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1. Introduction

Let G be a connected affine algebraic group over the complex numbers C. In [BDP] one introduces
the notion of a regular embedding X of a G-homogeneous space and gives a recipe to compute the
(rational) G-equivariant cohomology of X in terms of the (rational) G-equivariant cohomology of each
of the G-orbits in X and of some combinatorial data associated to the incidence structure of orbit
closures. A special case of this situation is given by the so-called symmetric varieties, as explained
in [BDP].

In this paper we are going to apply this recipe in the case in which G is semisimple adjoint, and
X is the wonderful compactification (see [DP1]) of a symmetric variety G/H , with H the subgroup of
elements fixed by an involution σ , under the further assumption that the sum of the ranks of H and
of G/H equals the rank of G . This is equivalent to the fact that there is a single orbit of maximal tori
preserved by σ under conjugation by elements in H .

This is a rather strong assumption and indeed all such symmetric varieties can be written as
a product of those associated to the following involutions (G, σ ):

(1) G = H × H , H is simple and σ is the involution given by σ(h1,h2) = (h2,h1), so that the fixed
subgroup is the diagonal and G/H is just H with the action of H × H given by left and right
multiplication. One usually refers to this case as to the case of a group.
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(2) G = PGL(2n), σ is the symplectic involution, so that G/H = PGL(2n)/PSp(2n).
(3) G is of type Dn and the involution is of type DII (notations as in [H, Ch. X, §6]) so H is of

type Bn−1.
(4) G is of type E6 and the involution is of type EIV (notations as in [H, Ch. X, §6]) so that H is of

type F4.

The main reason why our assumption makes the computation possible is that, if we fix a maximal
torus T ⊂ G (which we are always going to assume to be σ -stable), then all the T fix-points in X
lie in the unique closed orbit X0. Using the localization theorem, this implies that HG(X,Q) embeds
into HG(X0,Q). Our main result identifies the image of this embedding in terms of invariants under
the action of various Weyl groups.

These results are known in the case of a group, see [St2], and both the formulation of the result
and its proof are strongly inspired by that paper, although our treatment will have those results as
a consequence. A different approach to the study of the cohomology of wonderful compactifications
has been developed in [DP2,LP] and, in the case treated here, in [BJ], using the rational equivariant
Chow ring which in our situation turns out to be isomorphic to the rational equivariant cohomology
ring.

More generally we are going to explain how to compute the equivariant cohomology of any so-
called regular embedding of G/H and, as a consequence, we are going to determine, using the results
of [DP3], the so-called equivariant ring of conditions RG(G/H) of our symmetric variety. This ring has
been introduced in order to study some classical problems in enumerative geometry and has been re-
cently used to give explicit formulae for intersection indices and Euler characteristic of hypersurfaces
in G (see [K1,K2]).

The paper is organized as follows. Section 2 contains a brief digest of the main definitions and
properties related to equivariant cohomology which we are going to use in our work.

In Section 3 we are going to give a few recollections on the construction and properties of the
wonderful compactification X of G/H .

In Section 4 we are going to explain how to deduce from this the computation of the equivariant
cohomology ring of X .

In Sections 5 we are going to work out in detail all the examples to which our general result
applies.

Finally in Section 6 we are going to deduce rather easily, as a consequence of our previous work,
the description of the equivariant ring of conditions of G/H .

2. A brief digest of equivariant cohomology

In this section we are going to recall the definition of equivariant cohomology and a few of its
properties [Bo2].

Let K be a topological group. Consider the universal fibration p : E K → B K , where E K is con-
tractible with free K -action and B K = E K/K is the classifying space of K .

Consider a K -space X . The equivariant cohomology of X with coefficients in a commutative ring A
is the cohomology ring H∗

K (X, A) := H∗(XK , A) where XK := E K ×K X . We denote by π : XK → B K
the fibration over B K with fiber X .

In what follows K will always be a complex algebraic group and X an algebraic variety. A will be
the field Q of rational numbers.

By functoriality, the projection to a point q : X → pt induces on H∗
K (X,Q) the structure of an

algebra over H∗
K (pt,Q) = H∗(B K ,Q).

Let U be the unipotent radical of K . Using the fact that U is contractible, we deduce that
H∗

K (pt) � H∗
K/U (pt). Thus we can assume that K is reductive. If this is the case, choose a maximal

torus T in K . Set t = Lie T and W = N(T )/T the Weyl group, Λ the character group of T which we
consider as a lattice in t∗ , t∗

Q
the rational vector space spanned by Λ. Then one knows [Bo1, §27], that

H∗
K (pt,Q) � Q[t]W , where Q[t] := S[t∗

Q
], the symmetric algebra of t∗

Q
and the elements of t∗

Q
have

degree 2. This is well known to be a polynomial ring, since W is generated by reflections. In what
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follows we shall usually omit the subscript Q in t∗
Q

and related spaces since the rational structure
will be evident from the contest.

Following for example [GKM], we define a space X to be equivariantly formal if, setting I ⊂ H∗
K (pt)

equal to the ideal of elements of positive degree, then

(1) H∗
K (X) is a free H∗

K (pt)-module of finite rank,
(2) H∗(X) = H∗

K (X)/I H∗
K (X).

It is known, see [Bo2], that if X has only cohomology in even degrees, then X is equivariantly formal.
Now if X is a smooth projective K -variety with finitely many K -orbits, one knows as a consequence
of a result by Białynicki-Birula [Bia] (see also [BDP] for a discussion), that X can be paved by a finite
number of locally closed affine spaces and hence has only cohomology in even degrees. It follows that
X is equivariantly formal. As a consequence of these considerations, it will be clear that all the spaces
considered in this paper are indeed equivariantly formal.

3. Recollections on the wonderful compactification

Here and in what follows, we consider a semisimple simply connected algebraic group G̃ together
with an involution σ : G̃ → G̃ and we let H̃ ⊂ G̃ be the subgroup of elements fixed by σ . We also
denote by G the adjoint quotient of G̃ . σ induces an involution on G and we denote by H ⊂ G the
subgroup of elements fixed by σ . H is the image of the normalizer of H̃ in G̃ under the quotient
homomorphism.

We choose a maximal σ -split torus T1 in G , that is a torus such that, for each t ∈ T1, σ(t) = t−1

and also T1 is maximal with this property. We know that any maximal torus T ⊃ T1 is automatically
σ -stable. We choose one such maximal torus and we set T0 = T ∩ H .

Our basic assumption in this paper is:

Assumption 3.1. T0 is a maximal torus in H .

We now set t = Lie T , tε = Lie Tε , ε = 0,1, so that t = t0 ⊕ t1. So clearly, our assumption means
that rk(H) + rk(G/H) = rk(G).

We let Φ ⊂ t∗ denote the root system. σ induces an involution on t and its dual, preserving Φ

and we may choose the set of positive roots Φ+ in such a way that, writing Φ = Φ0 ∪ Φ1, where
Φ0 is the set of roots fixed by σ , Φ1 = Φ \ Φ0, if α ∈ Φ+

1 = Φ+ ∩ Φ1, σ(α) ∈ −Φ+
1 . We write the

corresponding set of simple roots � as �0 ∪ �1, with �ε = � ∩ Φε , ε = 0,1. We know that we can
define an involution α �→ α̂ on �1 in such a way that if α ∈ �1, σ(α) = −α̂ + γ , where γ is a linear
combination of the roots in �0 with negative coefficients. Let us now totally order

�1 = {α1, . . . ,αh,αh+1, . . . αk,αk+1, . . . ,αs}
in such a way that if 1 � j � h, α̂ j = αk+ j , while if h + 1 � j � k, α̂ j = α j . Moreover �0 =
{αs+1, . . . ,αr}. Finally for each j = 1, . . . ,k, we set α j = α j − σ(α j) and set � = {α1, . . . ,αk} (α j is
a simple restricted root if 1 � j � h and is twice a simple restricted root if h < j � k).

Consequently, let us divide the set of fundamental weights Ω as Ω0 ∪ Ω1. If 1 � j � h, then
σ(ω j) = −ωk+ j , while if h + 1 � j � k, σ(ω j) = −ω j . Clearly the elements ω j − σ(ω j), for 1 � j � k,
form a basis for t∗1.

Given any subset Γ ⊂ {1, . . . ,k}, set �1,Γ = {α j ∈ �1 | j,k − j /∈ Γ } and �Γ = �0 ∪ �1,Γ . �Γ is
the basis of a root system ΦΓ which is stable under σ . Correspondingly, we get a Levi factor L̃Γ

stable under σ and a parabolic subgroup PΓ . Set LΓ equal to the adjoint quotient of L̃Γ . σ induces
an involution on LΓ and we set HΓ ⊂ LΓ equal to the subgroup of elements fixed by σ .

With these notations in place, we recall some facts about the structure of X and its G-orbits.
As we know, see [DP1], there is a one to one correspondence between the subsets Γ ⊂ {1, . . . ,k}

and the orbits in X . Let us denote by OΓ the orbit associated to such a subset Γ and by DΓ its
closure. Then the following facts hold:
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(1) OΓ has codimension |Γ | in X . In particular the open orbit G/H =O∅.
(2) DΓ ⊂ DΓ ′ if and only if Γ ′ ⊂ Γ . In particular O{1,...,k} is the unique closed orbit in X .
(3) DΓ is the transversal intersection of the divisors D{i} , for i ∈ Γ .
(4) Consider the quotient homomorphism pΓ : PΓ → LΓ and set H̃Γ := p−1

Γ (HΓ ). Then, as a
G-homogeneous space,

OΓ � G/H̃Γ .

(5) There is G-equivariant fibration

OΓ → G/PΓ

whose fiber is isomorphic to LΓ /HΓ .

Our main observation is:

Lemma 3.2. For each subset Γ ⊂ {1, . . . ,k}, the connected component of the identity SΓ of the intersection
H̃Γ ∩ T is a maximal torus in H̃Γ which contains T0 .

Proof. Set H̃ ′
Γ equal to the intersection H̃Γ ∩ L̃Γ . It clearly suffices to show that, if we consider the

Lie algebra l̃Γ of L̃Γ , which is a Levi subalgebra of Lie PΓ , and h̃′
Γ of H̃ ′

Γ , then h̃Γ ∩ t is a Cartan
subalgebra in l̃Γ containing t0.

Let lΓ be the Lie algebra of LΓ . We have a decomposition

l̃Γ = lΓ ⊕ tΓ

where tΓ is the central subalgebra consisting of those elements in t on which the simple roots in �Γ

vanish. Since tΓ is σ -stable, we can write t0 = t′0 ⊕ t′′0 with t′0 = t0 ∩ lΓ and t′′0 = t0 ∩ tΓ .
Now hΓ := Lie HΓ is the subalgebra of lΓ of elements fixed by σ . We deduce that

h̃′
Γ = hΓ ⊕ tΓ

and that a Cartan subalgebra in h̃′
Γ is given by the direct sum of tΓ and a Cartan subalgebra in hΓ .

We claim that t′0 is a Cartan subalgebra in hΓ . Otherwise, taking a Cartan subalgebra c of hΓ ,
dim c > dim t′0, so that c ⊕ t′′0 would be a toral subalgebra in h of dimension larger than that of t0,
contradicting our Assumption 3.1.

It then follows that t′0 ⊕ tΓ , which contains t0, is a Cartan subalgebra in h̃′
Γ , proving both our

claims. �
The above lemma gives us a way of computing H∗

G(OΓ ). First of all notice that

H∗
G(OΓ ) � H∗

G(G/H̃Γ ) � H∗
H̃Γ

(pt). (1)

Now by Lemma 3.2, SΓ is a maximal torus in H̃Γ , so we get that

H∗
G(OΓ ) � H∗

H̃Γ
(pt) � (

H∗
SΓ

(pt)
)WΓ � S

[
s∗
Γ

]WΓ (2)

where WΓ = NH̃Γ
(SΓ )/SΓ and sΓ = Lie SΓ .

By what we have seen in Lemma 3.2, we get that s∗
Γ decomposes as the direct sum of t∗0 and the

space s1,Γ quotient of t∗1 modulo the subspace having as basis the elements α j , with 1 � j � k and
j /∈ Γ . Notice that the images of the elements α j with j ∈ Γ are a basis of s1,Γ .



220 E. Strickland / Journal of Algebra 356 (2012) 216–229
As for the group WΓ , notice that WΓ � NHΓ (S ′
Γ )/S ′

Γ , S ′
Γ being the image of SΓ in LΓ , in partic-

ular it acts trivially on s1,Γ .
Let us now write t∗ = t∗0 ⊕ t∗1, so that we have S[t∗] = S[t∗0] ⊗ S[t∗1]. Recall that � is a basis of t∗1.

We thus can identify S[t∗1] with Q[α1, . . . ,αk]. In conclusion we get the identification

S
[
t∗

] � S
[
t∗0

][α1, . . . ,αk]. (3)

Similarly, if for any Γ ⊂ {1, . . . ,k} we set IΓ equal to the ideal in S[t∗] generated by the α j with
j /∈ Γ , we get

S
[
s∗
Γ

] � S
[
t∗

]
/IΓ � S

[
t∗0

][α j, ] j∈Γ .

Going back to the cohomology of OΓ , we then deduce the following:

Proposition 3.3. For any Γ ⊂ {1, . . . ,k}, we have that

HG(OΓ ,Q) � S
[
t∗0

]WΓ [α j, ] j∈Γ .

Remark 3.4. Notice that, by our description of the group H̃Γ , it follows immediately that, if Γ ′ ⊃ Γ ,
then WΓ ′ is a subgroup of WΓ . In particular we get an injective homomorphism

μΓ
Γ ′ : S

[
t∗0

]WΓ → S
[
t∗0

]WΓ ′
.

We shall denote by the same letter its extension

μΓ
Γ ′ : S

[
t∗0

]WΓ [α j, ] j∈Γ → S
[
t∗0

]WΓ ′ [α j, ] j∈Γ � S
[
t∗0

]WΓ ′ [α j, ] j∈Γ ′/(αr)r∈Γ ′\Γ .

Notice that if Γ ′′ ⊃ Γ ′ ⊃ Γ , then

μΓ
Γ ′′ = μΓ ′

Γ ′′ ◦ μΓ
Γ ′ . (4)

4. The R–S system associated to the wonderful embedding

Since we are going to apply the results of [BDP] only in the case in which the relevant regular fan
is the positive quadrant C = {(a1, . . . ,ak) ∈ Rk | ai � 0, ∀i = 1, . . . ,k}, we shall directly assume that
we are in this case and hence we shall not recall the definition of a regular fan here.

Definition 1. A Reisner–Stanley (R–S)-system A on C is the following set of data:

(1) For any subset Γ ⊂ {1, . . . ,k} or equivalently for the face CΓ defined by CΓ = {(a1, . . . ,ak) ∈
C | ai = 0, ∀i /∈ Γ }, a graded commutative Q-algebra with identity, AΓ , together with a regular
sequence of homogeneous elements xΓ = xΓ

i1
, . . . , xΓ

ih
.

(2) For all j ∈ Γ , setting Γ j := Γ − { j}, a homomorphism of graded algebras

φ
Γ j
Γ : AΓ j → AΓ /

(
xΓ

j

)

such that

φ
Γ j
Γ

(
x
Γ j

i

) ≡ xΓ
i mod

(
xΓ

j

)
, ∀i ∈ Γ j.
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Given such an (R–S)-system A, we associate to it an algebra A, called the (R–S)-algebra of A. This
algebra is defined as the subalgebra A ⊂ ⊕

Γ AΓ consisting of the sequences (aΓ ), aΓ ∈ AΓ such that

φ
Γ j
Γ (aΓ j ) ≡ aΓ mod

(
xΓ

j

)

for all Γ ⊂ {1, . . . ,k} and for all j ∈ Γ .
We now want to recall how one can associate such an (R–S)-system to the wonderful compactifi-

cation X .
One knows, [DP1], that every line bundle on X admits a canonical G̃-linearization. Denoting by X0

the unique closed orbit O{1,...,k} in X , we also have that the homomorphism

i∗ : H2
G(X) → H2

G(X0)

induced by inclusion is injective. Since H2
G(X0) is a sublattice of the weight lattice Λ, we get an

inclusion of H2
G(X) into Λ. Under this inclusion, one knows that the equivariant Chern class of the

divisor O(D{i}) is given by αi . Using this and following the recipe given in [BDP], we get that if we
identify by Proposition 3.3 HG(OΓ ,Q) with S[t∗0]WΓ [α j, ] j∈Γ , we obtain the following:

Proposition 4.1. The system A on C given by

(1) for any subset Γ ⊂ {1, . . . ,k}, the algebra AΓ := S[t∗0]WΓ [α j] j∈Γ , with regular sequence xΓ = (α j) j∈Γ ,
(2) for all j ∈ Γ , setting Γ j := Γ − { j}, the homomorphism of graded algebras

μ
Γ j
Γ : AΓ j → AΓ /(α j),

is a Stanley–Reisner system whose associated (R–S)-algebra A is the equivalent cohomology algebra H∗
G(X).

Let us now write the polynomial S[t∗] as S[t∗0][α1, . . . ,αk]. Accordingly, we write an element
F ∈ S[t∗] as a polynomial

F (α1, . . . ,αk) =
∑

I=(i1,...,ik)

F ImI

with F I ∈ S[t∗0] and mI = α
i1
1 · · ·αik

k . Given a sequence I = (i1, . . . , ik) we take its support, ΓI =
{ j | i j �= 0}.

We now define the subalgebra B ⊂ S[t∗] as the span of all elements F ImI with the property that
F I ∈ S[t∗0]WΓI . Remark that the fact that B is a subalgebra follows immediately from the fact that if

we consider two monomials mI , m J , then mIm J = mI+ J . Since ΓI+ J = ΓI ∪ Γ J then S[t∗0]WΓI ∪Γ J ⊃
S[t∗0]WΓI , S[t∗0]WΓ J .

We can finally state the following:

Theorem 4.2. As a graded algebra, the algebra H∗
G(X) is isomorphic to the subalgebra B ⊂ S[t∗].

Proof. Let us first define a homomorphism ψ : A → S[t∗0][α1, . . . ,αk] by projecting A ⊂ ⊕
Γ AΓ to

the summand A{1,...,k} = S[t∗0]W {1,...,k} [α1, . . . ,αk] ⊂ S[t∗0][α1, . . . ,αk].
Let us show that p is injective. For this, let a = (aΓ ) ∈ A with aΓ ∈ AΓ . Assume p(a) = 0, that is

a{1,...,k} = 0. Notice that by the identity (4), we have

μ
{1,...,k}
Γ (aΓ ) ≡ a{1,...,k} mod IΓ = 0. (5)
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Since μ
{1,...,k}
Γ is injective, it follows that aΓ = 0 for each Γ and p is injective. Let us now show that

p maps A onto B . Let us consider a = (aΓ ) ∈ A. Write F = p(a) as

F (α1, . . . ,αk) =
∑

I=(i1,...,ik)

F ImI .

Then from the equality (5), we get that, for each Γ ⊂ {1, . . . ,k},

aΓ =
∑

I|ΓI ⊆Γ

F ImI .

Since aΓ ∈ S[t∗0]WΓI [α j] j∈Γ , we deduce that F I ∈ S[t∗0]WΓI for each I and p(a) ∈ B .
On the other hand given

F (α1, . . . ,αk) =
∑

I=(i1,...,ik)

F ImI ∈ B,

we define for each Γ , aΓ = ∑
I|ΓI ⊆Γ F ImI . We then see immediately that a = (aΓ ) ∈ A and p(a) =

F (α1, . . . ,αk). So everything follows. �
5. Examples

5.1. The group compactification

In this case we have G = H × H and the involution σ : H × H → H × H is given by σ((h1,h2)) =
(h2,h1) for h1,h2 ∈ H . It follows that G/H is just H considered as an H × H-homogeneous space with
respect to the action given by left and right multiplication. This case has been treated extensively al-
ready in [St2] (see also [St1,U]). Here, for completeness, we recall the final result, referring the reader
to the paper [St2] for details. Fix a Cartan subalgebra h in the Lie algebra of H . Let R ⊂ h∗ be the root
system and W be the Weyl group. Choose a set of simple roots {α1, . . . ,α�}. If we consider h⊕h, then
a basis of linear functions on this space is given by x1, . . . , x�, y1, . . . , y� , with xi((a1,a2)) = αi(a1)

and yi((a1,a2)) = αi(a2). For any subset Γ ⊂ {1, . . . , �} consider the subgroup WΓ generated by
the simple reflections si , i /∈ Γ . Set SΓ equal to the subring of Q[x1, . . . , x�] of polynomials invari-
ant under WΓ . Finally, given a monomial mI = yi1

1 · · · yi�
� , define the support of I = (i1, . . . , i�) as

ΓI = { j | i j �= 0}. One then gets:

Theorem 5.1. The ring H∗
G(X) is isomorphic to the subring

B ⊂ Q[x1, . . . , x�, y1, . . . , y�]

which is the linear span of the polynomials

q(x1, . . . , x�)yi1
1 · · · yi�

�

with q(x1, . . . , x�) ∈ SΓI .

5.2. The symplectic involution and the corresponding wonderful embedding

Our next example is that of the symplectic involution. Let us recall a few facts about it. Consider
the 2 × 2 matrix
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J1 =
(

0 1
−1 0

)

and consider the 2n × 2n matrix

Jn =

⎛
⎜⎜⎝

J1 0 · · · 0
0 J1 0 0
... 0

. . . 0
0 0 0 J1

⎞
⎟⎟⎠ .

We define the symplectic involution σ on G̃ = SL(2n) by setting, for each A ∈ G̃ ,

σ(A) = Jn
(t A−1) J−1

n .

Notice that for n = 1, σ is the identity (so this allows us, from now on, to assume n � 2) while in
general the subgroup H̃ of fix-points equals the symplectic group Sp(2n) of isometries with respect
to the antisymmetric bilinear form defined by Jn .

The maximal torus T̃ of diagonal matrices is stable under σ , so that we get an induced involution
on its Lie algebra and on the root system Φ which we are going to denote with the same letter. Let
us consider the set of simple roots � associated to the choice of the Borel subgroup B̃ ⊃ T̃ of upper
triangular matrices. We get that

σ(αi) = αi if i is odd, σ (αi) = −αi − αi−1 − αi+1 if i is even.

We set �odd = {αi | i is odd}, �even = � \ �odd .
T̃1 is a maximal σ -split torus and the corresponding restricted root system is of type An−1. Notice

that since rk(Sp(2n)) = n, our Assumption 3.1 is satisfied. We can choose as simple restricted roots
the restrictions �even = {α2, . . . ,α2n−2} of the simple roots moved by σ . Finally for each 1 � i � n − 1
we set βi := 2α2i + α2i−1 + α2i+1. Remark that σ(βi) = −βi .

Let us now consider G = PGL(2n). σ induces an involution of G and we let H denote the fix-points
subgroup in G which is just the image of the normalizer of Sp(2n) in G . We set T (resp. B) equal to
the image of T̃ (resp. B̃) in G . We denote by P ⊃ B the parabolic subgroup associated to the simple
roots fixed by σ . Thus G/P is the variety of partial flags

(
V 2 ⊂ V 4 ⊂ · · · ⊂ V 2n−2 ⊂ C2n), with dim V j = j.

The already recalled structure of the wonderful compactification X of G/H in this case gives that
the divisor with normal crossings D = X − G/H has n − 1 irreducible components D1, . . . , Dn−1.

For each subset Γ ⊂ {1, . . . ,n − 1}, denote by OΓ the unique G-orbit whose closure is

DΓ =
⋂
j∈Γ

D j.

In particular the orbit corresponding to {1, . . . ,n − 1} is the unique closed orbit in X , which is iso-
morphic to the variety G/P considered above, and we have that Γ ⊂ Γ ′ if and only if OΓ ⊃OΓ ′ .

Let us start describing line bundles on X , following [DP1]. Recall that every line bundle on X
admits a canonical G̃-linearization. This implies that if Pic(X) is the Picard group of X , then, taking
the equivariant Chern classes, we get an isomorphism between Pic(X) and H2

G(X,Z). Denote by Λ

the weight lattice, i.e. the character group of the maximal torus T̃ ⊂ G̃ and set

M = {
λ ∈ Λ

∣∣ σ(λ) = −λ
}
.
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Notice that M is just the sublattice spanned by the fundamental weights {ω2, . . . ,ω2n−2}. We have
a commutative diagram

Pic(X)
h∗

Pic(G/P )

M

(6)

where h∗ is induced by inclusion. By [DP1] we know that the homomorphism Pic(X) → M is injective.
Let us explain why it is also surjective.

We associate to a fundamental weight ω2i ∈ M a line bundle on X as follows. First we con-
sider the fundamental representation Vωi = ∧i Vω1 where Vω1 is the tautological 2n-dimensional
representation of SL(2n). We then remark that Vω2n−2 , which is isomorphic to

∧2 V ∗
ω1

, contains a
vector invariant under Sp(2n), namely the antisymmetric bilinear form Ω whose matrix is Jn. Thus
Vω2n−2i � ∧2i Vω2n−2 contains the invariant vector

∧i
Ω .

It then follows that, if we set Xi equal to the closure of the G-orbit of the class of
∧i

Ω in
P(Vω2n−2i ), we get an embedding of G/H together with a G-equivariant morphism X → Xi (see [DP1]
for details). The G-linearized line bundle Lω2 i is the pull back of the ample generator of the Picard
group of P(Vω2n−2i ) with its canonical linearization.

With this in mind, given μ ∈ M , we denote by Lμ the corresponding G-linearized line bundle.
We are now going to recall the geometric structure of each orbit OΓ . First of all we identify the

two sets {β1, . . . , βn−1} and {1, . . . ,n − 1} in such a way that, for the irreducible divisor Di , one has
that the line bundle associated to O(Di) is Lβi .

Now notice that for any Γ ⊂ �even (or equivalently �even), we may consider the subset �Γ =
� \ Γ , the corresponding Levi factor LΓ ⊂ G and parabolic subgroup PΓ generated by LΓ and B .
Notice that clearly LΓ is preserved by σ .

Now let us write �Γ as a union of the following disjoint segments:

{α1, . . . ,α2h1−1} ∪ {α2h1+1, . . . ,α2h2−1} ∪ · · · ∪ {α2hs−1+1, . . . ,α2n−1}.

We get that LΓ is isogenous to the product
∏s

r=1 SL(2(hr − hr−1)) × TΓ , where h0 = 0, hs = n and
TΓ ⊂ T is the subtorus whose Lie algebra is the subspace of the Lie algebra of T where all the
simple roots in �Γ vanish. It follows that, if RΓ is the solvable radical of PΓ , then the quotient
PΓ /RΓ = ∏s

r=1 PGL(2(hr − hr−1)) and σ induces an involution on this quotient which coincides with
the symplectic involution on each factor. Set HΓ ⊂ PΓ /RΓ equal to subgroup of elements fixed by this
involution and define HΓ as π−1

Γ (HΓ ) ⊂ PΓ , πΓ : PΓ → PΓ /RΓ being the quotient homomorphism.
Thus to every subset Γ of �even we have associated a subgroup HΓ ⊂ PΓ .

The following proposition is immediate from the results in [DP1]:

Proposition 5.2. As a G-variety, the orbit OΓ is isomorphic to G/HΓ .
Furthermore, given Γ ′ = Γ \ {i}, the line bundle on DΓ ′ associated to O(DΓ ) is the restriction of Lβi

to DΓ ′ .

At this point we can perform the computation of the ring AΓ . First of all remark that �odd is
a basis of t∗0. So, setting xi = α2i−1, for i = 1, . . . ,n, we identify S[t∗0] with the polynomial ring
Q[x1, . . . , xn]. Now the Weyl group W∅ is just the hyperoctahedral group Sn � (Z/2Z)n with the
group (Z/2Z)n acting on the xi by changing signs, while the symmetric group Sn := S1,...,n acts by
permutations. More generally, for a general Γ = {α2i1 , . . . ,α2ih }, i1 < · · · < ih , WΓ is the subgroup
SΓ � (Z/2Z)n , where SΓ ⊂ Sn is the parabolic subgroup S ı,...,i1 × · · · × Sih+1,...,n . To simplify nota-
tions, let us also set yi = α2i for i = 1, . . . ,n − 1. Thus, setting zi = x2

i , i = 1, . . . ,n, we deduce the
following:
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Lemma 5.3. The graded ring AΓ is isomorphic to the subring of the polynomial ring Q[z1, . . . , zn, y j]|α2 j∈Γ ,
with deg zi = 4, deg y j = 2, consisting of those polynomials which, as polynomials in the variables z1, . . . , zn,
are invariant under the group SΓ , i.e. they are symmetric in each of the groups of variables zis+1, . . . , zis+1 ,
s = 0, . . . ,h, with i0 = 0, ih+1 = n.

It is then immediate to deduce that, given α2 j ∈ Γ , the homomorphism

μ
Γ j
Γ : AΓ j → AΓ /(y j),

is given by the inclusion

AΓ j = Q[z1, . . . , zn, ys]
WΓ j

|α2s∈Γ j
⊂ Q[z1, . . . , zn, ys]

WΓ j

|α2s∈Γ
� AΓ /(y j).

As in the case of the group, given a monomial mI = yi1
1 · · · yi�

� , define the support of I = (i1, . . . , i�)
as ΓI = { j | i j �= 0}. By taking α2i for any i ∈ ΓI , we are going to consider ΓI as a subset of �even .
Then from Theorem 4.2 we get:

Theorem 5.4. The ring H∗
G(X) is isomorphic to the subring

B ⊂ Q[z1, . . . , zn, y1, . . . , yn−1]

which is the linear span of the polynomials

q(z1, . . . , zn)yi1
1 · · · yi�

�

with q(z1, . . . , zn) invariant under SΓI .

5.3. Case Dn

Let us now take G to be the adjoint quotient of SO(2n), which we consider as the group of 2n × 2n
matrices X of determinant 1 and such that X−1 = t X . Let σ be the involution on G induced by the
involution on SO(2n) given by conjugation by the matrix

J :=
(−1 0

0 I2n−1

)

where I2n−1 is the (2n − 1) × (2n − 1) identity matrix (notice that J does not lie in SO(2n)). H is the
of type Bn−1.

Then it is clear that G/H is the open set in P2n−1 of non-isotropic lines with respect to the form
x2

1 + x2
2 + · · · + x2

2n . The wonderful compactification X is nothing else that P2n−1 itself and has two
orbits, G/H and the closed orbit of isotropic lines, that is the quadric of equation x2

1 + x2
2 + · · · +

x2
2n = 0.

In this case G/H has rank 1, so again Assumption 3.1 is fulfilled.
At this point the two rings A∅ and A{1} are easy to determine and we leave the details to the

reader. One gets

A{1} =Q[y, x2, x3, . . . , xn−2, z], with deg y = 2, deg xi = 4i, deg z = 2n − 2,

A∅ =Q
[
x2, x3, . . . , xn−2, z2].
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Moreover the map

μ∅
{1} : A∅ → A{1}/(y) � Q[x2, x3, . . . , xn−2, z]

is the obvious inclusion. Summarizing we get:

Theorem 5.5. The ring H∗
G(X) is isomorphic to the subring

B ⊂ Q[y, x2, x3, . . . , xn−2, z]
consisting of the polynomials of the form

q
(
x2, x3, . . . , xn−2, z2) + yp(x2, x3, . . . , xn−2, z).

Equivalently

B � Q[y, x2, x3, . . . , xn−2, t, u]/(u2 − y2t
)
.

5.4. An exceptional involution

As we have already mentioned, the only case for which G is exceptional satisfying our Assump-
tion 3.1 is when G is of type E6, the involution if of type EIV, so that H is of type F4. Let us describe
the involution on the root system. Consider an Euclidean space E of dimension 6 with orthonormal
basis x1, . . . , x6. We let σ be the involution whose matrix is

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

.

In E we consider a root system of type E6 with simple roots the vectors:

α1 = 1

2
(x1 − x2 − x3 − x4 − x5 − √

3x6); α2 = x2 − x1; α3 = x3 − x2;
α4 = x4 − x3; α5 = x5 − x4; α6 = x1 + x2.

Then σ acts as follows on the simple roots. The roots α2, α3, α4, α6 are fixed and span a root system
of type D4. We denote the corresponding Weyl group by W {1,2} .

σ(α1) = −α1 − 2α2 − 2α3 − α4 − α6; σ(α5) = −α5 − 2α4 − 2α3 − α2 − α6.

Let us now consider the vectors

β = 1

2

(
α1 + σ(α1)

) = 1

2
(x1 − x2 − x3 − x4) and γ = 1

2

(
α1 + σ(α1)

) = −x4.

Then {β,α2,α3,α4} and {α2,α3,α4, γ } are both simple roots for two systems of type B4. We
denote the corresponding Weyl groups by W {1} and W {2} .

Finally, the vectors {α3,α4, γ ,−β} are simple roots for the system of type F4, which is the root
system associated to H . Of course the same is true for the vectors −γ , β , α2, α3. We denote the
corresponding Weyl group by W∅ .
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Clearly, t∗0 is the Q-vector space spanned by the basis {x1, x2, x3, x4}, so we can identify S[t∗0] with
Q[x1, x2, x3, x4]. Moreover, t∗0 has another basis given by the vectors

zi = 1

2

(
xi −

∑
j �=i

x j

)
,

so that we also have an identification of S[t∗0] with Q[z1, z2, z3, z4].
Now notice that W∅ contains both W {1} and W {2} , which both contain W {12} . So, setting

CΓ := S[t∗0]WΓ , for Γ ⊆ {1,2}, we have that C∅ is contained in both C{1} and C{2} , which are both
contained in C{12}.

Let us describe these four rings. C{1} is the ring of symmetric functions in the z2
i , C{2} is the ring

of symmetric functions in the x2
i . Indeed the Weyl group of type B4, as we have already seen, is

the semidirect product of S4 and (Z/2Z)4 and in the first case this last group changes the signs of
the zi , in the second those of the xi , while the symmetric group acts by permutations of the zi and
the xi respectively. C{12} = C{1}[z1z2z3z4] = C{2}[x1x2x3x4]. Finally W∅ is the Weyl group of F4 and,
using [Me], we know that if we consider the polynomials

f2k :=
∑

1�i< j�4

(
(x1 + x j)

2k + (x1 − x j)
2k),

then C{12} is the polynomial ring Q[ f2, f6, f8, f12]. Consider now the vectors

y1 = α1 − σ(α1) = √
3x6 − x5 and y2 = α5 − σ(α5) = 2x5.

These are the fundamental weights relative to the simple roots α1 and α5. Then clearly

A{12} = C{12}[y1, y2]; A{1} = C{1}[y2]; A{2} = C{2}[y1]; A∅ = C∅.

Given a sequence I = (i1, i2), we define ΓI = { j | i j �= 0}, as we have already done in the cases con-
sidered above. We get the following:

Theorem 5.6. The ring H∗
G(X) is isomorphic to the subring

B ⊂ A{12}

which is the linear span of the polynomials

q(x1, . . . , x4)yi1
1 yi2

2

with q(z1, . . . , zn) ∈ CΓI where I = (i1, i2).

As a consequence, we can determine very easily both the equivariant Poincaré series and the
Poincaré polynomial of X . We get:

Proposition 5.7.

(1) The equivariant Poincaré series
∑

n dim H2n
G (X)tn equals

1 + 2t5 + 2t9 + t14

(1 − t)2(1 − t2)(1 − t6)(1 − t8)(1 − t12)
.
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(2) The Poincaré polynomial
∑

n dim H2n(X)tn equals

(
1 + 2t5 + 2t9 + t14)(1 + t + t2 + t3 + t4)(1 + t + t2 + t3 + t4 + t5 + t6 + t7 + t8).

Proof. The first statement follows readily from Theorem 5.6, summing up the various contributions.
As for the second, recall that H∗

G(X) is a free module on H∗
G(pt) and that one knows that

∑
n

dim H2n
G (pt)tn = 1

(1 − t2)(1 − t5)(1 − t6)(1 − t8)(1 − t9)(1 − t12)
. �

6. The equivariant ring of conditions

In this section we are going to determine the equivariant ring of conditions RG(G/H), introduced
in [DP3], of the symmetric variety G/H under Assumption 3.1. The proofs are exactly parallel to the
ones given in [St3] in the case of the group, so we shall omit them. In order to state our result, we
need some facts. Recall that we have introduced in Section 3 the set

� =
{
α1, . . . ,αh,

1

2
αh+1, . . . ,

1

2
αk

}
⊂ t∗1

of simple restricted roots.
Correspondingly, we are going to consider the fundamental Weyl chamber C ⊂ t1 of positive linear

combinations of fundamental coweights associated to these simple restricted roots and the lattice Λ∨
1

in t1 that they span.
We are going to consider the set of rational regular fans F giving a polyhedral decomposition of C .

By this we mean a finite collection F = {F1, . . . , Fm} of rational polyhedral cones, called faces, each
contained in C and such that

(1) for each Fi, F j ∈F , Fi ∩ F j is a face of both Fi and F j ,
(2) each face of a face in F also lies in F ,
(3) C = F1 ∪ · · · ∪ Fm ,
(4) each face Fi is spanned by part of a basis of the lattice Λ∨

1 .

We now give the basic definition of this section:

Definition 2. A function f on the space t0 × C is admissible relative to a rational regular fan F giving
a polyhedral decomposition of C if:

(1) For every (closed) cone F of F the restriction of f to t0 × F is a polynomial function.
(2) Let Γ be a subset of the set of � and let CΓ be the face of C defined by the vanishing of the

roots in Γ . Then the restriction of f to t0 × CΓ is invariant under the action of WΓ on t0.

A function f on the space t0 × C is admissible if there exists a rational regular fan F giving
a polyhedral decomposition of C , such f is admissible relative to F .

Notice that given F , the space of admissible functions relative to F is clearly a ring under multipli-
cation of functions. Furthermore, since two fans F and F ′ with the above properties have a common
decomposition (see for example [Tor] or [O]), it immediately follows that also the space R of admis-
sible functions is a ring.

Now we know that to every regular fan F which gives a polyhedral decomposition of C , it is
associated a regular compactification YF of the symmetric variety G/H , see [DP3]. By our previous
considerations we then have, repeating verbatim the proofs of Theorem 4.5 and Theorem 5.1 in [St3]:



E. Strickland / Journal of Algebra 356 (2012) 216–229 229
Theorem 6.1.

(1) The equivariant cohomology ring H∗
G(YF ,Q) is naturally isomorphic to the ring of admissible functions

relative to F .
(2) The equivariant ring of conditions RG×G(G) is naturally isomorphic to the ring of admissible functions.

Remark 6.2. The reader might have noticed that all our rings are graded and that all our isomorphisms
are isomorphisms of graded rings.
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