-
helical fold has apparently diverged. These
structural differences reflect the different host
ranges and entry and assembly mechanisms
of the two viruses.

INTRODUCTION

Viral capsid structures, protecting the viral nucleic acid,

have been frequently studied as paradigms for protein-

protein interactions. Icosahedral virus capsids represent

some of the largest yet simplest macromolecular com-

plexes that have been studied to date. Often the main

function of the capsid is to act as a container delivering

the viral genome into the cell. Thus, the capsid compo-

nents mainly have a structural role. However, the double-

stranded RNA (dsRNA) viruses always keep their genome

within the capsid. Hence the capsid not only serves to

protect the RNA but is also a molecular machine, carrying

the viral enzymes required for packaging, replicating, and

transcribing RNA. We are interested in the structure, as-

sembly, and regulation of these machines.

Members of the Cystoviridae family (f6–f14) are envel-

oped bacteriophages with segmented dsRNA genomes
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(Mindich et al., 1999; Vidaver et al., 1973). The dsRNA

genomes are divided into three segments: the small (S),

medium (M), and large (L) segment. The L segment en-

codes four proteins (P1, P2, P4, and P7) that assemble

into an icosahedrally symmetric polymerase complex

(PC; Figure 1). The PC can package positive, single-

stranded RNA, replicate it to dsRNA, and transcribe new

positive-sense RNA. Thus, this family of viruses has proven

to be a valuable model system to study dsRNA viral assem-

bly (Gottlieb et al., 1990), packaging of a segmented RNA

genome (Mindich, 2004), the RNA translocation process

(Lisal et al., 2004; Lisal and Tuma, 2005; Mancini et al.,

2004), and RNA replication (Butcher et al., 2001; Makeyev

and Bamford, 2000a, 2000b; Yang et al., 2001, 2003). f6

and f8 are the only two Cystoviridae where in vitro assem-

bly has been studied (Kainov et al., 2003a; Poranen et al.,

2001; Poranen and Tuma, 2004).

f6 was the first cystovirus to be isolated (Vidaver et al.,

1973), and it is the best-characterized member of the Cys-

toviridae family. The organization of f6 is shown schemat-

ically in Figure 1. The f6 PC is mainly formed of 120 copies

of P1 (Huiskonen et al., 2006a). Twelve P4 hexamers

protrude from the PC vertices (Huiskonen et al., 2006b).

A nucleocapsid (NC) shell, formed of 200 P8 trimers (T =

13l organization), partially covers the PC (Butcher et al.,

1997; de Haas et al., 1999; Huiskonen et al., 2006a). The

NC is enveloped by a lipid membrane where the lipids

are derived from the host cytoplasmic membrane (Lauri-

navicius et al., 2004; van Etten et al., 1976). The spike

protein P3 protrudes from the membrane, where it is an-

chored by the integral membrane protein P6 (Stitt and

Mindich, 1983; van Etten et al., 1976).

The f6 replication cycle has been recently reviewed

(Poranen et al., 2005). f6 infection starts when P3 at-

taches to a type IV pilus of the host (Bamford et al.,

1976; Romantschuk and Bamford, 1985). P6 causes the

f6 membrane to fuse with the host outer membrane,

and the NC is released into the periplasm (Bamford

et al., 1987). A viral endopeptidase (P5) digests the cell

wall (Caldentey and Bamford, 1992; Hantula and Bamford,

1988). The P8 shell is necessary for penetration of the NC

through the cytoplasmic membrane, and disassembles on

entry (Romantschuk et al., 1988). In the cytoplasm, the re-

leased PCs start transcribing, eventually leading to the
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assembly of new viruses (Bamford and Mindich, 1980;

Kakitani et al., 1980).

Recently, additional cystoviruses have been isolated

(f7–f14; Mindich et al., 1999). Based on sequence com-

parison among the members of the Cystoviridae, f8,

f12, and f13 are distant relatives of f6, with f8 being

the most remote (Gottlieb et al., 2002a, 2002b; Hoog-

straten et al., 2000; Qiao et al., 2000). This reflects differ-

ences in the host specificity of f6 and its distant relatives.

Whereas f6 infects Pseudomonas syringae pv. phaseoli-

cola, f8, f12, and f13 also infect other Gram-negative

hosts such as Escherichia coli and Salmonella typhimu-

rium (Mindich et al., 1999). Several differences in the

infection mechanism explain the different host ranges.

First, f6 binds to type IV pili, but f8, f12, and f13 bind di-

rectly to a truncated lipopolysaccharide O chain in the

host outer membrane. Second, the attachment specificity

proteins also differ: in f8, the spike protein consists of two

peptides, P3a (59 kDa) and P3b (41 kDa), whereas in f6,

P3 is a single polypeptide chain (69 kDa; Gottlieb et al.,

2002b; Hoogstraten et al., 2000; Qiao et al., 2000; Stitt

and Mindich, 1983). Third, the penetration of the plasma

membrane is mediated by P8 in f6 (Daugelavicius et al.,

2005; Olkkonen et al., 1990) but by the PC proteins in f8

(Sun et al., 2003). Initial studies have indicated that in

f8, P8 is a membrane-associated protein (Hoogstraten

et al., 2000; Sun et al., 2003).

Structural information from different cystoviruses would

help the integration of experimental biochemical and ge-

netic data obtained from different members of the family

and thus promote understanding of the viral life cycles. Al-

though the architecture of the f6 nucleocapsid has been

resolved to 7.5 Å resolution (Huiskonen et al., 2006a),

the membrane organization of this major group of viruses

has not been addressed. In addition, it is still not clear

what the level of structural conservation is within the

Figure 1. Schematic Representation of the f6 Polymerase

Complex, Nucleocapsid, and Virion

The major components discussed in the paper are labeled.
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Cystoviridae and among them and other dsRNA virus

families such as the Reoviridae and Birnaviridae.

To shed light on the structures which may be responsi-

ble for the differences in host cell entry in the cystoviruses,

we chose to study the two most distantly related members

of the family, f6 and f8, as these two were expected to

provide the most valuable comparison. We have deter-

mined the structure of the f6 and f8 virions and the f8

core (PC containing dsRNA) using electron cryomicro-

scopy (cryo-EM) and three-dimensional (3D) image recon-

struction (Adrian et al., 1984; Baker et al., 1999; Crowther,

1971). Comparison of the f6 and f8 virion reconstructions

allows us to address the role and organization of the mem-

brane proteins and P8 from a structural point of view. Also,

our 8.5 Å resolution reconstruction of the f8 PC clearly

reveals the organization of the major capsid protein P1, al-

lowing a detailed comparison with other dsRNA viruses

(Grimes et al., 1998; Huiskonen et al., 2006a; Naitow

et al., 2002; Nakagawa et al., 2003; Prasad et al., 1996;

Reinisch et al., 2000).

RESULTS

Choice of Strategy for Complex Particle

Reconstruction

There are many examples in the literature where dissoci-

ated particles or recombinant subviral particles have

been used to define different steps in virus assembly, or

to delineate different components within a complex viral

particle. This is especially the case in image processing

of membrane-containing viruses—we like to avoid the

membrane as it is often not so well defined, thus adding

noise and lowering the resolution of the reconstruction

(Bottcher et al., 1997; Butcher et al., 1995, 1997; Conway

et al., 1997; Dryden et al., 2006; Zhou et al., 1995). How-

ever, the dissociation potentially removes loosely associ-

ated proteins or causes conformational changes that

affect our interpretation (Grünewald et al., 2003; Trus

et al., 1999; Zhou et al., 1999). Here we exploited detergent

extraction of the f8 virion to delineate the proteins of the

dsRNA-containing PC (core), but we also used a holistic

approach, studying the purified f6 and f8 virions to ex-

tract additional information for their structural comparison.

Electron Cryomicroscopy and Image Reconstruction

Purified f6 virions and f8 virions and cores were sub-

jected to cryo-EM and 3D image reconstruction. In the

electron micrographs, all of the particles were similar to

those described previously (Kenney et al., 1992; Yang

et al., 2003). A temperature-dependent phenomenon has

been noticed with f6, where optimal incorporation of P3

and P6 occurs in a range between 18�C and 24�C, with

a 75% reduction at 28�C (Mindich et al., 1979). The f6

for this study was thus grown at 23�C to maximize the

spike protein content. In f8, we found that at 15�C we

had good incorporation of the spikes, and that this also

correlated with virions where the membranes closely fol-

lowed the outline of the nucleocapsid as judged by elec-

tron microscopy.
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Reconstruction statistics and resolution estimates for

different radial regions of the reconstructions are shown

in Table 1. The resolution varies depending on the icosahe-

dral order in the structure (Huiskonen et al., 2004). Fig-

ure S1 (see the Supplemental Data available with this arti-

cle online) shows in detail the resolution estimates for the

best defined region, the PC shell. The maximum resolution

was 14 Å for the f6 virion, 18 Å for the f8 virion, and 8.5 Å

for the f8 core. Central sections of the reconstructions are

shown for comparison of the f6 virion (Figure 2A, f6v), f8

virion (Figure 2A, f8v), and f8 core (Figure 2B).

Comparison between f6 and f8 Revealed

Differences in Their Overall Organization

Reconstructions of f6 and f8 virions revealed multilay-

ered structures consisting of spike proteins, membrane,

one or two protein shells, and several layers of RNA (Fig-

ure 2). The layers were assigned based on previously

published structures of f6 and the f8 core reconstruction

presented here (Butcher et al., 1997; de Haas et al., 1999;

Huiskonen et al., 2006a). The number and position of the

outer layers vary between the two virions. First, the spike

layer extends further out in f8 than in f6 (Figure 2A, pink

lines). Measured from the outer membrane bilayer, the

f6 spike is 2 nm tall and the f8 spike is 7 nm tall. In addi-

tion, the membrane bilayer is much better defined in the

f8 reconstruction than in that of f6. In f8, both the inner

(Figure 2A, magenta line) and outer (Figure 2A, orange

line) leaflets are clearly visible. Measurement of the aver-

age membrane thickness (Laurinmäki et al., 2005) indi-

cated a 2.8 nm separation between the leaflets. However,

individual spikes and any transmembrane structures were

unresolved in the icosahedrally averaged reconstructions.

The nucleocapsid interactions with the membrane in f6

differ from those in f8 (Figures 2C and 3). In f6, they are

mediated mainly by a layer of P8 trimers organized on

Table 1. Reconstruction Statistics

f6 Virion f8 Virion f8 Core

Number of particles 517 992 12,867

Number of micrographs 23 60 66

Nominal sampling

(Å/pixel)

2.8 2.8 1.4

Micrograph

underfocus (mm)

1.3–2.9 0.8–3.3 0.7–3.3

Resolution of
P1 shella (Å)

14 18 8.5

Resolution of

P8 shella (Å)

14 – –

Resolution of

membranea (Å)

24 21 –

Overall resolution

of particlea (Å)

18 21 8.7

a An estimate for the resolution based on the Fourier shell
correlation 0.5 criterion.
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a T = 13l icosahedral lattice interrupted at the 5-fold verti-

ces by rings of protein P4 (Figure 2A, yellow and green ra-

dii; Figures 2C, 3A, and 3B; Butcher et al., 1997; Huisko-

nen et al., 2006a). An equivalent T = 13l layer was clearly

missing in f8 (Figures 2C, 3A, and 3B). Instead, P4 hexam-

ers (Kainov et al., 2003b) contact the membrane at the ver-

tices along with 60 copies of a minor, �11 kDa protein on

the facet (Figures 2C and 3B, f8v, red circle). This minor

protein was not present in the f8 core reconstruction

(Figure 3B, f8c; Figure 4A), suggesting that it is loosely

bound to the PC shell and removed with the membrane

when the cores are prepared from the virions by detergent

extraction. Hence it is a putative membrane-associated

protein. The presence of this minor protein in f8 prompted

us to look for additional density in the f6 virion at the radii

of the nucleocapsid that might have been lost from the iso-

lated f6 nucleocapsids due to detergent treatment. We

noticed that the P8 peripheral domain is better ordered

in the f6 virion reconstruction than in the f6 nucleocapsid

reconstruction (Figure 3A, f6v and f6nc). This is espe-

cially evident for the P8 trimers that interact with the P4

hexamer (Figure 3A, f6v, red circle; Huiskonen et al.,

2006a).

The Overall Polymerase Complex Architecture Is

Conserved between f6 and f8

Despite the differences in the outer layers, the PCs of f6

and f8 were similar in their overall size, shape, and quater-

nary organization (Figure 2A, red and blue lines; Figures 3C

and 3D). The average spacing of the RNA shells from f8 is

2.9 nm, compared to 3.1 nm in f6 (Huiskonen et al.,

2006a). No obvious density for the polymerase or P7 was

seen in either virus. The P4s are hexameric (de Haas

et al., 1999; Kainov et al., 2003b), sitting on the icosahedral

5-fold axis of symmetry, so they are incorrectly averaged in

the reconstruction. Hence they appear as blurred densities

containing no distinguishing features compared to the

well-defined PC shell (Figures 2–4). In the f8 core recon-

struction, the P4 appears to have C5, not C30, symmetry,

which would be expected for a C6 object after applying C5

symmetry. This suggests that the P4 is actually asymmet-

ric and the C5 symmetry arises from the reconstruction

process. Alternative methods to icosahedral reconstruc-

tion are thus needed to describe its shape and interaction

with P1. We have recently addressed the interaction be-

tween f8 P4 and the P1 shell using a vertex reconstruction

method (Huiskonen et al., 2006b).

The high-resolution reconstruction of the f8 core

(Figure 2B; Figure 3, f8c; Figure 4A) revealed individual

P1 monomers organized on a dodecahedral framework

similar to that in the f6 PC shell (Figures 3C and 3D). At

8.5 Å resolution, it was possible to manually demarcate

the subunit boundaries and segment the PC shell density.

We identified two monomers in the icosahedral asymmet-

ric unit, P1A (Figure 4, blue density) and P1B (Figure 4, red

density). The f8 PC shell is thus composed of 120 copies

of P1, with two copies in each asymmetric unit (Figure 3D;

see below), similar to f6 (Huiskonen et al., 2006a). P1A

monomers are located around the 5-fold axis of
–167, February 2007 ª2007 Elsevier Ltd All rights reserved 159
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Figure 2. Central Sections and Isosurface Representations of

f6 and f8 Reconstructions

(A) Central cross-sections of f6 (left) and f8 (right) virion reconstruc-

tions. One of the icosahedral 2-fold (ellipse), 3-fold (triangle), and 5-
160 Structure 15, 157–167, February 2007 ª2007 Elsevier Ltd A
symmetry, and P1B monomers around the 3-fold axis of

symmetry (Figure 4A).

The individual f8 P1 monomers are similar in their over-

all shape, and revealed tubular structures that we interpret

as a helices (Figure 4B, yellow barrels). We assigned 14

putative helices computationally using helixhunter (Jiang

et al., 2001). The overall helix length distribution had a min-

imum of 5, a maximum of 26, and a median of 8 residues.

The helices are clustered in three domains. A secondary-

structure prediction indicated a primarily a-helical content

with 24 helices and some b sheet (Figure S2) (Cuff and

Barton, 2000). The discrepancy could be due to both the

limited resolution of the reconstruction and the reliability

of the secondary-structure prediction.

The demarcation of molecular boundaries in the core re-

construction also revealed the positions of other proteins

in relation to the P1 monomers. First, 12 rings of P4 protein

interact with P1A monomers, but not with P1B monomers

(Figure 4A, green densities). Second, the putative mem-

brane-associated protein between the core and the mem-

brane layer is located on the boundary between P1A and

P1B (Figure 4B).

The Tertiary-Structure Comparison of

f6 and f8 P1s Reveals Significant Differences

Determination of the helix positions enabled detailed com-

parison of the P1 tertiary structures—on the one hand be-

tween the two monomers within the same virus, and on the

other hand between f6 and f8 (Figure 5A). We have quan-

tified the similarity of the P1 helices within both viruses.

We calculated the rmsd value between the endpoints of

the helices: the value is 4.4 Å for f6 helices and 4.7 Å for

f8 helices. This shows that the conformational differences

are about the same within both viruses. Because the P1s

from the two viruses are quite different at the tertiary struc-

ture level, we cannot quantify the similarity between the

two viruses. For this we would need to be able to say

which helices correspond to each other, but this was not

possible.

Although the identified helices within a dimer can thus

be readily superimposed, the f6 monomer density or the

modeled helices cannot be superimposed on those of

f8. This suggests that the tertiary structures of f6 P1

and f8 P1 are markedly different even though the

fold (pentagon) axes of symmetry is indicated. Some radii are indicated

with circle segments colored in red (PC, 23 nm), blue (PC, 25 nm),

green (NC, 26 nm), yellow (NC, 27 nm), magenta (inner leaflet, 30

nm), orange (outer leaflet, 33 nm), and pink (f6 spikes, 35 nm; f8

spikes, 37 nm). The scale bar represents 10 nm.

(B) Central cross-section of the f8 core reconstruction. The icosahe-

dral axes of symmetry and some radii are indicated as in (A). The scale

bar represents 10 nm. Positive density is black in (A) and (B).

(C) Isosurface representations of the f6 and f8 virion structures each

viewed down a 5-fold axis of symmetry. The high-resolution recon-

structions were used for the f6 NC and the f8 core; the membranes

came from the virion reconstructions. P1 is colored gray and P4 is

green. f6 P8 and the putative membrane-associated protein of f8

are colored yellow. The protein layers are thresholded at 2s above

the mean. The membrane and spike layers (brown) are thresholded

at 1s above the mean.
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Figure 3. Radial Shells of the Reconstructions

Selected spherical cross-sections are shown for the f6 virion (f6v), f6 nucleocapsid (f6nc; EMD, EBI accession number EMD-1206), f8 virion (f8v),

and f8 core (f8c). The sections were taken at the following radii: (A) 27 nm, (B) 26 nm, (C) 25 nm, and (D) 23 nm. Additional densities seen in the f6v

compared to the f6nc and in the f8v compared to the f8c are indicated for one asymmetric unit with red circles on f6v and f8v. P1A subunits are

outlined in blue and P1B subunits in red. Sections are 2.8 Å thick. Positive density is black.
assembled shells have a similar appearance (Figure 5B).

We also compared the unassigned densities in the maps

(Figures 5C and 5D) to ensure that these were not respon-

sible for the differences observed.

DISCUSSION

We have studied here the structure of the icosahedral

membrane-containing viruses f6 and f8, the two most

distantly related members of the Cystoviridae family

known to date. These cystovirus virion structures repre-

sent the first examples, to our knowledge, of membrane-

containing bacteriophages where an icosahedrally orga-

nized nucleocapsid is enveloped by a membrane within

which there are proteins that do not follow icosahedral

symmetry. Such an organization has been described pre-

viously in the members of the Herpesviridae family, which

are enveloped viruses infecting vertebrates (Grünewald
Structure 15, 157–1
et al., 2003; Trus et al., 1999; Zhou et al., 1999). In con-

trast, in the lipid-containing bacteriophages studied so

far (PM2, PRD1, and Bam35), the membrane has been

observed to reside under an icosahedrally ordered capsid

(Abrescia et al., 2004; Huiskonen et al., 2004; Laurinmäki

et al., 2005). These differences in membrane position re-

flect the different entry and assembly mechanisms of the

viruses. In the members of the Cystoviridae family, the viral

membrane is required to fuse with the host cell outer

membrane in order to deliver the nucleocapsid into the

periplasm, eventually leading to release of the PC into

the cytoplasm. Similarly, in the Herpesviridae family,

membrane fusion allows the release of the nucleocapsid

and tegument into the cytoplasm for microtubule-directed

transport to the nucleus, where DNA release occurs

(Spear and Longnecker, 2003; Whittaker et al., 2000). In

contrast, in PRD1 and Bam35, only the genome enters

the cytoplasm (Grahn et al., 2006).
67, February 2007 ª2007 Elsevier Ltd All rights reserved 161
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In the f6 virion, we saw no stoichiometric relationship

between the membrane proteins and the nucleocapsid.

This reflects the fact that only one of the membrane

proteins (P9) is essential for envelopment (Johnson and

Mindich, 1994; Mindich et al., 1976) and the fact that the

Figure 4. f8 Polymerase Complex Architecture

(A) Isosurface rendering of the f8 core. P1 subunits A are colored in

blue and subunits B are in red. The packaging enzyme, P4, is colored in

green. The isosurfaces were drawn at 2s above the mean density level.

(B) Assignment of putative a helices in P1. A mesh surface representa-

tion of subunit A is colored in blue and subunit B is in red. a helices are

modeled as 0.5 nm thick rods (yellow). The approximate location of the

putative membrane-associated protein is marked with a dashed

yellow line. The isosurfaces were drawn at a high threshold (�3s above

the mean density) to reveal the structure in detail.
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number of spikes (P3) attached to the fusion protein (P6)

varies depending on the growth temperature (Mindich

et al., 1979). In comparison, herpesvirus assembly is ex-

tremely complex, but there are some interesting analo-

gies. In herpesvirus, nucleocapsids formed and packaged

in the nucleus are released into the cytoplasm, where the

majority of the tegument proteins are added. The tegu-

ment links the capsid and the envelope. Tegumentation

initiates at two different sites, the capsid and the future

site of envelopment. The capsid-proximal tegument pro-

teins retain icosahedral order and stoichiometry but the

outer tegument proteins do not. Assembly thus requires

a complex network of interactions between nucleocapsid,

tegument, and glycoproteins, in which some components

are essential (Mettenleiter et al., 2006).

Comparison of the f6 and f8 Infection Pathways

The general organization of the outer layers in the f6 and

f8 virions was found to differ in several aspects, reflecting

not only very limited sequence identity but also functional

differences in virus infection such as attachment to the

host cell and penetration of the host cytoplasmic mem-

brane. First, the length of the spikes differs. This is proba-

bly due to the fact that the receptor binding spike proteins

are different (Bamford et al., 1976; Mindich et al., 1999).

Second, interactions from the nucleocapsid to the

membrane are coordinated through 200 trimers of P8

(16 kDa) in f6, but through only 60 occurrences of a

membrane-associated protein in f8. Third, differences

were observed in the f6 and f8 subviral particles that

penetrate the host cytoplasmic membrane (f6nc versus

f8c), emphasizing that the penetration step is radically dif-

ferent between the two viruses (Sun et al., 2003).

The membrane was more ordered in the f8 virion than in

f6. More membrane protein species are important for the

assembly of the membrane in f8 than in f6. Of the f6

membrane proteins P3, P6, P9, P10, and P13, only P9 is

needed for the membrane to assemble properly (Johnson

and Mindich, 1994). In contrast, in f8, at least P10, P3a,

P3b, and PF are required (Hoogstraten et al., 2000). This

indicates a greater degree of interaction between the

membrane glycoproteins in f8, which could explain the

observed difference in membrane order.

In the f8 virion reconstruction, additional density, des-

ignated as a putative membrane-associated protein,

was attached to the PC at a unique site created by two

P1 monomers. In contrast to the f6 P8, this protein does

not have an essential role in penetration of the cytoplasmic

membrane, as purified f8 cores can infect sphaeroplasts

(Sun et al., 2003). However, it could be involved in envel-

opment, as it anchors the membrane to the PC. The

identity of this 11 kDa mass is not known.

Comparison of the f6 virion and NC reconstructions

revealed that the peripheral four-helix bundles of P8 that

interact with P4 and form intertrimer interactions (Huisko-

nen et al., 2006a) are more disordered once the viral mem-

brane has been removed (Figures 3A and 3B). A possible

biological role for this domain is to facilitate NC disas-

sembly during entry and membrane recognition during
All rights reserved
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assembly. Temporal exposure of a helices has been

observed for flock house virus and been suggested to

play a role in disassembly (Bothner et al., 1998). A similar

mechanism has been proposed for poliovirus interaction

with cell membranes on entry, and is supported by recent

structural data (Bubeck et al., 2005; Tosteson and Chow,

1997). In the case of f6 entry, fusion of the viral membrane

with the host’s outer membrane could destabilize the P8

lattice, allowing insertion of the P8 a helices into the cyto-

plasmic membrane for the formation of a fusion pore,

Figure 5. Comparison of P1 Tertiary and Quaternary Struc-

ture between f6 and f8

(A) An overlay of a helices between P1A (blue) and P1B (red) monomers

is shown for both f6 (left) and f8 (right).

(B) The packing of a helices in the P1 shell is shown for f6 (left) and f8

(right).

(C) A close-up along the 3-fold axis of symmetry is shown for f6 (left)

and f8 (right). The density assigned to P1 A and B monomers is in blue

and red, respectively. The unassigned density is in gray.

(D) A close-up along the 5-fold axis of symmetry is shown for f6 (left)

and f8 (right). The surfaces are colored as in (C). The isosurfaces were

drawn at a high threshold (�3s above the mean density) to reveal the

structure in detail. The scale bar represents 10 nm in (C) and (D).
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ultimately leading to the observed NC disassembly and

the release of the polymerase complex (Romantschuk

et al., 1988).

Organization of Packaged RNA

The spacing of the concentric RNA layers was observed to

be related to the average packaging density. f8 has the

longest genome of all the cystoviruses (14,984 bp) (Hoog-

straten et al., 2000; Mindich et al., 1999). For comparison,

the f6 genome is 13,385 bp in length (Gottlieb et al., 1988;

McGraw et al., 1986; Mindich et al., 1988). The longer

genome of f8 results in tighter packing (2.9 nm average

separation between the layers, which gives a calculated

interhelix spacing of 3.3 nm, assuming hexagonal pack-

ing) than in f6 (3.1 nm separation, interhelix spacing of

3.6 nm). f8 has a packaging density of 399 mg/ml, com-

pared to 357 mg/ml in f6 (Huiskonen et al., 2006a) and

410 mg/ml in bluetongue virus (Gouet et al., 1999). The

clarity of the RNA density, especially in the outermost

layer, indicates that the inner surface of P1 imposes con-

siderable order on the genome. The RNA becomes more

disordered as it gets further away from the protein shell.

Such ordering has also been observed in both electron

cryomicroscopy and X-ray studies of rotavirus (Prasad

et al., 1996), aquareovirus (Shaw et al., 1996), and blue-

tongue virus (Gouet et al., 1999).

Evolution of dsRNA Virus Capsids

We show here that the P1 a-helical tertiary structures are

markedly different. At this resolution, we cannot rule out

the possibility that the P1 topology is still conserved.

However, genetic and biochemical studies support the

hypothesis of significant structural divergence. Is the di-

vergence also reflected in viral function and assembly?

P1 can be considered to have three major roles: first as

a scaffold onto which both the PC enzymes and the nucle-

ocapsid protein attach, second as the site of RNA recogni-

tion and organization, and third as a metastable shell that

through conformational changes is involved in the regula-

tion of virus maturation. The scaffolding function of P1 in f6

and f8 has diverged so much that the whole nucleocapsid

structure and envelope interactions are affected. Further-

more, there is some evidence that the P1 recognition site

for the RNA pac site has diverged. For instance, the f6 M

segment cannot be acquired by f8 (Mindich et al., 1999).

Crosslinking studies have previously shown that the S seg-

ment binding site on the f6 PC occurs between residues

98 and 155 (Qiao et al., 2003), where there is a 21 residue

insertion in f8 (Figure S2, f8 residues 115–135). However,

the PC’s quaternary arrangement is still conserved: 60

copies of P1 form a dodecahedral cage with P1 pentamers

filling the facets. The only other viruses to have 120 sub-

units in the innermost protein layer are also other dsRNA

viruses (members of the Totiviridae and Reoviridae fami-

lies). The arrangement of the mainly a-helical subunits,

however, is different, with five monomers around the

icosahedral 5-fold axis of symmetry and another five inter-

digitating between them (Grimes et al., 1998; Naitow et al.,

2002; Nakagawa et al., 2003; Reinisch et al., 2000). Based
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on the observation that the dsRNA virus inner capsid shell

always seems to consist of 60 asymmetric dimers with

a mainly a-helical fold, it has been speculated that they

have in fact evolved from the same ancestor (Bamford

et al., 2005; Naitow et al., 2002). If this is indeed the

case, then the a-helical fold is much more flexible in evolu-

tionary terms than the b-sheet jelly rolls that are strictly

conserved in many different virus capsids. The metastable

dodecahedral structure seen in the Cystoviridae PC may

be related to its role in RNA packaging (Huiskonen et al.,

2006a), a role which in the Reoviridae is accomplished

with the help of nonstructural proteins (Taraporewala and

Patton, 2004).

EXPERIMENTAL PROCEDURES

Specimen Preparation

Wild-type f6 was propagated in Pseudomonas syringae HB10Y (Vida-

ver et al., 1973) and purified by rate-zonal centrifugation as described

previously (Olkkonen et al., 1991). The virus was concentrated by

pelleting in a Beckman airfuge (A100 rotor, 7 min, 29 psi, 18�C) and

resuspended in 10 mM potassium phosphate (pH 7.5), 1 mM MgCl2.

Wild-type f8 was propagated in P. syringae pv. phaesolicola

LM2509 (Hoogstraten et al., 2000; Mindich et al., 1999). Exponential

cultures were inoculated at a multiplicity of infection of 50–80 using

a freshly prepared viral stock and incubated overnight at 15�C until

the culture had lysed. This low temperature maximized the amount

of the spike proteins in the viral preparation, as has been shown pre-

viously for f6 (Mindich et al., 1979). The cell debris was removed by

low-speed centrifugation, and the virus was concentrated by polyeth-

ylene glycol precipitation (0.5 M NaCl, 9% PEG 6000) and low-speed

centrifugation. The PEG pellet was gently resuspended in 10 mM

potassium phosphate (pH 7.5), 1 mM MgCl2, 200 mM NaCl. As the

pellets were extremely viscous, 0.05 mg/ml DNase I was also added

during the resuspension step. The virus was purified by rate-zonal

centrifugation (5%–20% sucrose in 10 mM potassium phosphate

[pH 7.5], 1 mM MgCl2, 200 mM NaCl, Sorvall AH629 rotor, 45 min,

24,000 rpm, 15�C), and the resulting light-scattering band was imme-

diately concentrated in a Beckman airfuge (A100 rotor, 7 min, 29 psi,

18�C) and resuspended in 10 mM potassium phosphate (pH 7.5),

1 mM MgCl2, 20 mM NaCl. The specific infectivity was 2 3 1011 pfu/

mg. For core purification, the light-scattering band was concentrated

(Sorvall T647.5 rotor, 43,000 rpm, 1 hr 5 min, 4�C) and resuspended in

10 mM potassium phosphate (pH 7.5), 1 mM MgCl2, 20 mM NaCl. The

viral envelope was then solubilized using a single Triton X-114 treat-

ment, releasing cores that were purified by rate-zonal centrifugation

(Bamford et al., 1995) (5%–20% sucrose in 20 mM Tris [pH 8], 7.5

mM MgCl2, 50 mM NaCl, Sorvall TH660 rotor, 50 min, 29,000 rpm,

15�C) and the resulting light-scattering band was immediately con-

centrated in a Beckman airfuge (A100 rotor, 8 min, 29 psi, 18�C) and

resuspended in 10 mM potassium phosphate (pH 7.5), 1 mM MgCl2,

50 mM NaCl.

Electron Microscopy

Vitrified specimens from 3 ml droplets of the virus samples were pre-

pared on holey carbon film (Quantifoil) as described previously (Adrian

et al., 1984; Butcher et al., 1997). The specimens were imaged at

�180�C under an FEI Tecnai F20 field emission gun transmission elec-

tron microscope using an Oxford CT3500 cryoholder. Micrographs

were recorded on Kodak SO163 film under low dose conditions, at

a nominal magnification of 50,000, and at several different defocus

settings, in order to fill the nodes of the contrast transfer function later

during the reconstruction (Table 1). The micrographs were developed

in full-strength Kodak D19 film developer for 12 min.
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Image Processing

Micrographs were scanned on a Zeiss Photoscan TD scanner at 7 mm

intervals resulting in a nominal sampling of 1.4 Å pixel�1. The data were

binned to 2.8 Å pixel�1 sampling to facilitate processing. CTFFIND3

(Mindell and Grigorieff, 2003) was used to estimate the contrast trans-

fer function parameters of the micrographs. Images with drift or astig-

matism were discarded. ETHAN (Kivioja et al., 2000) was used to lo-

cate virus particles in the micrographs, and particle extraction was

performed in EMAN (Ludtke et al., 1999). These images were contrast

reversed and normalized for icosahedral reconstruction (Baker and

Cheng, 1996; Crowther, 1971; Fuller et al., 1996). Bsoft (Heymann,

2001) was used in further image-processing steps.

Three-Dimensional Reconstruction

The 3D reconstruction of the f6 nucleocapsid (Electron Microscopy

Database [EMD], European Bioinformatics Institute [EBI] accession

number EMD-1206; Huiskonen et al., 2006a) was used as a starting

model to determine the orientations and origins of the f6 virion and

the f8 core images in a model-based approach (Baker et al., 1999).

PFT2 and EM3DR2 (Baker and Cheng, 1996) were used in the initial

rounds of the refinement, and POR and P3DR (Ji et al., 2003; Marine-

scu et al., 2001) for subsequent rounds. Full contrast transfer function

correction was applied when calculating the reconstructions in P3DR.

The f8 core reconstruction was used as the initial model for process-

ing the f8 virion images in a similar manner. The effective resolution of

the models was estimated by splitting the particle images into two in-

dependent sets, calculating a reconstruction for both sets, and then

calculating Fourier shell correlation (Harauz and van Heel, 1986) be-

tween the two reconstructions. The spatial frequency at which the cor-

relation coefficient dropped below 0.5 was taken to represent the max-

imum resolution reached in the complete reconstruction. The

resolution as a function of radius was estimated using the Fourier shell

correlation of consecutive 2.8 nm thick shells as described previously

(Huiskonen et al., 2004). Reconstruction statistics are listed in Table 1.

Visualization was carried out in UCSF Chimera, EMAN, and Bsoft

(Heymann, 2001; Huang et al., 1996; Ludtke et al., 1999). The spacing

of the f8 RNA was calculated from a spherically averaged radial profile

of the core reconstruction using Bsoft (Heymann, 2001). The f8 P1

monomers were segmented manually in EMAN using the program

qsegment (Ludtke et al., 1999). Masses were estimated in EMAN using

a volume threshold of 1.5 standard deviations above the mean and

a protein density of 1.35 g/ml (Ludtke et al., 1999).

Secondary-Structure Prediction

The P1 sequences from f8, f6, and f13 (European Molecular Biology

Laboratory accession numbers AAF63302.1, AAA32357.1, and

AAG00446.1, respectively) were aligned using T-Coffee multiple se-

quence alignment (Notredame et al., 2000). The secondary structure

for P1 was predicted by submitting this alignment to the Jpred server

(Cuff and Barton, 2000). Putative a helices in the density map were

identified using the program helixhunter (Jiang et al., 2001). The helices

were aligned using LSQMAN (Kleywegt and Jones, 1995) to study the

similarity of the P1 subunits.

Supplemental Data

Supplemental Data include two figures and can be found with this

article online at http://www.structure.org/cgi/content/full/15/2/157/

DC1/.
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Huiskonen, J.T., Kivelä, H.M., Bamford, D.H., and Butcher, S.J. (2004).

The PM2 virion has a novel organization with an internal membrane

and pentameric receptor binding spikes. Nat. Struct. Mol. Biol. 11,

850–856.

Huiskonen, J.T., de Haas, F., Bubeck, D., Bamford, D.H., Fuller, S.D.,

and Butcher, S.J. (2006a). Structure of the bacteriophage f6 nucleo-

capsid suggests a mechanism for sequential RNA packaging. Struc-

ture 14, 1039–1048.
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