
~ - HOLI_AND

DIRECTIONAL TYPES AND THE ANNOTATION M E T H O D

J O H A N BOYE AND JAN MALUSZYNTSKI

[> A directonal type for a Prolog program expresses certain properties of the
operational semantics of the program. This paper shows that the annota-
tion proof method, proposed by Deransart for proving declarative proper-
ties of logic programs, is also applicable for proving correctness of direc-
tional types. In particular, the sufficient correctness criterion of well-
typedness by Bronsard et al., turns out to be a specialization of the
annotation method. The comparison shows a general mechanism for
construction of similar specializations, which is applied to derive yet
another concept of well-typedness. The usefulness of the new correctness
criterion is shown on examples of Prolog programs, where the traditional
notion of well-typedness is not applicable. We further show that the new
well-typing condition can be applied to different execution models. This is
illustrated by an example of an execution model where unification is
controlled by directional types, and where our new well-typing condition is
applied to show the absence of deadlock. © Elsevier Science Inc., 1997

1. INTRODUCTION

Recently there has been a growing interest in the notion of directional types for
logic programs [1, 5, 7, 12, 13, 14, 39, 40, 44]. A directional type describes the
intended ways of calling the program, as well as the user's intuition of how the
program behaves when called as prescribed. Together with some methods and tools
for type checking, directional types may provide a good support for program
validation.

This article shows that directional types have two aspects. One of them is
declarative and can be discussed regardless of the computation model, while the
other is related to the computation model. By relating directional types to the

This work has been partially supported by ESPRIT LTR Project 22532 DiSCiPI.
Address correspondence to Department of Computer and Information Science, Link6ping University,

S-581 83 Link6ping, Sweden, Email: {jobbo, janma}@ida.liu.se.
Received June 1995; accepted October 1996.

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1997
655 Avenue of the Americas, New York, NY 10010

0743-1066/97/$ 17.00
PII S0743-1066(96)00144-6

180 J. BOYE AND J. MALUSZY/qSKI

annotation method for proving declarative properties of logic programs [21], we
obtain a better correctness criterion than those existing in the literature (e.g., the
well-typing condition of [5, 14]). We further demonstrate how directional types can
be used for controlling execution in a coroutining fashion. We show that programs
satisfying our new correctness condition will never suspend indefinitely when
executed this way.

The idea of directional types is to describe the computational behavior of Prolog
programs by associating an input and an output assertion to every predicate. The
input assertion puts a restriction on the form of the arguments of the predicate in
the initial atomic goals. The output assertion describes the form of the arguments
at success, given that the predicate is called as specified by its input assertion. As
an example, consider the append/3 predicate:

append([] ,X,X) .

append([EIL] ,R, [EILR]) ~-append(L,R, LR) .

When this predicate is used to concatenate two lists, it is called with the two first
arguments bound to the two lists. Upon success the third argument is bound to the
resulting list. The form of the third argument at call is not restricted. Also we are
not concerned about the form of the first two arguments at success. This use of the
predicate may be described by the following notation:

append/3: ($1ist, $1ist, ~list),

where the two first argument positions (marked with $) are considered as input
positions, and the third argument (marked with $) is considered an output
position. 1 A given directional type may or may not be correct in the sense that it
properly describes the actual computational behavior. As shown in this article, the
correctness of directional types has two aspects:

• the input-output correctness: whenever the call of a predicate satisfies the
input assertion, then the call instantiated by any computed answer substitu-
tion satisfies the output assertion;

• the call correctness (for the Prolog computation rule): whenever the call of a
predicate satisfies the input assertion, then any succeeding call in this
computation will satisfy its input assertion.

The directional type in the a p p e n d / 3 example is correct in both aspects.
The well-typing condition of [5, 14] is sufficient to ensure both input-output

correctness and call correctness of a given directional type. However, it is not
applicable to directional types which are input-output correct but not call correct.
This kind of directional types may be particularly interesting for programs using
the power of the logical variable, as illustrated in the examples in Sect. 3 and
Sect. 7.

Since input-output correctness is a property which is independent of the
computation rule, we can study the problem in the framework of declarative

1A more general concept of directional type (e.g., in [14]) requires specification of input and output
assertion for every a rgument of the predicate. Thus a directional type specification for an n-ary
predicate p would consist of two vectors of type expressions, each of them of length n. Clearly, the
restricted concept of directional type is a special case of the more general one; the example shown
above can be reformulated as follows:

append/3: ~ (list, list, any) I" (list, list, list).

D I R E C T I O N A L TYPES A N D A N N O T A T I O N M E T H O D 181

semantics. In particular, we show that for types closed under substitution, input-
output correctness of a program can be proved by the annotation method [21]. It
turns out that the well-typing condition of [5, 14] can be seen as a specialization of
the annotation method, even though it has been devised for the Prolog computa-
tion rule. With this perspective we obtain immediately another specialization of the
annotation method, which allows us to prove input-output correctness of direc-
tional types which are not call correct under Prolog computation rule. This
sufficient condition for input-output correctness is called sharing-based well-typing,
or briefly S-well-typing.

We also discuss directional types as a means for controlling execution of logic
programs through a delay mechanism. The idea is to postpone unification of those
arguments of the goal which do not satisfy the prescribed type. We formally define
an execution mechanism, called type-driven resolution (or simply T-resolution),
based on this idea. T-resolution is sound but not complete in general, since the
computation may deadlock. We show that S-well-typing is a sufficient condition for
deadlock-free execution under T-resolution.

The article is organized as follows. Section 2 summarizes the basic notions
relevant for the presentation of the results. In particular the notion of well-typing
is presented following [5, 14]. The concepts of input-output correctness and call
correctness of a given directional type are formally defined.

Section 3 discusses an example of a program with a directional type which is
input-output correct but not call correct for LD-resolution. Thus the program is
not well-typed under this directional type. This motivates an attempt to search for
a bet ter sufficient condition for checking input-output correctness.

Section 4 outlines the annotation proof method and shows that the input-output
correctness of a directional type is equivalent to the correctness of an annotation
corresponding to that type. The concept of S-well-typing is introduced as a
specialization of the annotation method, and illustrated on the example of Sect. 3.

Section 5 discusses the problem of call correctness of a given directional type for
a given computation rule. The question considered is for which input arguments of
the program predicates a given directional type is a resolution invariant for a given
computation rule. For Prolog's computation rule a sufficient test for answering this
question is provided.

Section 6 presents T-resolution. It is shown that no computation of a S-well-typed
program executed by T-resolution will result in a nonempty set of delayed unifica-
tions. This can be seen as a kind of deadl0ck-freeness: the delayed unification will
always be resolved, unless the computation loops or fails.

Section 7 illustrates the usefulness of the concept of S-well-typed program by
some examples.

Section 8 discusses relations to other work. Conclusions and future work are
outlined in Sect. 9.

2. PRELIMINARIES

2.1. Directional Types

Adopting to a popular view (e.g., Apt [5]), we define a type to be a decidable set of
terms closed under substitution. In particular, in the examples we will use the

182 J. BOYE AND J. MALUSZYIqSKI

following types:

any
ground
int
list
bintree
intbintree

the set of all terms
the set of ground terms
the set of integers (0, 1)
the set of lists
the set of binary trees
the set of integer binary trees

In the case of lists, we assume the existence of the constant [] (the empty list), and
the binary list constructor. Lists will be written using Prolog syntax. In the case of
binary trees, we assume the existence of the constant v o i d (the empty tree), and
the ternary constructor t r e e . The term ~ r e e (s , tt, t r) represents the tree whose
top node is labeled with s, and where t t and tr are the left and right subtrees.

A directional type for an n-ary predicate p is an n-tuple, associating every
argument position of p with a direction ($ or $) and a type. The argument
positions associated with $ (1') are called the input (output) positions of p. For
instance,

append/3: (~ list, $ list, I" list)

is a directional type for the a p p e n d / 3 predicate. The two first positions are input
positions, and the last position is an output position.

A directionally typed program is a program with directional types associated to
all its predicates.

A directional type is a kind of specification, which describes certain expected
properties of the program. The program may or may not enjoy these properties.
This is reflected by the following formal notion of correctness. We first need some
auxiliary notions.

A typed term is an object t : T, where t is a term, and T is a type. An atom
p (t I : T 1 , t , : 7",) is said to be correctly typed in its i-th position iff t i e T i. For
instance, if

append/3: ($ list, $ list, I" list)

is a directional type for the a p p e n d / 3 predicate, then the atom

append([] ,Y, [i,2])

is correctly typed in its first and third positions.

Definition 2.1. Le t P be a directionally typed program and let R be a computation
rule. If for every atom A which is correctly typed in its input positions:

(1) all atoms selected in every SLD-derivation of P via R starting from A are
correctly typed in their input positions, and if

(2) for every computed answer substitution o', o-(A) is correctly typed in its
output positions,

then the directional type is correct for P and R. Alternatively, we say that P is
correctly typed under R. If condition (1) is satisfied, the typing of the program is
said to be call correct for R. If condition (2) is ~atisfied, the typing of the

DIRECTIONAL TYPES AND ANNOTATION METHOD 183

program is said to be input-output correct (I 0 correct). Alternatively, we say that
P is correctly I 0 typed.

This definition separates two aspects of correctness. Due to the completeness of
SLD-resolution, only the call correctness depends on the computation rule, while
the IO correctness can be studied in terms of the declarative semantics. This paper
focuses in the first hand on IO correctness, and shows that by abstracting away
from the operational aspects, we can obtain simple proofs of IO correctness. Thus,
the concept of IO correctness links the view of directional types to the notion of
type understood as a restriction of the success set of the program [34, 35].

The problem whether or not a given program is correctly typed under a given
computation rule is undecidable. It is then natural to search for sufficient condi-
tions. In the sequel we survey briefly a well-known simple sufficient condition of
correct typing for the case of Prolog computation rule. However, for sophisticated
computation rules based on coroutining and delays, the behavior of programs may
be rather complex, as shown, e.g., by Naish [34]. Therefore it would be rather
difficult to provide sufficient conditions for call correctness. On the other hand, as
IO correctness does not depend on the computation rule, simple sufficient condi-
tions for IO correctness presented in this paper are applicable even to such
programs.

2. 2. Well- Typing

Definition 2.2. Let s 1 sn, t be terms, and S 1 an, T be types. A type judge-
ment has the form

s I : S 1 A "'" A S n : S n ~ t : T .

The judgement is true, written

~ s I : S 1 A "'" h S n ' S n ~ t : T

if, for all substitutions o-, whenever ~r(s i) ~ S i (1 _< i < n), then ~r(t) ~ T. If the
type judgement is true, we also say that the type of t can be determined by the
types of s l . . . sn.

It is undecidable whether a type judgement is true, unless we restrict our type
language. However, in all the examples discussed in this paper, it will be obvious
whether the judgements are true or not. For a discussion on decidable special cases
of type judgements, see, e.g., [1, 12].

To simplify the notation, we will throughout this section write an atom as
p(u : U, t : T), where u : U is a sequence of typed terms filling in the input positions
of Pi, and t : T is a sequence of typed terms filling in the output positions of Pi.

The following is a well-known sufficient condition for a program to be correctly
typed under the left-to-right (Prolog) computation rule (cf. [14]):

Definition 2.3. A clause

po(io : Io ,o o : 0 o) <--pl(il " I i , o 1 " 0 1) p , (i . : I n ,O n "On)

is well-typed if, for all j from 1 to n:

i o :I 0 A 01 : O 1 A "'" A Oj_ 1 : O j _ I ~ i j : I j

184 J. BOYE AND J. MALUSZYIqSKI

and if

~ i o : I o A o l : O 1 A . . . A 0 n : O ~ 0 o : 0 o.

A program is well-typed if each of its clauses is well-typed.

Thus a clause is well-typed if

• the types of the terms filling in the input positions of a body atom can be
deduced from the types of the terms filling in the input positions of the head
and the output positions of the preceding body atoms, and if

• the types of the terms filling in the output positions of the head can be
deduced from the types of the terms filling in the input positions of the body
atoms.

To show that the first clause of a p p e n d / 3 is well-typed, we have to prove that

([], X) : (list, list) ~X : list

which is obviously true. To show that the second clause is well-typed, we have to
prove that

([E I L] , R) : (l i s t , l i s t) ~ (L , R) : (l i s t , l i s t)

and that

(JELL], R) : (l i s t , l i s t) A LR: l i s t ~ [EILR]: l i s t .

Both of these type judgements are easily proven true; thus the a p p e n d / 3 program
is well-typed.

The following theorem is stated in [14]. A proof can be found in [7].

Theorem 2.4. Every well-typed program is correctly typed under the Prolog computation
rule.

Thus, well-typing is a warranty for correct typing of calls under the Prolog
computation rule but not under another computation rule. Consider for example
the program

parent (j ohn,mary) .

parent (mary, ann) .

gparent (X, Y) ~- parent (X, Z) , parent (Z, Y) .

It is well-typed with the following directional types:

parent/2 : ($ground, ~ground)

gparent/2 : (~ground ~ground) .

Thus, the directional types are call correct under Prolog computation rule, but, for
example, they are not call correct for the right-to-left computation rule. On the
other hand, whatever is the computation rule, well-typing is a sufficient condition
for the IO correctness of the directional types. This is due to the independence of
the computed answers of the computation rule used for SLD-resolution.

D I R E C T I O N A L TYPES A N D A N N O T A T I O N M E T H O D 185

Later in this paper, we will show that the well-typing criterion is often too weak
for proving IO correctness of directional types describing programs that exploit the
power of the logical variable.

2.3. P r o o f Trees

We will now summarize a uniform framework for discussing both the operational
and the declarative semantics of definite programs. This will allow us to discuss IO
correctness without taking into account the computat ion rule. The framework
originates from Deransar t and Matuszyfiski [23], and is based on the notion of
proof tree similar to that in [16].

In our view, the resolution process can be seen as the stepwise construction of a
skeleton (by "past ing" together instances of clauses), intertwined with equation
solving (unification).

Definition 2.5. A skeleton is a finite tree defined as follows:

• if G is an (atomic) initial query, then the node labeled (G, ±) is a skeleton;

• if S 1 is a skeleton, then S 2 is a skeleton if S 2 can be obtained from S 1 by
means of the following extension operation:
1. choose a node n in $1, labeled (A, _t_);
2. choose a clause A 0 ~ A 1 A k in P, such that A and A 0 have the same

predicate symbol and the same arity;
3. change n 's label into (A, or(A0)) (where o- is a renaming to fresh

variables), and add k children to n, labeled (o-(A1) , _L),.,(o-(Ak) , ±) .

A skeleton with the root label (A, A ') will be called a skeleton for A. A node is
incomplete if it contains 3_, and complete otherwise. A skeleton is incomplete if
it contains an incomplete node, and complete otherwise.

The definition may be extended to infinite skeletons. However, the directional
types concern finite computations, so that infinite skeletons are not relevant for our
purposes.

Definition 2.6. The set o f equations associated to a node n of a skeleton is denoted
by E(n), and is defined as follows:

• if n is an incomplete node, then E (n) = Q;

• if n is labeled with (p (s 1 sk) ,p(t z tk)), then E (n) = {s I = t 1 s~ =
tk}.

The set E (S) o f the equations associated to a skeleton S consists of all equations
associated to the nodes of S. A complete skeleton S is said to be proper if E (S)
has an mgu.

The operat ional semantics of definite programs can be described in terms of
skeletons and equations. For example, an LD-resolution 2 step corresponds to
choosing the leftmost node n (in preorder of the skeleton), expanding it as
described in Definition 2.5, and computing a solved form of E(n) (i.e., performing

2 SLD-resolution with the Prolog computation rule.

186 J. B O Y E A N D J. M A L U S Z Y I < I S K I

unification). One of the advantages of this view on operational semantics is that we
can make fine-grained adjustments to the resolution process. For instance, for
some node n, we may choose not to solve all equations in E(n) at once (this
corresponds to partly delaying unification). This is in fact exactly what we will do in
the type of resolution introduced in Section 6.

Definition 2.7. Let S be a skeleton such that E(S) is unifiable with an mgu ~r.
Then a proof tree is obtained from S by replacing every label (A, B) with or(A),
for every complete node.

We give an example to illustrate the introduced concepts.

Example 2.8. Consider the following logic program, that adds and multiplies
integers in Peano numeral notation

p l u s (X, 0, X) .

plus(X, s (Y) ,s(Z)) ~plus (X,Y,Z) .

mult (X,O,O) .

mult(X,s(Y) ,Z) e-plus(W,X,Z),mult(X,Y,W) .

Figure] shows a complete skeleton constructed from the query

mult (s(O) ,s(s(s(O))),X)

(for brevity some brackets have been left out). Figure 2 shows the corresponding
proof tree.

As should be clear from the above example, every SLD-refutation of P (see,
e.g., Lloyd [30]) starting with an atomic goal ~ A determines a proof tree of P. For
a given computation rule there is a one-one correspondence between proof trees
and SLD-refutations starting with atomic goals.

The composition of all mgu's of an SLD-refutation is an mgu of the set of
equations associated with the corresponding skeleton. This mgu applied to the

mult(s(O), sssiO), X)

mult(Xl, S(YI), Zl)

plus(WI, xl, Z1)

plus(XS, s(Y5), s(Z5))

p l u s (X5, Y5, Z5) p l u s (W2,

multi Xl, YI, Wl)

mult(X2, stY2), Z2)

X2, Z2) multi X2, Y2, W2)

plus(XS, O, x8)

plus(X6, Y6, Z6)

plus(X9, 0, X9)

plus(X6, s(Y6), s(Z6)) mult(X3, slY3), Z3)

plus(W3, X3, Z3) mult(X3,

plus(X7, sCY7), s(Z7)) mult(X4,

plus(X7, Y7, Z7)

plus(XIO, O, XIO)

FIGURE 1. A complete skeleton.

Y3, W3)

0 , 0)

D I R E C T I O N A L T Y P E S A N D A N N O T A T I O N M E T H O D 187

mult(s(O), sss(O), sss(O))

plus(ss(O), s(O), sss(O))

p]us(ss(O), O, ss(O))

plus(s(O), O, s(O))

plus(O,

FIGURE 2. A proof tree.

mult(s(O), ss(O), ss(O))

p l u s (s (O) , s (O) , s s (O)) m u l t (s (O) , s (O) , s (O))

plus(O, s(O), s(O)) mult(s(O), O, 0)

O, 0)

labels of the skeleton gives rise to a proof tree. The mgu of the set of equations of
a proper skeleton restricted to the variables of the initial query is also the
computed answer substitution of the corresponding SLD-refutation.

The declarative semantics of a definite program P is traditionally defined as the
set of all ground atomic logical consequences of P, or equivalently as the least
Herbrand model of P (see, e.g., [30]). A completeness result for SLD-resolution
states that this is the set of all ground atomic queries which have SLD-refutations
(called also the success set of P). It follows by Definition 2.7 that the set of all
ground instances of the root labels of all proof trees of P is the success set of P
hence the least Herbrand model of P.

On the other hand, some authors consider as declarative any semantics not
referring to a notion of computat ion (or state transition). In this sense the
S-semantics [27] provides a declarative reconstruction of the operational behavior
of logic programs. The S-semantics of a program P is a set of not-necessarily
ground atoms. More precisely, since nonground atoms are considered equivalent
under variable renaming, the elements of the S-semantics are the equivalence
classes of such atoms. The S-semantics of a program has a simple characterization
in terms of the computed answer substitutions of SLD-refutations. The equivalence
class of an atom A =p(t~ t n) belongs to the S-semantics of P iff A = or(B),
where B is an atomic query of the form p(V~ Vn) with V~ V~ being distinct
variables, and or is a computed answer substitution for B. Consequently, since
every SLD-refutat ion gives rise to a proof tree, the S-semantics can be character-
ized in terms of proof trees. The equivalence class of an atom A =p(t~ t ,)
belongs to the S-semantics of P iff A is the root label of a proof tree obtained
from a complete skeleton for an atom of the form p(V~ V~) where V 1 V~
are distinct variables.

Yet another declarative semantics of a program P can be defined as the set of
root labels of all proof trees of P. In [23] it is called the proof-theoretic semantics of
P and it is denoted ~ J p .

Notice that this set may include nonground atoms, and that it is closed under
substitution. The proof-theoretic semantics has a straightforward relation to the

188 J. BOYE A N D J. MALUSZYNSKI

S-semantics. Intuitively, ~ J e is a closure of the S-semantics of P under arbitrary
substitutions. More precisely, an a tom A is in ~ iff there exists a substitution or
and an a tom B such that A = o ' (B) and the equivalence class of B is in the
S-semantics of P.

The proof theoretic semantics describes all atomic logical consequences of the
program P: the universal closure of each a tom in 9 J e is a logical consequence of
P. A more comprehensive discussion including proofs can be found in Chapter 2
of [23].

2.4. Dependencies

Intuitively, a directional type describes the data flow from the inputs to the outputs
of a predicate. Viewing a computat ion as the construction of a (proper) skeleton, it
is possible to discuss the data flow over the positions of skeletons. This section
presents abstract notions which can be used for formalization of this intuition, and
which can provide a basis for deriving our new well-typing condition.

For the rest of this section, we assume that we have some unambiguous way of
referring to the atoms in the program. Let A be the atom p(t 1 t k) in some
clause C. The argument positions in A are denoted by A(1) , A(k).

Definition 2.9. The set of clause positions in C is defined as

~.J {A(i)[a <i <arity(A)}.
A is an atom in C

I f no confusion can arise, we will refer to "clause positions" simply as "positions."
We will not always make a distinction between clause positions and terms filling in
clause positions, i.e., we may make statements like "A(i) is a variable" instead of
" the term filling in A(i) is a variable."

Note that, when proving well-typing, the terms occurring in the consequents of
the type judgements always occur at output positions in the head, or at input
positions of the body. For convenience, we introduce a name for these positions:

Definition 2.10. A(i) is an exporting clause position of C if either

• A is the head of C, and the i:th argument of p is an output position, or

• A is a body atom in C, and the i:th argument of p is an input position.

A clause position is importing if it is not exporting.

We extend this terminology for the positions of the initial atomic queries: a
query G is seen as a clause ~ G with the empty head.

Definition 2.11. Let C be a clause (possibly the initial query). A binary relation,
relating some importing clause positions of C to some exporting clause positions
of C, will be called a local dependency relation for C.

In the sequel, we will assume that each clause C has a fixed local dependency
relation ~ c .

D I R E C T I O N A L TYPES AND A N N O T A T I O N M E T H O D 189

A skeleton is obtained by pasting together instances of clauses. To model the
dataflow in a complete skeleton S, we construct a compound dependency graph ~>s
by pasting together the local dependency graphs for the clauses used in S. More
precisely:

Definition 2.12. Let S be a complete skeleton, and let n be a node in S, labeled
with (p (s I sk) ,p (t 1 tk)). Then n has k node positions (one for each
equation s i = ti), denoted n(1) n(k).

Let n 1 and n 2 be nodes in T, labeled (A t, B~) and (A 2, B2), respectively. We
define

n,(i) t> s nz(j)

if one of the following cases apply:

• n 1 is the parent of n 2 (thus B1 is the head of some clause C, and A 2 is a
body atom in C), and Bl(i)~, c Az(j) ;

• n I and n 2 are siblings (thus A 1 and A 2 a r e body atoms in the same clause
C), and AI(i)E> c A~(j);

• n I is a child of n 2 (thus B 2 is the head of some clause C, and A t is a body
atom in C), and Al(i)~, c B2(j);

• n 1 and n 2 is the same node, and Al(i)~> c A t (j) (where C is the clause in
which A 1 is a body atom), or Bl(i)t> D BI(j) (where D is the clause in which
B 1 is the head).

Depending on the intended use, the local dependency relation may show the
possible flow of data between importing positions and exporting positions, or some
other dependence between these positions. The intuition of the ~s relation is to
extend this idea to complete skeletons. Figure 3 shows a possible choice of local
dependency relations on the clauses of the a p p e n d program, and the global
dependency relation on a skeleton of this program.

The equations of a node can be seen as connections transmitting values from
exporting positions of one clause to importing positions of the other clause. If the
transitive closure of ~>s is an ordering relation, the instantiation of its maximal
elements can be expressed as a function of the instantiation of its minimal
elements. This idea is a basis of type-driven resolution introduced in Sect. 6 where
the equations of the skeleton are solved in accordance with the relation ~s . This
motivates us to introduce the following concept.

Definition 2.13. Let P be a definite program including an initial query. If for every
complete skeleton S of P the transitive closure of the relation I> s is a partial
ordering, then the program is said to be noncircular.

The noncircularity concept stems originally from the field of attribute grammars
[29]. It is well-known that this property is decidable (see, e.g., [23, Sect. 4.3]). For
the sake of completeness we give a brief justification of this result, using the
terminology of this paper (instead of attribute g rammar terminology).

190 J. B O Y E A N D J. M A L U S Z Y I Q S K I

a p p e n d (.) a p p e n d (.)

append (~/ , ~_ ,)

append (.)

append(~ , ~_ , L)
append (.)

I

I
[

t

I

I

I

a p p e n d (~_ , ~_ , L)

a p p e n d (.)

FIGURE 3. The local de-
pendency relations and a
global dependency relation.

Let G be an atomic query with predicate p and with the empty local depen-
dency relation. For any complete skeleton S for G denote by t>s, p the relation on
the positions of p defined as follows: p(i)~>s, p p (j) iff r(i) t>] r (j) , where r is the
root of S. Thus we "project" the global dependency relation of the skeleton S on
the positions of the root predicate p. Generally, there are infinitely many distinct
skeletons S, but the family of distinct relations t>s, p is finite, since p has a finite
number of positions. Denote this family _~p. Consider a clause C of the form

p (t) ~--- p l (t l) pm(tm),

where t , t 1 t n are sequences of terms. For k = 1 m select an arbitrary
relation r k in _~p. Let R c be the transitive closure of the relation obtained by the
composition of t> c with the relations r~. Then the restriction of R c to the
positions of the head predicate is a relation in _~p. This shows that the family {_~p:
p is a predicate of P} has a fixpoint characterization, and due to its finiteness can
be effectively computed.

The program is noncircular iff no relation R c has a cycle. This is due to the fact
that the relations in 2p give the exact characterization of the global dependencies
between the positions of p in any skeleton. The uppermost segment of a loop in a
skeleton would be determined by the local dependency relation of a clause C. Thus
for checking noncircularity we have to construct all relations R c for every clause
C. This may lead to combinatorial explosion since each family 2p may have many
elements. It has been shown (see, e.g., [28]) that the circularity problem is of
exponential complexity. In practice noncircularity can usually be established by
sufficient tests with polynomial (or even linear) complexity (see [22] for a survey).

3 . A N I N F O R M A L E X A M P L E

In this section, we give an example of a program which is correctly IO typed but
not well-typed. We claim that such directional types often are of practical interest,
especially for programs using incomplete data structures. The reader may find
more examples in Sect. 7.

DIRECTIONAL TYPES AND ANNOTATION METHOD 191

Consider the following task. Given a binary tree T whose nodes are labeled with
integers, compute a binary tree with the same structure as T, but where every node
is labeled with the maximal integer in T. For example, given the tree

3 / 5 \ 7 we 7 / 7 \ 7
4 / \ 1 expect the answer 7 / \ 7

Conceptually this is a two-pass problem; first traverse T to find the maximal
integer n, and then construct the output tree where every node is labeled with n.
However, the program in Fig. 4 solves the problem in one pass.

The predicate max/4 computes the maximum of its three first arguments. The
predicate m a x t r e e / 4 traverses the input tree, and finds the maximal label in the
tree. It also constructs the output tree, in which all nodes are labeled with the same
logical variable. Upon success of m a x t r e e / 4 , this logical variable is unified with
the maximal label.

Note that upon success of the intermediate calls to m a x t r e e / 4 , the fourth
argument is bound to a non-ground binary tree. Thus the most precise correct
directional type for this program (using the types in Example 2.1) is:

maxtree/2 : (~intbintree, $intbintree)

maxtree/4: (lintbintree, Sany, ~int, Tbintree)

max/4: (~int, $int, $int, ~int)

>_ : (~int, $int).

However, the clause defining m a x t r e e / 2 is not well-typed, since the type judge-
ment

Tree:intbintree A
(Max:int,NewTree:bintree)

NewTree:intbintree

is not true. The problem is caused by the variable NewTree: one cannot conclude
that NewTree is an integer binary tree just from the fact that it is a binary tree.

maxtree(Tree, NewTree) ~-
maxtree (Tree, Max, Max, NewTree).

maxtree(void, __, O, void).
maxtree(tree(Lbl, Lft, R g t) , Max, MaxSoFar, tree(Max, NewLft, NewRgt)) +-

maxt ree(Lft, Max, MaxLft, NewLft),
maxtree(Rgt, Max, MaxRgt, NewRgt),
max (Lbl, MaxLft, MaxRgt, MaxSoFar).

max(A,B,C,A) +- A > B, A > C.
max(A, B, C, B) +- B_> A, B >C.
max(A, B, C, C) e- C_> A, C_> B.

FIGURE 4. A program solving the maximum-labeling problem.

192 J. BOYE AND J. MALUSZYIqSKI

Thus we cannot use the well-typing condition to conclude that the directional type
is IO correct.

Now consider changing the directional type for r a a × t r e e / 4 as follows (the
other predicates are typed as before):

maxtree/4: ($intbintree, ~int, ~int, ~intbintree) .

The idea is that if m a x t r e e / 4 is called with its second argument bound to an
integer, then the last argument will be bound to an integer binary tree upon
success. Now the directional type for the program as a whole is not call correct
under the Prolog computation rule; the m a x t r e e / 4 predicate is called with the
second argument being a variable, not an integer. However, the directional type
remains IO correct, as will be shown by the method presented in the next section.

4. PROVING IO CORRECTNESS

As already pointed out, the problem whether a given directional type is IO correct
or not is independent of a particular computation rule under which the program is
to be executed. Thus the problem can be discussed in terms of proof trees of a
program rather than in terms of computations. We now show that the method for
proving properties of proof trees, introduced in [18] and presented more recently in
[21, 23], can also be used for proving IO correctness of directional types. For
making the relation explicit we introduce a new notation for directional types.

4.1. Annotations

A directional type for an n-ary predicate p will be alternatively represented as a
pair of formulae

(¢ ~ (p ~) A ... A 4 ' ~ (p ,) ,

4"1 (P l) A "'" A 4 " (p .) > ,

where Pl , . . . ,P , are the only free variables of the formulae, referring to the
argument positions of the predicate. The formulae 4' and 4'' are defined as
follows: If the i-th argument of p is an input argument of type T, then 4'i = 4'~ = T.
If the i-th argument of p is an output argument of type T, then ~ = a n y and
4" = T. For example the directional type

append/3: ($1ist, $1ist, $1ist)

will be presented as

(a n y (append 1) A a n y (append 2) A 1 i s t (append 3),

l i s t (append1) A l i s t (append2) /x l ist(append3)>.

Here a n y and 1 i s t are unary predicates of the specification language, interpreted
on the domain of terms. Thus, a directional type D = (4', 4''> for the predicate p
specifies two sets of atoms, SI(D) and S 2 (D) , consisting of the elements of the
form P(6 tn), which satisfy, respectively, 4' and 4'' in the interpretation
considered. For example, for the directional type D above, SI(D) consists of a l l

D I R E C T I O N A L TYPES A N D A N N O T A T I O N M E T H O D 193

a toms of the fo rm append(t~, t2, t3) , where t~ and t 2 are arbitrary terms and t 3 is a
list. The conjuncts of the formulae will be called the assertions of the directional
type. Recall the restrictions on directional types:

• every assertion is unary, i.e., it has exactly one free variable, and there is a
one -one mapping between the assertions o f each formula and the a rgument
posit ions of the predicate;

• the interpreta t ion of the specification language is such that the set of the
terms specified by every assertion is a type, i.e., it is a decidable set of terms
closed under substitution;

• for each i the i-th assertion of the first formula is e i ther any (p i) , or it is
identical to the i-th assertion of the second formula.

Lifting these restrictions will give us a (syntactic) concept o f predicate annotation.

Definition 4.1. Let L be a first o rder logical language with an interpreta t ion J . A n
assertion for an n-ary predicate p is a formula whose free variables are in the set
{p~ p J . An annotation A for p is any pair (l nh , Syn), where Inh and Syn
are finite sets of assertions, called respectively the inherited assertions and the
synthesised assertions of A.

In the sequel we assume that J is an interpretat ion on a term domain and we
consider an annota t ion A for p to be a specification o f two sets o f atoms, deno ted
S1(A) and S2(A). These sets are defined as follows.

Let 0 be an assert ion in A, and let t~ t n be terms. Deno te by
q J [p J t 1 p J t ~] the formula obta ined f rom ~b by rep lacement of all occur-
rences o f each variable p / b y the term t i, for i = 1 n. The set SI(A) consists o f
all a toms p(t 1 t~) such that for every ~0 ~ Inh the formula ~O(pl/t I p ~ / t ,)
is t rue in ..7. Similarly, the set S2(A) consists o f all a toms p(t I tn) such that for
every ~0~ Syn the formula ~b(p~/t~ pn / t~) is t rue in ~ .

An annota t ion ~ is said to be closed under substitution iff for every term t in
Si(A)(i = 1, 2) and for every substitution tr, t r (t) is in Si(A). For example, consider
the following annota t ion A of a p p e n d / 3 :

({ 2 i s t (appendJ } ,

{ 1 i s t (append 3), i i s t (append 2) ,Vx (e 1 era(x, append 2) ~ e 1 era(x, append 3)) }).

Assume that the predicate list is in terpreted in .Y" as the set o f lists, and the
relat ion e l e m holds for x and y iff x is an e lement of the list y. U n d e r this
interpretat ion:

• S~(A) consists of all a toms of the form append(tl , t2, t3), where t 1,t 2 are
arbitrary terms and t 3 is a list;

• S2(A) consists of all a toms of the form append(t1, t2, t 3) such that t I is an
arbitrary term, and t : , t 3 are lists such that each e lement of t 2 appears also
as an e lement o f t 3.

This annota t ion is closed under substitution, but it is not a directional type.

194 J. BOYE AND J. MAIcUSZYIqSKI

4.2. Program Annotations

We will now discuss the use of annotations for specification of logic programs. An
annotation A for a program P is any pair (lnh , Syn) where Inh and Syn are finite
sets of assertions for the predicates of the program.

For a given interpretation J a given program annotation specifies, as described
above, two sets of atoms S~(A) and S2(A). To establish correctness of a program P
with respect to such a specification we will compare some semantics of P with
these sets of atoms. We will consider two kinds of semantics: the input-output
semantics defined below, and the proof-theoretic semantics ~.~-). The former will
be used to extend to arbitrary annotations the notion of input-output correctness,
defined for directional types in Sect. 2.1. The latter is essentially the semantics used
in the annotation method. We will show that both kinds of semantics coincide in
the case of the annotations closed under substitution.

Definition 4.2. The input-output semantics ~..¢~2 t, of P is a function which maps an
arbitrary set of a toms I into the set of all atoms or(g) such that g is in I, and o-
is a computed answer substitution for the goal ~ g under the SLD-resolution.

An annotation A is input-output correct for P iff J~v(S~(A)) g S2(A).

For example the annotation A of Sect. 4.1 is input-output correct for the
a p p e n d program.

Notice that the notion of input-output correctness of an annotation which is a
directional type, reduces to the notion of input-output correctness of the direc-
tional type, discussed in Sect. 2.1.

We will now relate the annotations to the proof-theoretic semantics. Recall that
the proof-theoretic semantics 9~.~, of a program P is the set of the root labels of
all proof trees of P. An annotation may be used to state a property of a subset of
~ 3 e. In that case, the inherited assertions of the annotation specify the subset
of ,~Je , while the synthesised assertions state the property. This is captured by the
following definition:

Definition 4.3. An annotation A is success correct for P iff

(~ p N SI (A)) C~ 32(A).

For example, the annotation A of Sect. 4.1 is not only input-output correct but
also success correct and describes an interesting property of the proof-theoretic
semantics of the a p p e n d program.

On the other hand, consider the annotation

< {var(append,), l i s t (append3) },

{nat(append3)}),

where v a r is a unary predicate of the metalanguage L, such that v a t (t) is true in
J whenever t is a variable. The annotation is (trivially) success correct for the
a p p e n d program, whatever is the relation n a t , since in no proof tree of the
program the a tom labeling the root has a variable as the first argument. Assume
now that n a t is the set of terms representing natural numbers: {zero, s(zero) }.

D I R E C T I O N A L T Y P E S A N D A N N O T A T I O N M E T H O D 195

In that case the example annotation is not input-output correct, since a call of
a p p e n d whose first argument is a variable and whose third argument is a list, may
succeed but no instance of a list is in nat: . Hence, in general, the input-output
correctness is not implied by the success correctness of the annotation. However,
for annotations closed under substitutions both types of correctness coincide.

Theorem 4.4. Le t A be an annotation closed under substitution. A is input-output
correct for a program P if f it is success correct for P.

PROOF. Assume a is not success correct. Then there exists an a tom g in SI(A)
which is the root label of a proof tree and which does not belong to S2(A). Then,
by the definition of p roof tree and by the completeness of the SLD-resolution, the
empty substitution is a computed answer substitution for the goal ~ g. Hence A is
not input-output correct.

Assume A is not input-output correct. Then there exists an a tom g in S1(A)
such that a substitution ~ is a computed answer substitution for e--g, but o-(g) is
not in S2(A). The SLD-refutat ion producing o- corresponds to a proper skeleton.
Thus t r (g) is the root label of a proof tree. As S~(A) is closed under substitution it
includes tr(g). Hence A is not success correct. []

Notice that the proof of the "if" case does not use the assumption that A is
closed under substitution. However, for input-output correct A not closed under
substitution, the success correctness may sometimes reduce to the trivial case
where no root label of a proof is in S~(A).

The theorem applies in particular to the annotations being directional types.
Thus a method for proving success correctness of annotations can also be applied
for proving input-output correctness of directional types.

4.3. The A n n o t a t i o n M e t h o d

We will now briefly survey a method for proving success correctness of annotations
introduced in [20] for attribute grammars and adapted for the case of logic
programs in [18]. The method is called the annotation method. More recent
presentations can be found in [21] and in [23].

Let A be an annotation. To show that it is success correct one has to check for
every proof tree that if its root label p (t 1 t ,) is in $I(2~) then it is also in S2(A).
This corresponds to checking validity of an implication of the form

~ I A " " A ~ 0 k ~ I A ' " A ~ m ,

where the ~0is (~i's) are the inherited (synthesized) assertions of p in A, instanti-
ated by the substitution { p l / t l , pn/t~}.

The idea of the annotation method is to consider the structure of the proof
trees. Each proof tree is constructed from instances of the clauses of the program,
where the body atoms of a clause give rise to root labels of the subtrees of the tree.
As the number of program clauses is finite, the idea is then to check that the
above-mentioned condition holds for the head atom of the clause, provided that it
holds for every body atom. But also the condition for each of the body atoms is an
implication constructed as discussed above. The interesting case is when the
antecedent of the implication holds, since otherwise the implication holds trivially.

196 J. BOYE AND J. MALUSZY/qSKI

We now introduce the following terminology: the antecedent of the head
implication and the consequents of body implications are called the premise
assertions of the clause. The remaining assertions of the implications will be called
the conclusion assertions of the clause. To achieve the local proof, it suffices to
show that each conclusion assertion follows from some premise assertions of the
clause.

As an example consider the following annotation for the append program:

<{list(append1), list(append2)},

{list(append3}}.

Then for the clause

append ([AI X}, Y, [A I Z}) ~- append (X, Y, Z)

there will be two instances of the annotation:

<{ l i s t ([A I X]) , l i s t (Y) } ,

{ list([AlZ]})

and

< { l i s t (X) , l i s t (Y) } ,

{list(Z)}>.

The premise assertions are:

(a) l i s t ([A l X]) , (b) l i s t (Y) , (c) l i s t (Z) .

The remaining assertions are the conclusion assertions:

(1) l i s t ([A [Z]) , (2) l i s t (X) , (3) l i s t (Y) .

The verification of a clause consists in proving each of the conclusion assertions
from (some of) the premise assertions. More precisely, what is proved are univer-
sally quantified implications. For each of them the antecedent is a conjunction of
some premise assertions and the consequent is a conclusion assertion.

In our example

(1) follows from (c) J ~ VA, Z (l i s t (Z) ~ l i s t ([A l Z])
(2) follows from (a) ~ ,~ VA, X(list([AIX]) ~ l i s t (X))
(3) follows from (b) J ~ V Y (l i s t (Y) ~ l i s t (Y)) .

If the verification conditions hold for a clause, they hold also for all instances of
the clause. One could expect that if the root label of a proof tree satisfies its
inherited assertions, then every node of the tree satisfies all its assertions. For
example, consider the following proof tree of the append program:

append([A] , [Y] , [A, Y})

I
append([] , [Y] , [Y]) .

DIRECTIONAL TYPES AND ANNOTATION METHOD 197

The root label satisfies the inherited assertions of append: list([A]) and
l i s~ ([Y]) . The constituent clause instances in the tree are:

append([Al []], [Y], [A [Y]]) ~-append([] , [Y], [Y]) .

append([] , [Y] , [Y]) .

They give rise to the following mstances of the verification conditions:

~ ¢ b V A , r l i s t ([V]) = l i s t (f A i r])

~ ¢bVA l i s t ([A l []]) = l i s t ({])

Jm VYlist([Y]) ~ list([Y]).

There is, however, a danger that a combination of the local proofs may lead to a
circular argumentation for some proof trees. For example, consider the program:

q(X) *-p(X,X) .

p(X,X).

with the annotation:

({ground(p,)}

{ground(qa),ground(P2)})-

Intuitively this annotation says that if an atom q(t) is the root label of a proof tree
then t must be ground, which is not true. The conditions which are to be checked
are as follows. For the first clause we get:

J ~ V X (g r o u n d (X) ~ g r o u n d (X)) .

This condition will be generated twice: for the only position of the head and for the
first position of the body atom. The same condition will be obtained for the second
clause. The condition is trivially satisfied. Thus, the conclusion assertions of each of
the clauses are implied by their premise assertions. However, in the only proof tree
of this program, the combination of the verification conditions of its clauses gives
the statement

VX(ground(X) ** ground(X))

which does not allow to conclude that X is indeed ground. We now discuss the
circularity phenomenon more abstractly.

Construction of a proof for a conclusion assertion of a clause uses some premise
assertions of this clause. We say that the conclusion assertion depends on these
premise assertions. Thus, in our first example (1) depends on (c), (2) depends on
(a), and (3) depends on (b). Notice that different proofs may give rise to different
dependencies. For example, if the set of premises contains the assertions
l i s t ([A I X]) and l i s t ([B I X]) , then the conclusion l i s t (X) may be obtained by
each of the premises.

Generally we may consider an arbitrary relation between the premises and the
conclusions of a clause, which may or may not properly indicate the premises
sufficient for proving each conclusion. A logical dependency scheme (LDS) for a
given program P and an annotation A is a family of such relations, indexed by the
clauses of P. The relation for a particular clause can be represented by a graph

1 9 8 J. B O Y E A N D J. M A L U S Z Y I Q S K I

spanned on the tree representing a clause. The nodes of the graph are the
assertions of the clause. Thus a tree node is associated with the nodes representing
the assertions of its atom. The arcs of the dependency graph are determined by a
given LDS. Figure 5 shows an LDS for the example annotation of Section 4.1.

Any proof tree is obtained by pasting together instances of the clauses. Hence,
by pasting together the copies of the dependency graphs of the clauses we obtain
the dependency graph of the skeleton. The mechanism is identical to that de-
scribed by the definition of the relation t> s of Sect. 2.4, so that we skip a more
formal presentation.

An LDS is said to be noncircular iff the dependency graph of any skeleton has
no loops. As discussed in Sect. 2.4, this property is decidable and has been studied
in the context of attribute grammars. The well-known techniques for checking
noncircularity of attribute grammars apply directly to LDS's.

Intuitively, an LDS can be seen as a plan for proving success correctness of an
annotation. For each clause the LDS shows the premise assertions which are to be
used for proving its conclusion assertions. The first question is whether the local
proofs can be achieved according to this plan. The other one is whether for some
skeleton the combination of the local proofs may give a circular reasoning, as
illustrated in the example above.

For a given program an annotation is said to be sound with respect to a given
LDS iff the verification condition induced by the LDS hold in every clause. In
other words, each conclusion assertion of a clause should be implied by the
premise assertions on which it depends in the LDS.

The following theorem gives a sufficient condition for success correctness of an
annotation. It captures the essence of the annotation method: for proving success
correctness of an annotation A one has to find an annotation A', possibly
"strenghtening" A, and an LDS which allows to verify h. For a more comprehen-
sive discussion of the annotation method the reader is referred to [23], where

l i s t ([E I L R]) a p p e n d ([E I L] , R , [E I L R]) l i s t ([E I L R l) list(R) V x (e l em(x ,R) -~e le rn (x , l~ lLR])

i

list(LR) append(L , R , LR) list(LR) list(R) V x (elern (x,R) . > elera(x, LR)

list(X) append ([] , X, X) list(X)

"x
"x z ¢/

F|GURE 5. A logical dependency scheme.

list(X) V x (elem (x,X) .> elem(x,X)

D I R E C T I O N A L T Y P E S A N D A N N O T A T I O N M E T H O D 199

Theorem 7.2, p. 353, states not only the soundness but also the relative complete-
ness of the method. In this paper we focus on sufficient conditions for correctness
of directional types. Therefore we do not discuss the completeness issue.

Theorem 4.5. Let A = (Inh, Syn) be an annotation for a program P. I f there exist an
annotation A' = (Inh' , Syn') for P and a noncircular L D S such that

• A' is sound wrt the LDS;

• Sx(A) = SI(A') and S2(A') c_ S2(A)

then A is success-correct for P.

PROOV. Assume that there exist A' and an LDS for P and A' with the required
properties. Let T be a proof tree of P, such that its root label r is in SI(A). We
have to show that it is also in S2(A). For this, it suffices to show that r is in S2(A').

Since SI(A) = SI(A'), then r is in SI(A'). Consider now the dependency graph on
T determined by the LDS. The nodes of the graph correspond to the instances of
the assertions of A', called in the sequel the assertions of T. Due to the
noncircularity assumption the dependency relation on the assertions of T is a
partial ordering. The minimal elements of this ordering are those which do not
depend on any other assertions of the tree, in particular the inherited assertions of
the root. The inherited assertions of the root hold since r is in SI(A'). The
remaining minimal assertions hold by the assumption that A' is sound wrt the LDS.
Consequently, by soundness of A' and noncircularity of the LDS all other asser-
tions of T must also hold. Thus r is in S2(A'), hence also in S2(A). []

The annotation A' plays the role of a lemma, which may be needed to prove A.
However, we are only interested in sufficient conditions for success correctness.
Such conditions can be obtained by strengthening the conditions of the annotation
method. The first step in that direction is to restrict the attention to the cases when
a given annotation A is sufficient to achieve the proof, so that no additional A' is
needed. A further simplification consists in assigning a particular LDS to each
program and annotation. A may or may not be sound wrt this LDS. Thus, the
application of Theorem 4.5 reduces to checking whether for a given program P
and annotation A, A is sound wrt the associated LDS, or not. If yes, A is success
correct for P, otherwise no information is provided by the check. Since success
correctness is equivalent to IO correctness for the directional types (Theorem 4.4),
this approach applies also to verification of directional types.

In the particular case of directional types, there is a one-one correspondence
between the assertions of the annotation and the positions of the predicates. Thus,
the premise assertions of a clause correspond to the input positions of the head
and to the output positions of the body, while the conclusion assertions correspond
to the remaining positions. The well-typing condition of [5, 14] (see also Sect. 2.1)
requires that for every clause the type of an output position in a body atom is
implied by the type of the input positions of the head and by the types of the
output positions of the preceding body atoms. It requires also that the type of an
output position of the head is implied by the types of the input positions of the
head and by the types of the output positions of all body atoms. Thus, for given
program and directional type, it defines a priori a logical dependency scheme. This
kind of dependency is an L-dependency scheme, according to the terminology used
in attribute grammars (see, e.g., [22]) and it is known to be noncircular. Thus,

200 J. BOYE AND J. MALUSZYlqSKI

well-typing requires satisfaction of the verification conditions connected with a
noncircular LDS determined by a given program and a given type annotation. It is
hence a specialization of the annotation method.

By Theorem 4.4, we obtain at once that well-typed programs are IO correct. The
additional result that they are also call correct does not follow automatically, since
the theorem concerns only IO correctness. On the other hand, the theorem may
allow for proving IO correctness of directional types which are not call correct. We
will now develop another specialization of the theorem, applicable to such direc-
tional types.

4.4. S-Well-Typed Programs

We will derive yet another sufficient condition for IO correctness of a directional
type, considered as an annotation. To do this we put a restriction on the use of the
annotation method similar to that used for well-typing: we assume A' = A and we
define a priori an LDS for given program and directional type considered as
annotation. This LDS is, however, different from that used by well-typing.

For a given clause there is a one-one correspondence between the type asser-
tions and the arguments of the predicates. Consider a conclusion assertion ~O in a
clause corresponding to an argument position p of the clause. For construction of
the LDS one may consider all premise assertions of the clause. However for
reducing the risk of circularity it is better to restrict a priori the logical dependen-
cies. Therefore, we propose to assume that ~0 depends only on those premises
whose corresponding positions share variables with p. This suggestion is justified
by the observation that for every valuation for which all these premise assertions
are satisfied, the logical values of the remaining premises are irrelevant for the
satisfaction of ~0.

We formalize the proposed idea by the following notion of sharing-based-well-
typing or S-well-typing, where the imposed a priori logical dependency scheme is
based on sharing of variables between positions of the clauses.

Definition 4.6. For each clause C, including the initial query, its S-dependency
relation "~c is a binary relation on the positions of C, defined as follows:

A(i) "+c B(j)

iff A(j) is an importing clause position in C, B(j) is an exporting clause position
in C, and A(i) and B(j) have at least one common variable.

The relation ~ c is obviously a special case of the local dependency relation t> c
(Definition 2.11). Thus for any skeleton T, the S-dependency relations induce a
compound dependency relation, as explained in Definition 2.12. This compound
dependency relation will be denoted ~ v •

Definition 4. 7. Let P be a directionally typed program, and let C be a clause of P.

DIRECTIONAL TYPES AND ANNOTATION METHOD 201

For a given exporting position e in C:
- - l e t t be the term filling in e, and let T be the type associated to e,
- - l e t i 1 i k be all importing positions of C such that ij ~ c e, and let

t 1 t k be the terms at these positions, typed T 1 Tk, respectively.

The position e is S-well-typed iff

~t~ :T 1 A ... A t k :Tk ~ t : T

the clause C is S-well-typed iff all its exporting positions are S-well-typed;

the program P is S-well-typed iff it is noncircular and all its clauses are
S-well-typed.

From this definition we obtain at once the following result.

Theorem 4.8. Every S-weU-typed program is correctly I 0 typed.

PROOF. As already discussed, the directional types of the program predicates can
be seen as an annotation of the program. The relations -o c provide an LDS for
this annotation. The S-well-typedness condition is a rephrasing of the soundness
and noncircularity requirement for this LDS. Hence, by Theorem 4.5 the annota-
tion is success correct. As the directional types are closed under substitution, by
Theorem 4.4 the annotation is also IO correct. []

We now illustrate the definition for the m a x t r e e program of Sect. 3 with the
directional type:

maxtree/2: (~intbintree, ~intbintree)

maxtree/4: ($intbintree, $int, Tint,

max/4: ($int, ~int, ~int, ~int)

: ($int, $int).

~intbintree)

As discussed in Sect. 3 the program is not well-typed with this directional type. We
now show that it is S-well-typed, and hence that it is IO correct.

According to the definition, the program is S-well-typed iff every clause satisfies
the local verification conditions and the program is noncircular. For a given clause,
every conclusion assertion gives rise to the verification condition. The conclusion
assertions are associated with the exporting positions of the clause.

We will now show that the program is S-well-typed with this directional type.
First consider the clause defining m a x t r e e / 2 . There are three exporting positions
in this clause; consequently we have to prove three type judgements, each of which
is trivial:

Tree:intbintree ~ Tree:intbintree

Max:int ~ Max:int

NewTree:intbintree~ NewTree:intbintree.

202 J. BOYE AND J. MALUSZYIqSKI

In the recursive clause ~ r maxt ree /4 , we have to prove nine type judgements.
Four of these are nontrivial, namely:

tree(Lbl,Lft,Rgt) :intbintree

tree(Lbl,Lft,Rgt) :intbintree

tree(Lbl,Lft,Rgt) :intbintree

Max:intANewLft:intbintree

A NewRgt:intbintree

tree(Max,NewLft,NewRgt) :intbin~ee.

Lft:intbintree

Rgt:intbintree

Lbl:int

It is easy to see that these four type judgements are all true. In the unit clause for
m a x t r e e / 4 there are no type judgements to prove, and in the clauses of rmax
there are only trivial type judgements to prove.

For checking S-well-typedness it is now sufficient to check noncircularity of the
program. An automatic checker would discover that the scheme is strongly noncir-
cular, hence noncircular. For discussion of the concept of strong noncircularity see,
e.g., [22].

5. CALL CORRECTNESS U N D E R THE PROLOG COMPUTATION RULE

We will now consider the problem of call correctness. It may turn out that for a
given directional type the input assertions of certain predicate positions are call
invariants under a given computation rule, while the others are not. In this section
we give a sufficient condition for an input position to be a call invariant. We
restrict our discussion to the Prolog computat ion rule, but the idea presented can
also be extended to other computation rules.

Reconsider the maxtree program in Sect. 3 with the second directional type,
that is:

maxtree/2 : ($intbintree, 1"intbintree)

maxtree/4: ($intbintree, $int, 1"int, 1"intbintree)

max/4: ($int, $int, +int, 1'int)

>_ : (~int, ,1, int).

When executed with the Prolog computation rule, in every call to the recursive
clause for m a × t r e e / 4 , the first position (but not the second) is correctly typed.
Upon success, the third position (but not the fourth) is correctly typed. Intuitively,
the reason is that the dataflow to these positions follows the execution order of the
Prolog computation rule. We say that these positions are well-typed.

Definition 5.1. Let P be a program. 7 f is a set of well-typed clause positions in P if
it satisfies:

(1) Let H be a head of some clause in P. If H(i) is an input position, and
H(i) ~ 7f, then for all body atoms B that unify with H, B(i) ~ 7//.

(2) Let B be a body atom in some clause in P. If B(i) is an output position, and
B(i) ~ 7// then for all heads H that unify with B, H(i) ~ 7~.

D I R E C T I O N A L T Y P E S A N D A N N O T A T I O N M E T H O D 203

(3) Let Ai (i)be an input position in the clause H ~ A 1 A n . I f Aj (i)~T f ,
then its type can be determined f rom the types of input positions in H
which are elements of ~¢F, and the types of output positions in A~ Aj i
which are elements of 7f.

(4) Let H(i) be an output position in the clause H ~ A 1 An.If H(i)~T f ,
then its type can be determined from the type of input positions in H which
are elements of 7f, and the types of output positions in A~ A n which
are elements of ~ .

Lemma 5.2. Given a program with a directional type, there exists a largest set of
well-typed clause positions.

PROOf. Let S 1 and S 2 be two sets of well-typed clause positions, and suppose
S 1 u S 2 is not a set of well-typed clause positions. For example, suppose case (1) is
violated. Then there exists an input position H(i) in some head H, such that
H(i) ~ S~ U S 2, but B(i) ~ S 1 U S 2, for some body atom B that unifies with H.
Obviously, this implies that either S 1 or S 2 contains H(i) but not B(i), which
contradicts our assumption that S 1 and S 2 are sets of well-typed clause positions.
For case (2)-(4) we reason similarly, proving that $1 U S 2 is indeed a set of
well-typed clause positions. Thus there exists a largest set of well-typed clause
positions. []

Definition 5.3. A clause position of P is called well-typed if it belongs to the largest
set of well-typed positions. Let p be a predicate, and let A 1 A n be all atoms
in P which have p as a predicate symbol. The i:th position of p is well-typed if
An(i), A2(i) An(i) all are well-typed.

Let us exemplify Definition 5.3 on the maxtree program. Consider the clause
defining m a x t r e e / 2 . The second clause position of the first body atom is not
well-typed. Since this position is an input position in the body, we check case (3).
We note that the type of the term filling in this position (Max) cannot be
determined f rom the types of the importing clause positions in the head.

Now consider the recursive clause for m a x t r e e / 4 . The second position in the
head is not well-typed, since (1) is not satisfied. This is due to that the position
considered in the previous paragraph is not well-typed. As a consequence, the fifth
position in the head, and the second position in the two body atoms are not
well-typed, and so on.

The m a x t r e e program, with its well-typed clause positions underlined, is shown
in Fig. 6.

We conclude that the first argument of m a x t r e e / 2 , the first and third
arguments of m a x t r e e / 4 , and the first argument of m a x / 2 are well-typed.

Definition 5.4. Given a directional type J of a program P, we obtain gw, the
well-typing compatible with J,, as follows: For every predicate position e:

• if e is well-typed under J , then it is given the same type by 57- w as by

• otherwise, e is given the type any" by 3- w.

204 J. BOYE AND J. MALUSZY/'q'SKI

maxtree(Tree, NewTree) +-
maxtree(Tree, Max, Ha.x, NewTree).

maxtree(void, __, O, void).
maxtree(tree(Lbl , Lf'c, Rgt), Max, MaxSoFar, tree(Max, NewLft, NewRgt)) +-

maxt t ee (L.f t, Max, MaxLf t, NewLft),
maxt ree (Rg~, Max, MaxRgt, NegRgt),
max(Lbl~ MaxLft, MaxRgt, MaxSoFar).

,,ax(_A, B, C, A) ~ A > ~, A > C.
,.ax(A,_B, C, B_) +-- _S > A, B > C.
max(A, _B, c, _c) ~ c > _A, c > B.

FIGURE 6. The well-typed positions of the maxtree program.

Recall the maxtree program, and let J be the previous directional type. Then
5~ w is the following directional type:

maxtree/2 : ($intbintree, I" any)

maxtree/4: (~inbintree, ~any, Tint,

max/4: ($int, $int, $int, Tint)

>_ : ($ i n t , $ i n t) .

any)

Theorem 5.5. Let 3- be a directional type for P. Then J w is a well-typing for P.

PROOF. Let C be the clause H ~ A 1 An, and consider the position Ak(i) . If
this position is importing, we do not need to consider it. If it is exporting, then
according to Definition 2.3 we must be able to infer its type from the types of
importing positions in H, A 1 A~ 1. This is obviously possible if the type of
Ak(i) is any; thus the only interesting case is when Ak(i) has some type different
from any . By the construction of J-w, this case will only arise if Ak(i) is a
well-typed clause position under J .

If Ak(i) is a well-typed clause position, then according to case (3) of Defini-
tion 5.1, we can infer its type from well-typed importing clause positions in
H, A 1 Ak-1- Since these positions are typed the same way by 3 - a n d -Y-w, it
follows immediately that we can infer the type of Ak(i) from the types of importing
positions in H, A 1 Ak- 1.

For exporting positions in H we reason similarly, thus proving that gw is indeed
a well-typing for P. []

We now state some immediate corollaries of the above theorem.

Corollary 5.6. Let P be a directionally typed program, and let G be an atom which is
correctly typed in its input positions. Then for every computed answer substitution (r,
o'(G) is correctly typed in its well-typed output positions.

Corollary 5. 7. Let P be a directionally typed program, and let G be an atom which is
correctly typed in its input positions. Let H *-- A 1 A n be a clause in P. Then in
euery Prolog derivation starting from G if the query (r(Aj An, B 1 B m) is
reached, then the well-typed input positions in (r(A j) are correctly typed.

DIRECTIONAL TYPES AND ANNOTATION METHOD 205

The idea behind the notion of well-typed position is related to the annotation
method. The call correctness concerns properties of incomplete nodes of derivation
trees. The computation rule defines a class of incomplete derivation trees which
will be constructed during the computations. The property of an input argument of
an incomplete node can be proved by the annotation method provided that this
argument logically depend only on the arguments of some complete nodes of the
(incomplete) tree. This raises the question which input arguments of a predicate
fall in this category for a given computation rule. The concept of well-typed
position gives a sufficient condition identifying such arguments for the Prolog
computation rule.

6. TYPE-DRIVEN RESOLUTION

This section presents a model of computation where directional types are used for
controlling execution. This is formalized as a notion of type-driven resolution
(T-resolution for short). The idea is to suspend unification when the arguments are
not correctly typed. In contrast to some Prolog systems (e.g, SICStus [15]), the
suspension is argument-wise rather than the atom-wise.

An interesting question is whether the computation may reach the deadlock
situation where no resolution can be performed, even though the set of the
suspended unifications is not empty. We show that S-well-typedness is a sufficient
condition for a program to be deadlock-free under T-resolution.

The argument-wise suspension can be simulated by the atom-wise suspensions,
by rewriting the program into a "flattened" form, where unification is explicitly
expressed by equation atoms. Such a transformation can be seen as a way of
implementing T-resolution in a Prolog system with atom-wise delays. However, we
believe that T-resolution is a natural concept as concerns enforcing declared
directional types during the execution of the program. This is confirmed by the fact
that the notion of S-well-typedness has a direct application also in this case.

6.1. T-Resolution

We first introduce some auxiliary concepts. In what follows, we assume that the
i-th argument position of a predicate p is always classified as an input or as an
output, and has the associated type T~.

Definition 6.1. A query is either the atom fail or a pair (G; E), where G is a
sequence of atoms, and E is a set of equations. For an initial query (given by the
user), we require that E = ~ .

Definition 6.2. A directionally typed term is a term tagged with a direction and a
type. A directionally typed equation is an equation of two terms with the same
tag.

For instance, x : $ i n t and [1 ,2] : 1' i n t l i s t are two examples of directionally
typed terms.

206 J. BOYE AND J. MALUSZYI~SKI

Def in i t ion 6.3. A directionally typed equation s = t is eligible iff either both s and t
are tagged $ T and s ~ T, or both s and t are tagged $ T and t e T.

Def in i t ion 6.4. Let Q - (G; E) be a query. A T-derivat ive Q ' is a query obtained
f rom Q as follows:

1. If E contains a trivial equation t = t, then Q ' -- (G; E - {t = t});
2. Otherwise, if E contains an eligible equation s = t, and s and t unify with

mgu o-, then Q ' = (o-(G), o-(E)). If s and t do not unify then Q ' = fail.
3. Otherwise, if E contains an equation p (s 1 s n) = p (t 1 tn), where p is a

predicate symbol, then

Q ' = (G ; (E - { p (s l , . . . , s n) = p (t l , . . . , t n) } t) { S 1 = t I s n =tn}).

4. Otherwise, if G = A l Ak, where A 1 =-p(s l , s ,) , and H ~ B 1 B n is
a (renamed) clause, where H = p (t 1 tn), then

Q ' ~ (O 1 Om, A 2 A k ; E U { p (s , p ,) = p (t 1 , t ,)}) .

5. Otherwise, Q has no T-derivative.

A more elaborate concept of the notion of T-derivative might have required
unifiability of the noneligible equations. This would correspond to the usual
satisfiability requirement for the accumulated constraints in a constraint system.
The main result of this section extends easily for such a modified version of
T-resolution.

Def in i t ion 6.5. A T-derivat ion is a sequence of queries Qa, Q2 such that Qj+a is
a T-derivative of Qj. Consider a finite T-derivation which ends with a query for
which no T-derivative exists. The T-derivation is:

• success fu l if it ends with (• ; •);

• dead locked if it ends with (e; E), where E is a nonempty set of equations;

• fa i l ed otherwise, i.e., if it ends with fail or with a query of the form (G; E),
where G is a nonempty sequence.

For successful derivations we can compute answers in the ordinary way by
composing all the substitutions obtained in the derivation. The soundness of
T-resolution follows directly f rom the soundness of SLD-resolution, since the same
equations are solved, albeit possibly in a different order. T-resolution is not
complete since some derivations may deadlock, but Theorem 6.6 constitutes a
restricted completeness result.

Using the "p roo f tree view" on resolution, a successful derivation corresponds
to the case where we can construct a complete skeleton and solve all the associated
equations. A deadlocked derivation corresponds to the case where we can con-
struct a complete skeleton, but there is at least one equation which cannot be
selected for solving.

We illustrate this resolution process on an example. Recall the maxtree

program of Sect. 3, with the directional type of Sect. 4.4. Consider the initial
T-query

(maxtree (tree (5, void, void) , NewTree) ; { }) .

D I R E C T I O N A L TYPES A N D A N N O T A T I O N M E T H O D 207

NO

maxtree
I NewTree]
tree(5,void,void),

NewTreel

maxtree [tree(5,void,void), Maxl, Maxl, NewTreel 1

NI _]_
FIGURE 7. An incomplete proof tree.

It has only one T-derivative, which through the steps (4), (3), (2) and (1) of
Definition 6.5 reduces to the query:

(maxtree (tree (5, void, void) ,Maxl ,Maxl, NewTreel) ;

{ NewTree = NewTreel })

the equation NewTree:NewTreel is left unsolved since NewTreel is not yet
correctly typed. We can depict this situation with the incomplete proof tree shown
in Fig. 7. (Two terms stacked upon each other indicate an unsolved equation.)

We proceed by resolving the only atom in the query (thus expanding the node
N 1). Some T-derivation steps later we obtain the incomplete proof tree depicted in
Fig. 8.

When we now resolve the atom max (5 , 0 , 0 ,WidSoFar2) at node N2, the
variable WidSoFar2 gets instantiated to 5. We can now solve the equation

Maxl :WidSoFar2

maxtree

NO

NewTree]
tree(5,void,void),

NewTreel

maxtree

N1

maxtree void, _, 0, void]

Maxl Maxl NewTreel]
tree (5, void, void) ,] Max2 MaxSoFar2 tree(Max2, void, void)

F 7
max [5, 0, 0, MaxSoFar2|

L J

maxtree[void, _, 0, void]

FIGURE 8. Another incomplete proof tree.

2 N2

208 J. BOYE AND J. MALUSZY/qSKI

maxtree [tree(5,void,void), tree(5, void, void)I

maxtree [tree(5,void,void), 5

maxtree I void, __, O, void I

maxtree I

5 , tree(5, void, void)]

max [5 , O, O, 5

void, _, 0, void]
5>=0 5>=0

FIGURE 9. A complete proof tree.

at node N1, since WidSoFar2 is intantiated to a correctly typed term (of type
i n t) . We can then solve (in the following order) the equations

Maxl:Max2, tree(Max2,void,void) :NewTreel

(at node N 1), and finally the equation

NewTr ee: NewTr e e 1

at node N O . The complete proof tree is depicted in Fig. 9.
Hopefully this example has conveyed the general idea of type-driven resolution:

unification is performed argumentwise in "dataflow order."

6.2. A Sufficient Condition for Deadlock-Freeness

The possibility of deadlock when executing a program with T-resolution, raises the
question if it is possible to detect the cases where T-resolution really computes all
answers, i.e., where deadlock does not occur. It turns out that the notion of
S-well-typedness is a sufficient condition for that.

Theorem 6.6. Let P be a program which is S-well-typed, and let G be an atom which is
correctly typed in its input positions. Then no T-deriuation starting from (G; Q) will
deadlock.

PROOF. Assume the contrary. Then starting from G, we can construct a complete
skeleton T such that at least one equation will never be selected for solving.

Since P is noncircular, the "~T relation is a partial ordering. We will prove by
induction on "~r that it is possible to select equations until we reach fail, or until
all equations are selected and solved. Hence it is impossible to construct a
deadlocked derivation.

D I R E C T I O N A L TYPES A N D A N N O T A T I O N M E T H O D 209

Base step. The minimal elements of --)r are (1) the input positions at the root of
the T, and (2) the positions associated with an equation c = t, or t = c, where c is a
term occurring on an exporting position of a clause D, and c does not depend on
any importing position of D. In case (1), by assumption the input positions of the
initial query are correctly typed, so these equations are eligible. In case (2), the
type judgement for c has an empty premise; hence c is correctly typed, and
the equation c = t is eligible.

Induction step. Let n i be a node position associated with the equation s = t,
where s is a term occurring at an exporting position in some clause D. Let dep(n i)
be the set of all node positions related to ni under the ">T ordering. Assume that
at some step of the computation all not yet solved equations at the positions in
dep(n i) are eligible. If any of them has no solution, we have reached fail. Otherwise
all of these equations can be solved. Let o" be their mgu. Since the program is
S-well-typed, o-(s) is correctly typed, and the equation o-(s) = or(t) is eligible. []

The following theorem is a direct corollary of the previous results and defini-
tions.

Theorem 6. 7. Let P be a program which is S-well-typed, and let g be an atom which is
correctly typed in its input positions. Then for every answer o" computed by
T-resolution, o'(g) is correctly typed in its output positions.

PROOF. As T-resolution is sound, the result follows by Theorem 4.8. []
The use of directional types for control provides a synchronization method for

concurrent logic programming. Here T-resolution seems to be better suited than
an atom-wise delaying strategy. Consider for instance the program shown in
Fig. 10, modeling a producer-consumer process. A producer freely produces some
items i which are to be consumed by a consumer. The consumer writes a
confirmation c for every consumed item, and the confirmation is read by the
producer. The process terminates after the producer has finished the production
and the consumer has consumed all produced items.

pc 4- producer(X, Xl), consumer(X, Xl).

p roduc e r ([i , ilT], [Xl, X2[T1]) 4-
read(X1),
producer([i]T], [X21T1]).

producer([i], [X]) 4-
read(X).

consumer([Xl, X2[T], [Y1, Y2IT1]) 4-
write(X1, Y1),
con u er([X21X], [Y21T1]).

consumer([X]) [Y]) 4-
write(X, Y).

write(i ,c) .
read(c).

FIGURE
gram.

10. A producer-consumer pro-

210 J. BOYE AND J. MALUSZYI<ISKI

The producer and the consumer are binary predicates, whose arguments reflect
their information about the state of production and the state of consumption. To
control the computat ion we use the following directional types:

producer: (?item, $conf)

consumer: ($item, 1"conf)

read: (~ {c})

write: ($ {i}, I" {c) ,

where

• the type i t e m consists of all terms of the form lilt] where i is a constant
(representing one produced item) and t is an arbitrary term;

• the type c o n f consists of all terms of the form [clt] where c is a constant
(representing a confirmation of consumption) and t is an arbitrary term.

If atom-wise delays are used, the query p c would lead to deadlock. However, the
program is S-well-typed, and hence every T-derivation starting from p c is dead-
lock-free.

A T-derivation simulates the interaction of the producer and the consumer
described above. If the actual goal contains a call to the producer, then the first
argument of this call can be resolved. Thus the producer can produce freely until it
terminates. The communicat ion with the consumer is obtained at the top level of
the skeleton. Each produced item causes further instantiation of the list structure
that x is bound to, and gives a possibility for one consumption step (that is, one
delayed equation corresponding to the first argument of consumer in some node,
becomes eligible). This gives the possibility of writing a confirmation in the second
argument of the same node. The confirmation is passed back to the top level of the
tree, and gives the producer the possibility of reading the confirmation by the
producer.

7. EXAMPLES

In this section we give some more examples of programs which are not well-typed
(given an "intuitive" typing), but which are S-well-typed.

7.1. The Dutch Flag Problem

A program solving Dijkstra's "Dutch flag problem" [24, Chapter 14] is given in
Sterling and Shapiro [43, p. 246]. In this section we will describe a version of this
program. The problem reads:

'Given a list of elements colored red, white, and blue, reorder the list so that the red
elements appear first, then all the white elements, followed by the blue elements. This
reordering should preserve the original relative order of elements of the same color.'
For example, the list [red(l), white(2), blue(3), red(4), white(5)] should be reordered to
[red(l), red(4), white(2), white(5), blue(3)]. [43, p. 245]

DIRECIION~d~ ~PES PdqD ANNOTATION MEqqqOD 211

A straightforward solution is to build three separate output lists, one for each
color, as follows:

distribute/4: ($1ist, ~list, ~list, ~list)

distribute([red(X) IXs], [red(X) IRs], Ws, Bs)

distribute(Xs, Rs, Ws, Bs) .

distribute([white(X) [Xs], Rs, [white(X) [Ws], Bs)

distribute(Xs, Rs, Ws, Bs) .

distribute([blue(X) IXs], Rs, Ws, [blue(X) IBs])

distribute(Xs, Rs, Ws, Bs) .

d i s t r i b u t e ([] , [] , [] , []) .

The top predicate becomes:

dutch/2: ($1ist, ~list)

dutch(L, RWB)

distribute(L, R, W, B),

append(R, W, RW),

append(RW, B, RWB) .

Note that when the whole input list has been processed (the base case of
d i s t r i b u t e is applicable), the tails of the output lists are unified with the empty
list. A more efficient solution, without the two calls to a p p e n d , is obtained if we
use open lists. We will now modify d i s t r i b u t e in the following way: For every
output list, we add an extra argument. When we reach the end of the input list, the
tail of each output list will be unified with its extra argument In this way, we may
unify the tail of an output list with something else than the empty list.

Now, to solve the problem, we only have to call d i s t appropriately: the tall of
the " red" list structure should be the "white" list structure, the tail of the "white"
list structure should be the "blue" list structure, and the tail of the "blue" list
structure should be []. The program is listed in Fig. 11.

d i " t / 7 : ($1ist, Tlist, J, list, Tlist, $1ist, 1"list, $1ist)

dist([red(X)lXs], [red(X)lRs], RsTail, Ws, WsTail, Bs, BsTail) +--
dist(Xs, Rs, RsTail, Ws, WsTail, Bs, BsTail).

dist([white(X)IXs], Rs, RsTail, [white(X)IWs], WsTail, Bs, BsTail) +-
dist(Xs, Rs, RsTail, Ws, WsTail, Bs, BsTail).

dist([blue(X)IXs], Rs, RsTail, Ws, WsTail, [blue(X)IBs], BsTail) ~-
dist(Xs, Rs, RsTail, Ws, WsTail, Bs, BsTail).

dis t ([] , R, R, W, W, B, B).

d u t c h / 2 : ($1ist, 1"list)

dutch(L, RWB) ~-
dist(L, RWB, WB, WB, B, B, []).

FIGURE 11. A program solving the Dutch flag problem.

212 J. BOYE AND J. MALUSZYNSKI

The reader may verify that the program is S-well-typed; hence whenever
d u t c h / 2 is called with the first argument bound to a list, the second argument
will be a list upon success.

7.2. A Small Typesetting Program

In this section, we will illustrate how directional types and the S-well-typing
condition can be u s e d t o reason about programs of the language Gaplog [31]. This
is an extension of Prolog which allows for connection of function symbols with
external functional procedures. A term having such a symbol as its main functor
will be called an interpreted term. For example, in the program discussed below, we
will assume that the functor + is interpreted as a function computing the sum of
two integers. The language of definite clauses with interpreted function symbols
has a clean declarative semantics, as explained in [31]. Operationally, the inter-
preted terms are handled as follows: Whenever such a term (e.g., s + t) is unified
with another term u, it is checked that s and t are both ground terms. If so, s + t is
evaluated, and the result is unified with u. Otherwise, the unification is delayed
until both s and t become ground. For a detailed account of this kind of
operational semantics see Matuszyfiski et al. [31] (similar suggestions can be found
in [2, 3, 33]). We note that the standard Prolog arithmetic is also a mechanism for
evaluation of interpreted terms but it does not allow for delaying of insufficiently
instantiated arguments of the arithmetic operations.

The operational semantics described above can be seen as a restricted form of
T-resolution (using only the type g rou n d) , combined with evaluation of inter-
preted terms. The restriction is that only arguments including interpreted function
symbols are delayed, while the others are unified without delay. In [10], a condition
that guarantees deadlock-free execution was given. The condition is a special case
of S-well-typedness and can be summarized as follows. Let P be a directionally
typed program, where the only type used is ground. Assume that P is (1) S-well-
typed and (2) all its interpreted terms appear only at exporting positions. Then any
execution of P starting with a goal having the properties (1) and (2) will not
deadlock.

The restriction (2) reflects the limitations of the operational semantics. For
example, the equation x + 1 = 2 cannot be solved since the interpreted term x + 1
is not ground and cannot be evaluated. Thus, in contrast to the usual unification,
groundness of one side of the equation does not guarantee that the other side will
also become ground. On the other hand, S-well-typedness gives a sufficient condi-
tion for eventual groundness of all exporting positions.

Consider a simple program which typesets text tables. The input to the program
consists of a description of the text table as a list of lists, for instance:

[[this, is, a, text], [another, line, of, text]].

The produced output consists of a list of typesetting commands:

[[put(l,l,this), put(l,8,is , put(l,12,a) ,

put (l,14,text)] ,

[put(2,l,another) , put(2,8 line), put(2,12,of),

put (2,14, text)]],

DIRECTIONAL TYPES AND ANNOTATION METHOD 213

where the two first arguments to p u t represent the line and the indentation on the
line. In this case, the output list of typsetting commands represents the table:

this is a text
another line of text

Note that every column is supposed to have the width of the longest word in the
column. Obviously, this information is not available until we have processed the
whole input list. Thus, the typesetting problem is intuitively a "two-pass" problem,
just like the maximum-labeling problem of Sect. 3. However, by using logical
variables as pointers, we can solve the problem in one pass. The solution is
reminiscent of (though more complicated than) that of the maxtree program.

The program is given in Fig. 12.
The predicate t y p e s e t r o w / 6 typesets one row of the table. We assume that

no o f c h a r s is a predicate that, given an atom a in the first argument, returns
the number of characters of the textual representation of a in the second
argument. The arguments of t y p e s e t r o w / 6 represent (from left to right) the
current line, the current indentation on the line, the description of one row of the
table (e.g., [t h i s , i s , a , t e x t]) , a list containing the widths of each column, a
list containing the number of characters in each element of the row, and the output
list of typesetting instructions. Conceptually, the first four arguments represent the
input to the predicate, while the last two arguments represent the output. Thus the
natural directional type for typesetrow (using only the type ground) would be:

typesetrow/6: (~ground, Sground, Sground, $ground, '['ground,

ground)

no of chars/2 : ($ground, Tground) .

typesetrow/6 is called from typesettab/6.
The arguments of typesettab/6 represent (from left to right) the current

line, the current indentation on the line, the description of the whole table, a list
containing the widths of each column, a list containing the widths of the widest
element in each column in the rows processed so far, and the output list of
typsetting instructions (for simplicity the output list is not flattened).

typesetrow(_, _, [], [], [], []).

typesetrow(Line, Ind, [Text]Ts], [ColWidlCs], [NCharslNs],
~ u t (Line, Ind, Text)]Insts]) 4--

no_of_chars (Text, NChars),
typesetrow(Line, Ind + ColWid, Ts, Cs, Ns, Insts).

t y p e s e t t a b (. . . . [],X,X, []).

t ypese t t ab (L ine , Ind, [RowtRowa], ColWidtha, WidSoFar, [InstRow]Insta]) 4-
typesetrow(Line, Ind, Row, ColWidths, Widths, InstRow),
compute_max(Widths, WidSoFar, NewWidSoFar),
typesettab(Line/r 1, Ind~ Rows~ ColWidths, NewWidSoFar, Insts).

FIGURE 12. A typesetting program.

2 1 4 J. B O Y E A N D J. MALUSZY1NSKI

Conceptually, the first, second, third and fifth arguments represent input to the
predicate, while the fourth and sixth arguments represent output. Thus a natural
directional type is:

typesettab/6: (+ground, +ground,+ground,~ground, +ground,

ground) .

We assume that compute_max is a predicate that, given two lists of integers
[i 1 i n] and [Jx Jn], returns the list [max(il,Jl) ,max(in,j,)] (we omit the
definition of c o m p u t e m a x) . Thus the directional type for c o m p u t e _ m a x is:

compute_max/6: (+ground, +ground, ~ground).

The directional type describes groundness properties of the program. It tells for
instance that if we call the program with the goal

typesettab(l,l, [[this,is,a,text] ,

"[another, line,of,text]],_, [O,O,O,O],I)

then the variable x will be bound to a ground term upon success. This reflects our
intention, since x is supposed to be bound to the resulting list of typesetting
instructions.

Note that the widths of each column are not computed until the whole table has
been processed. In the second clause of typesetrow, the variable ColWid will be
unbound in the addition I n t + ColWid, when execution reaches this point. As
explained, the computation of I n d + Co lWid will suspend until I n d and ColWid
are bound to ground values. However, since both the program and the goal are
S-well-typed, and since interpreted terms appear at exporting positions only, no
computations will suspend indefinitely.

8. DISCUSSION AND RELATED WORK

8.1. General Proof Methods for Run-Time Properties
As pointed out in the introduction, directional type checking for Prolog can be
seen as a special case of proving run-time properties of the Prolog program. The
early papers addressing this problem are [9, 17, 26]. In the approach of [26],
input-output assertions are assigned to all predicates. Correctness of the assertions
is proved by showing a verification condition locally for each clause. The method of
[9] can be seen as a special case of [26], where the properties described by the
assertions are closed under substitution. The input assertions of [26] may express
arbitrary relations between the predicate arguments at call, and the output asser-
tions may express any relations between the predicate arguments at success and its
arguments at call. Thus, the directional types are assertions such that

• both the input and the output assertions are tuples of types closed under
substitution;

• for every argument one can only specify either its input assertion or its
output assertion, but not both.

DIRECTIONAL TYPES AND ANNOTATION METHOD 215

The second aforementioned paper [17] on proving runtime properties of Prolog
programs assigns assertions to program points. This shows another, still unexplored
way of dealing with directonal types: by assigning them to occurrences of the
predicates in program clauses rather than to predicates. However, for large
programs it may be rather difficult for the user to specify this kind of directional
type.

The methods mentioned above are specialized for SLD-resolution with the
Prolog computation rule, and aim at proving both the IO correctness and the call
correctness of a given specification. Our approach to directional types separates
clearly these two aspects of correctness. Hence we are able to prove IO correctness
of directional types which are not call correct under the Prolog computation rule.
The methods mentioned above do not apply to such directional types.

Most of the papers on directional types consider types closed under substitution.
We have shown that under this assumption IO correctness coincides with success
correctness and can be proved by the annotation method. Thus, specializations of
the annotation method can be used for proving correctness of directional types. We
have shown in Sect. 4.3 that the well-typing criterion presented in the literature can
be seen as such a specialization. There is no clear reason why the assertions of a
directional type should only concern individual arguments of the predicate. This
has been pointed out also in [14]. As long as the assertions are closed under
substitution, their IO correctness can be proved by the annotation method,
regardless of whether they are unary or not. Soundness of any new sufficient
condition obtained by a new specialization of the annotation method would
automatically follow from the soundness of the annotation method.

The call correctness for Prolog computation rule and the IO correctness of
assertions not closed under substitution can still be proved by the method of [26].
Actually the method of [26] is complete [25], so that its verification condition can
be seen as the best possible well-typing for Prolog execution rule.

8.2. Well- Typing vs S- Weft- Typing

As already discussed, a directional type can be seen as an annotation. To prove its
IO correctness it suffices to find a logical dependency scheme which is sound and
non-circular. The well-typing criterion implicitly uses an LDS which is always
noncircular, since the local dependencies between positions of the body atoms are
always directed from left to right. This was shown in Sect. 4.3.

S-well-typing does not imply well-typing, since only IO correctness is guaran-
teed, while well-typing implies also call correctness. On the other hand, well-typing
does not imply S-well-typing. One of the reasons is that the dependency relation of
a well-typed program may be circular. For example, consider the program:

q(X) ~-p(X,X) .

p(X,X) .

with the directional type:

q: ($ground)

p: (~ground, Tground) .

216 J. BOYE AND J. MALUSZYI'qSKI

The dependency relation of the program is circular, hence the program is not
S-well-typed but it is well-typed. Another reason concerns "trivially" well-typed
programs, where the premises of a verification condition are never satisfied. For
example, consider the program:

p ([]) ~ q (x) .
q(X) .

with the directional type

p: ($int)

q: ($1ist)

The program is well-typed since:

[] :int~X:list

However, it is not S-well-typed since the verification condition

true ~ x : list

is not true.
A more comprehensive discussion on the relation between well-typing and

S-well-typing can be found in [12].

8.3. Related Work on Directional Types

All papers on directional typing known to the authors concern Prolog computation
rule and thus are not directly applicable to other execution methods. Our approach
makes it possible to discuss various execution principles in one uniform framework.
We are also able to prove some interesting properties of programs using incom-
plete data structures. For such programs it is usually rather difficult to provide
nontrivial well-typings.

The concepts of S-well-typing and of well-typed position generalize conditions
proposed in [23] for groundness analysis of definite programs. The "data-driven"
programs of [23] are well-typed programs, such that the only type used is the type
g r o u n d of all ground terms. Similarly, the "simple" programs of [23] are S-well-
typed programs with the only type g r o u n d . An extension of the concept of simple
program has been used for groundness analysis and for analysis of delays in the
language Gaplog [31] integrating logic programs with external procedures in a
clean declarative way. A combination of similar kind of groundness analysis with
some properties of unification has been used for studying occur-check, e.g., in [8],
termination, e.g., in [38], AND-parallelism [19], and the question whether a
program can be executed with pattern matching instead of full unification, e.g.,
in [6].

The first available implementation of the language Mercury [42] uses a condition
akin to well-typing. All clauses must be well-typed (with the type g round) , possibly
after reordering the literals of the clause. However, the S-well-typing condition can
also handle clauses whose body literals cannot be reordered to obtain well-typing,
as shown by the example programs of Sects. 3 and 7.

Existence of some systems that perform directional type checking is reported in
the literature.

D I R E C T I O N A L T Y P E S A N D A N N O T A T I O N M E T H O D 217

In the context of our work, Nixon [36] implemented a system that allows for
defining new regular types and for associating a directional type with user-defined
predicates. The predefined predicates have standard directional types, which can be
changed by the user. The system can check the correctness of a directional type
with respect to either the well-typing condition or the S-well-typing condition, and
issues a warning for every type judgement it is unable to prove. The system handles
full Prolog.

The system of Rouzaud and Nguyen-Phoung [40] checks well-typing of pro-
grams, using a rather complicated type system. The system by V6tillard [44] checks
well-typing of constraint logic programs (over the reals). The problem of directional
type checking has also been addressed by Aiken and Lakshman [1], but there is no
reference to an existing implementation.

9. CONCLUSIONS

We have separated two aspects of directional types: the input-output characteriza-
tion of the program, which is independent of the computation rule, and the
characterization of the call patterns, which strongly depends on the execution
model. We have shown that the input-output correctness of a directional type can
be proved by the annotation method of Deransart [21, 23], provided that the types
are closed under substitution. We have also shown that the method can be
specialized to obtain relatively simple sufficient conditions for IO correctness. The
S-well-typedness condition introduced in this paper is an example of such a
specialisation.

We also considered directional types as a tool for controlling execution of logic
programs. The idea of such execution is based on argument-wise delaying of
unification of the arguments that are not correctly typed. This mechanism, called
T-resolution, is more fine-grained than the atom-wise delaying used in some Prolog
systems. It suspends only the unification of single equations, but it does not
suspend the resolution steps as done in the Prolog systems. The idea of delaying
the resolution of an equational constraint until it becomes sufficiently instantiated
resembles the concept of the ask primitive in concurrent constraint programming
[41].

T-resolution is sound but not complete, since the computation may deadlock. In
particular, if the imposed directional type restricts the least Herbrand model of the
program, the elements of the model which are not correctly typed according to the
output assertions cannot be computed by T-resolution. We have shown that
S-well-typing gives a sufficient condition for deadlock-free execution under T-reso-
lution. The notion of S-well-typing uses a concept of dependency relation similar to
that introduced for attribute grammars, and refers to the techniques of attribute
grammars for checking properties of this relation.

Data flow in S-well-typed programs is well characterized by the dependency
relation. Therefore the delays under T resolution are predictable in compile time.
Consequently, they can be compiled out, at least in some cases, by source-to-source
transformations, similar to those described in our previous work [11], where the
resulting logic program is executed without delays with the Prolog computation
rule. An alternative approach to implementation of S-well-typed programs may rely
on scheduling techniques used in attribute evaluators. A proposal for the use of

218 J. BOYE AND J. MALUSZYI~SKI

such techniques in logic p rog ramming is the multi-pass execution of logic programs
discussed [37]. In this way one would achieve the effects of T-resolut ion by
computa t iona l mechanisms without dynamic delays. This topic is, however, outside
of the scope of this paper.

It may be interesting to extend the presented techniques for the case of
po lymorphic directional types and also to address the problem of type inference.
Some prel iminary results were repor ted in [12]. In this context relation to abstract
in in terpreta t ion techniques is a natural question.

The authors would like to thank many persons who substantially contributed to this work. The first idea
of writing this paper came from discussions with Gilberto Fil& The comments of Pierre Deransart on
the initial version allowed us to substantially improve the presentation. We gratefully acknowledge the
comments given by W~odek Drabent, G6rard Ferrand, Eric V6tillard and the anonymous referees.

REFERENCES
1. Aiken, A. and Lakshman, T. K., Directional Type Checking of Logic Programs in: Le

Charlier (ed.), Static Analysis--Proceedings of the First International Static Analysis
Symposium (SAS'94), LNCS 864, Springer-Verlag, 1994, pp. 43-60.

2. A'it-Kaci, H. and Podelski, A., Towards a Meaning of LIFE, Journal of Logic Program-
ming 16:195-234 (1993).

3. A'it-Kaci, H., Lincoln, P., and Nasr, R., LeFun: Logic, Equations and FUNctions, in:
Proceedings of the 4th IEEE International Symposium on Logic Programming, San Fran-
cisco, IEEE Computer Society Press, 1987, pp. 17-23.

4. Apt, K. (ed.), Logic Programming--Proceedings of the Joint International Symposium and
Conference, Washington, DC, MIT Press, 1992.

5. Apt, K., Declarative Programming in Prolog, in: Proceedings of the International Sympo-
sium on Logic Programming, Vancouver (Canada), MIT Press, 1993, pp. 12-35.

6. Apt, K. and Etalle, S., On the Unification-Free Prolog Programs, in: Proceedings of the
Conference on Mathematical Foundations of Computer Science, Berlin, Springer-Verlag,
1993, pp. 1-19.

7. Apt, K. and Marchiori, E., Reasoning about Prolog Programs: From Modes through
Types to Assertions, Formal Aspects of Computing 3:743-765 (1994).

8. Apt, K. and Pellegrini, A., Why the Occur-Check Is Not a Problem, in: Proceedings of
the 4th International Symposium on Programming Language Implementation and Logic
Programming, Leuven (Belgium), LNCS 631, Springer-Verlag, 1992, pp. 69-86.

9. Bossi, A. and Cocco, N., Verifying Correctness of Logic Programs, in: Proceedings of
TAP-SOFT'89, LNCS 352, Springer-Verlag, 1989, pp. 96-110.

10. Boye, J., S-SLD-Resolution--An Operational Semantics for Logic Programs with Exter-
nal Procedures, in: [32], pp. 383-393.

11. Boye, J., Avoiding Dynamic Delays in Functional Logic Programs, in: Proceedings of the
5th International Symposium on Programming Language Implementation and Logic Pro-
gramming, LNCS 714, Springer-Verlag, 1993, pp. 12-27.

12. Boye, J., Directional Types in Logic Programming, Ph.D. Thesis No. 437, Link6ping
Studies in Science and Technology, 1996.

13. Boye, J. and Matuszyfiski, J., Two Aspects of Directional Types, in: L. Sterling (ed.),
Logic Programming--Proceedings of the 12th International Conference, MIT Press, 1995,
pp. 747-761.

14. Bronsard, F., Lakshman, T. K., and Reddy, U., A Framework of Directionality for
Proving Termination of Logic Programs, in: [4], pp. 321-335.

DIRECFIONAL TYPES AND ANNOTATION METHOD 219

15. Carlsson, M., WidSn, J., Andersson, J., Andersson, S., Boortz, K., and SjSland, T.,
SICStus Prolog User's Manual, SICS, Box 1263, S-164 28 Kista, Sweden.

16. Clark, K., Predicate Logic as a Computational Formalism, Technical Report 79/59,
Imperial College, London, 1979.

17. Colussi, L. and Marchiori, E., Proving Correctness of Logic Programs Using Axiomatic
Semantics, in: K. Furokawa (ed.), Logic Programming--Proceedings of the 8th Interna-
tional Conference, MIT Press, 1991, pp. 629-642.

18. Courcelle, D. and Deransart, P., Proofs of Partial Correctness for Attribute Grammars
with Application to Recursive Procedures and Logic Programming, Information and
Computation 2 (1988).

19. Dembifiski, P. and Mahaszyfiski, J., AND-Parallelism with Intelligent Backtracking for
Annotated Logic Programs, in: Proceedings of the 1985 IEEE Symposium on Logic
Programming, Boston, IEEE Computer Society Press, 1985, pp. 29-38.

20. Deransart, P., Logical Attribute Grammars, in: Proceedings of IFIP 83, North-Holland,
1983, pp. 463-469.

21. Deransart, P., Proof Methods of Declarative Properties of Definite Programs, Theoreti-
cal Computer Science 118:99-166 (1993).

22. Deransart, P., Jourdan, M., and Lorho, B., Attribute Grammars Definitions, Systems and
Bibliography, LNCS 323, Springer-Verlag, 1988.

23. Deransart, P. and Matuszyfiski, J., A Grammatical View on Logic Programming, MIT
Press, 1993.

24. Dijkstra, E., A Discipline of Programming, Englewood Cliffs, NJ, Prentice-Hall, 1976.
25. Drabent, W., On Completeness of the Inductive Assertion Method for Logic Programs,

Unpublished note, 1988. Can be obtained from wdr@ida, liu. se.

26. Drabent, W. and Matuszyfiski, J., Induction Assertion Method for Logic Programs,
Theoretical Computer Science 59:133-155 (1988).

27. Falaschi, M., Levi, G., Martelli, M., and Palamidessi, C., Declarative Modelling of the
Operational Behaviour of Logic Languages, Theoretical Computer Science 69(3):289-318
(1989).

28. Jazayeri, M., Ogden, W., and Rounds, W., The Intrinsically Exponential Complexity of
the Circularity Problem for Attribute Grammars, Journal of the ACM 18:679-706
(1975).

29. Knuth, D., Semantics of Context-Free Languages, Mathematical Systems Theory
2:127-145 (1968). Correction in ibid. 5:95-96 (1971).

30. Lloyd, J. W., Foundations of Logic Programming, 2nd ed., Springer Verlag, Berlin, 1987.
31. Matuszyfiski, J., Bonnier, S., Boye, J., K~gedal, A., Klulniak, F., and Nilsson, U., Logic

Programs with External Procedures, in: Logic Programming Languages, Constraints',
Functions, and Objects, MIT Press, 1993, pp. 21-48.

32. Maiuszyfiski, J. and Wirsing, M. (eds.), Programming Language Implementation and Logic
Programming--Proceedings of the 3rd International Symposium, Passau (Germany), LNCS
528, Springer-Verlag, 1991.

33. Naish, L., Adding Equations to NU-Prolog, in: [32], pp. 15-26.
34. Naish, L., Coroutining and the Construction of Terminating Logic Programs, Report

92/5, Department of Computer Science, University of Melbourne, 1992.
35. Naish, L., A Declarative View of Modes, Report 96/7, Department of Computer

Science, University of Melbourne, 1996.
36. Nixon, L., A Directional Type Checker for Prolog, Master's Thesis LiTH-IDA-Ex-9602,

LinkSping University, 1996.
37. Paakki, J., Multi-Pass Execution of Functional Logic Programs, in: Conference Record of

the 21st ACM Symposium on Principles of Programming Languages (POPL), Portland,
ACM Press, 1994, pp. 361 374.

38. Pliimer, L., Termination Proofs for Logic Programs, LNAI 446, Springer Verlag, Berlin,
1990.

39. Reddy, U. S., A Typed Foundation for Directional Logic Programming, in: E. Lamma
and P. Mello (eds.), Extensions of Logic Programming, LNAI 660, Springer Verlag,
Berlin, 1992, pp. 282-318.

220 J. BOYE AND J. MALUSZYIqSKI

40. Rouzaud, Y. and Nguyen-Phoung, L., Integrating Modes and Types into a Prolog Type
Checker, in: [4], pp. 85-97.

41. Saraswat, V. A., Concurrent Constraint Programming Languages, MIT Press, 1990.
42. Somogyi, Z., Henderson, F., and Conway, T., The Execution Algorithm of Mercury, an

Efficient Purely Declarative Logic Programming Language, Journal of Logic Program-
ming 29:17-64 (1996).

43. Sterling, L. and Shapiro, E., TheArt ofProlog, MIT Press, 1986.
44. V6tillard, E., Utilisation de D~clarations en Programmation Logique auec Contraintes,

Ph.D. Thesis, Universite D'Aix-Marseille II, Faculte de Sciences de Luminy, 1994.

