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Abstract Monitoring of groundwater quality is one of the important tools to provide adequate

information about water management. In the present study, artificial neural network (ANN) with

a feed-forward back-propagation was designed to predict groundwater salinity, expressed by total

dissolved solids (TDS), using pH as an input parameter. Groundwater samples were collected from

a 36 m depth well located in the experimental farm of the City of Scientific Researches and Tech-

nological Applications (SRTA City), New Borg El-Arab City, Alexandria, Egypt. The network

structure was 1–5–3–1 and used the default Levenberg–Marquardt algorithm for training. It was

observed that, the best validation performance, based on the mean square error, was 14819 at epoch

0, and no major problems or over-fitting occurred with the training step. The simulated output

tracked the measured data with a correlation coefficient (R-value) of 0.64, 0.67 and 0.90 for train-

ing, validation and test, respectively. In this case, the network response was acceptable, and simu-

lation could be used for entering new inputs.
ª 2014 Hosting by Elsevier B.V. on behalf of National Institute of Oceanography and Fisheries.
1. Introduction

In Egypt, water supply is the most important factor to be stud-

ied where agriculture and industrial sectors are the essential
roles in the development of human civilization (Seyyed et al.,
2013). Additionally, in arid and semi-arid regions groundwater
is the major source for domestic and irrigation purposes (Zare
et al., 2011). Water table is the level below the land-surface

where all the voids in soil and rock are filled with water. This
saturated zone is called groundwater (Podmore, 2009). Salinity
is defined as the equivalent Na Cl salt percentage that dis-
solved with the soils coming from pollutants in rainwater.

Another source of salinity is the rock weathering which causes
salt that released as minerals to break down over time. As
shown in Fig. 1, high soil salinity levels are negatively affecting

humans and the natural resources (Slinger and Tenison, 2007).
Salinity is composed of hundreds of different ions, including
chloride (Cl�), sodium (Na+), nitrate (NO3

�), calcium
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Figure 1 Causes of irrigation salinity (Slinger and Tenison, 2007).
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(Ca+2), magnesium (Mg+2), bicarbonate (HCO3
�), and sulfate

(SO4
�2). Moreover, toxic ions such as boron (B), bromide (Br�)

and iron (Fe) could be accumulated at higher levels
(Groundwater information sheet-salinity, 2010). During irriga-
tion work salinity, occurs due to the rise in saline groundwater

and the build-up of salt in the soil surface of irrigated land-
scapes (Podmore, 2009). As a result of ‘‘irrigation salinity’’,
salts may reach levels that adversely affect plants and crop pro-
duction and may result in harmful effects at high concentra-

tions of toxic ions such as chloride ions. Excess of sodium
ion concentrations in leaves can cause leaf burn, necrotic
(dead) patches and even defoliation. Similarly, plants affected

by chloride toxicity exhibit similar foliar symptoms, such as
leaf bronzing and necrotic spots in some species (Podmore,
2009). Salinity of water may be estimated from a frequent mea-

surement of total dissolved solids (TDS). The TDS is a mea-
sure of the total dissolved salts/substances in water,
including organic and suspended particles that can pass
through a very small filter (Podmore, 2009).

Recently, mathematical, statistical and computational
methods to simulate and assess many aquifer water quality
parameters have been investigated (Seyyed et al., 2013).

Groundwater modeling has become a principal branch of
many projects and studies dealing with groundwater develop-
ment, protection and remediation. Moreover, modeling is a

promising tool for predicting groundwater behavior based on
hydrological variables (Maedeh et al., 2013). According to
the modeling techniques, artificial neural network (ANN) has

been established to quantify the general meaningful solutions
to problems even when the input data contain errors or are
uncertainty (Seyyed et al., 2013). ANN refers to computing
systems whose basic theme is inspired from biological neuron

processing, known as the human brain. The brain consists of
large number of neurons, interconnected with each other by
synapses, known as neural networks (Nasr et al., 2012). Each

node receives and processes weighted input from a preceding
layer and propagates its output to nodes in the subsequent
neighbor through links. Previously, ANN has been used in

many groundwater quality modeling. Sandhu and Finch,
1996 found that the ANN provided a fast and reasonably
accurate method of modeling the relationship between flows

and water quality. Moreover, this relationship was further
used to estimate the Sacramento River flow required to meet
a salinity standard. Moreover, Rogers and Dowla, 1994
presented a new approach to nonlinear groundwater manage-
ment methodology aimed at optimizing aquifer remediation in
line with the application of ANN. Similarly, Morshed and

Kaluarachchi, 1998 stated that ANN optimization methods
can be used to perform inverse groundwater modeling for
parameter estimation.

The objective of the present study is to build a model of
ANN for studying the relation between groundwater alkalin-
ity (i.e. in terms of pH) and salinity (i.e. expressed by TDS).
After that, the developed ANN model would be applied in

many practical and theoretical applications as well decision
making.
2. Materials and methods

2.1. Groundwater sampling and analyses

Groundwater samples were collected from a 36 m depth well
located in the experimental farm of the City of Scientific

Researches and Technological Applications (SRTA), New
Borg El-Arab City, Alexandria, Egypt. The samples were har-
vested in summer, autumn, and winter, 2013. This period was

satisfactory as it covers all probable seasonal variations in the
studied variables. The gathered samples were preserved, trans-
ported and analyzed according to Standard Methods for
Examination of Water and Waste Water (Eaton et al., 2005).

Analyses were included pH and TDS parameters.

2.2. Artificial neural network theory

Artificial neural networks are generally presented as systems of
interconnected nodes which can compute values from inputs.
Simple artificial nodes are class of statistical models could be

called ‘‘Neural’’ if they possess the following characteristics:
consist of sets of adaptive weights, i.e. numerical parameters
that are tuned by a learning algorithm, and are capable of

approximating non-linear functions of their inputs. The
adaptive weights are conceptually connection strengths between
neurons, which are activated during training and prediction
(Hinton et al., 2006). The network structure is composed of a

set of neurons connected by links and organized in number of
layers. Each layer is fully interconnected to the preceding layer
by weights (Nasr et al., 2012). Initial suggested weights are

progressively adjusted during the training process by compar-
ing predicted outputs with measured data (targets). The



Figure 2 Artificial neural network (ANN) configuration applied to predict TDS value.

Table 1 Measured pH ranges and corresponding average

values of TDS.

Season Ranges of pH values Average values of TDS (ppm)

Summer 7.50–7.75 4396.6

7.64–7.71 4765.8

7.68–7.40 4747.6

7.77–7.98 4808.7

7.48–7.51 4828.2

Autumn 7.60–7.66 4542.2

8.08–8.02 4644.9

8.15–8.06 4699.5

7.94–7.91 4777.5

7.97–8.13 4747.6

Winter 8.10–8.16 4656.6

7.07–7.37 4828.2

8.05–8.16 4859.4

8.02–8.13 4919.2

8.02–8.13 4934.8
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computation of network weights and biases is known as
‘‘training step’’. The objective of the back-propagation training

algorithm is to find the optimal weights by minimizing the mean
square error (MSE) of the output values (Nasr et al.,2013).
Simultaneously, learning functions are used to update the

layer’s weight and bias. This procedure is completed in the
‘‘validation step’’, where the network is improved to avoid data
over-fitting (Hong et al., 2003). After that a set of data is

randomly used to examine the network generalization, i.e. the
‘‘test step’’.

Each scalar input (p) is multiplied by a scalar weight (W),
and then added to a scalar bias (b), resulted in the net input

(n= Wp+ b). Finally, the result is passed through the trans-
fer function f, which gets the neuron’s output a, where a= f
(Wp+ b) (Demuth et al., 2007). Those functions can be (i) lin-

ear transfer functions: used in the final layer to find a linear
approximation to a nonlinear function, or (ii) sigmoid transfer
functions: used in the hidden layers to generate the output

between 0 and 1 for Log-Sigmoid and between �1 and 1 for
Tan-Sigmoid, even if the input data have infinity values.

2.3. Artificial neural network applied to predict TDS

In this study a feed forward neural network (FFNN) with
back-propagation training algorithm was applied to correlate
the relation between input alkalinity expressed in (pH) and

output salinity expressed in (TDS). The ANN configuration
was identified based on a previous research by Nasr et al.,
2013 and through conducting several trials until reaching the

best regression results with no over-fitting Fig. 2. The network
properties were as follows:

– Network input: pH.
– Network output: TDS concentrations.
– Network type: Feed-forward back-propagation.
– Training function: Levenberg–Marquardt algorithm

(TRAINLM).
– Adaptation learning function: Gradient descent with
momentum weight/bias learning function (LEARNGDM).

– Performance function: Mean square error (MSE).
– Number of layers: 3 (layer-1: five neurons and TANSIG
transfer function; layer-2: three neurons and LOGSIG
transfer function; output layer: PURELIN transfer
function).

– Data records were randomly divided into three subsets, i.e.
training: 60%, validation: 20% and test: 20%.

3. Results and discussion

3.1. Quality of water fed to artificial neural network (ANN)
configuration to predict TDS values

Analysis of the groundwater samples is shown in Table 1.

3.2. Artificial neural network configuration applied to predict

TDS

As shown in Fig. 3, the magnitude of the gradient and the
number of validation checks were used to terminate the
network training. At epoch: 6 iterations, the gradient was

equal to 343.86 (i.e. at gradient less than 1e-5, the training will
stop). The number of validation checks was equal to 6; which



Figure 3 Training state and performance of the generated ANN model.

Figure 4 Regression plot of training, validation and test for TDS using ANN.
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is the appropriate value to stop training.1 The performance
plot shows the value of the function, in terms of training,

validation, and test behaviors, versus the iteration number.
The best validation performance, based on the mean square
error, was 14819 at epoch 0.

Since the validation and test curves are very similar, therefore
no major problems or over-fitting occurred with the training.
1 The time consumed to complete the training progress was 0:00:06

using ‘‘nntool’’ neural network toolbox� in MATLAB� R2014a; PC

memory: 2.00 GB RAM.
During training, each neuron in the layer adjusts its weight
vector toward the closest group of input vectors. The final

weights and biases were:

Weight to layer 1 from input 1 ðwf1; 1gÞ

�5:08
4:06

�12:46
11:31

6:63

2
66666664

3
77777775
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Weight to layer ðwf2;1gÞ
2:35 2:38 1:81 0:31 3:05

�0:57 1:39 �1:73 8:93 3:22

�2:50 �2:40 �0:62 0:76 �3:30

2
64

3
75

Weight to layer ðwf3; 2gÞ ½ 1:82 �0:97 �0:24�

Bias to layer 1 ðbf1gÞ

8:92

�2:70
6:35

4:66

7:99

2
6666664

3
7777775

Bias to layer 2 ðbf2gÞ
�2:55
0:97

�4:64

2
64

3
75

Bias to layer 3 ðbf3gÞ ½�0:65�

As displayed in Fig. 4, a linear regression analysis was con-
ducted for training, validation and testing, in order to deter-

mine the relationship between the outputs of the network
and the targets. In each plot, the dashed line represents the per-
fect result, i.e. outputs = targets, whereas the solid line corre-

sponds to the best fit linear regression. As the R-value
approaches to one, then there is an exact linear relationship.
The regression results (R-value) were 0.64, 0.67 and 0.90 for

training, validation and test, respectively. Those results were
corresponding to a total response of 0.68. The lower regression
results can be attributed to fewer training data (accounting for
78 points) and/or the ANN configuration, in terms of number

of hidden layers and neurons, might not being optimal. After
the network was trained, validated and tested, the generated
model can be used to predict the parameter TDS through

new input pH data. In (Maedeh et al., 2013) a similar research,
ANN was used to predict TDS variations in groundwater of
Tehran. The study found R2 of 0.96 between the forecast

and observed data using input parameters: SO4, Na, and Cl.
Additionally, Seyyed et al., 2013 revealed that it was possible
to predict TDS distribution with access to input parameters
such as PH and EC with a correlation coefficient of 0.96. Sim-

ilarly, Nourani et al., 2013 applied FFNN to predict the values
of EC and TDS using inputs: temperature, pH, opacity, total
hardness and quantity of calcium, and the study found a cor-

relation coefficient of more than 0.90.
It was found that experimental analysis of TDS was close to

the predicted data calculated from the configuration and this

confirms the validity of this model.

Conclusions

In the present study, the groundwater salinity (i.e. in terms of
TDS) based on alkalinity (i.e. expressed by pH) was predicted
and ANN with a structure of 1–5–3–1 was proposed. The

network showed an acceptable ability to capture the
interrelationship between input: pH and output: TDS concen-
trations. Values of correlation coefficient (R) of training, vali-
dation and test were 0.64, 0.67 and 0.90, respectively. It is

concluded that the developed model is suitable for predicting
the salinity concentrations.
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