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Abstract Base excision repair (BER) protects cells from
nucleobase DNA damage. In eukaryotic BER, DNA glycosy-
lases generate abasic sites, which are then converted to deoxy-
ribo-5'-phosphate (dRP) and excised by a dRP lyase (dRPase)
activity of DNA polymerase f§ (Polf). Here, we demonstrate that
NEIL1 and NEIL2, mammalian homologs of bacterial endonu-
clease VIII, excise dRP by p-elimination with the efficiency
similar to Polf. DNA duplexes imitating BER intermediates
after insertion of a single nucleotide were better substrates.
NEIL1 and NEIL2 supplied dRPase activity in BER reconsti-
tuted with dRPase-null Polf. Our results suggest a role for
NEILs as backup dRPases in mammalian cells.

© 2006 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Base excision repair (BER) is responsible for cleansing DNA
of non-bulky, frequently occurring base lesions [1]. During
BER, the lesion is first located by one of DNA glycosylases,
enzymes that excise damaged bases. This results in an abasic
(AP) site, which is hydrolyzed at its 5'-side by an AP endonu-
clease, leaving a nick flanked by a 3’-hydroxyl of an undam-
aged deoxynucleotide and a deoxyribo-5'-phosphate (dRP)
to which the damaged base was formerly connected. DNA
polymerase then inserts a normal deoxynucleotide; however,
ligation to restore intact DNA is impossible because of the
dangling dRP moiety. The situation is resolved by a special
enzymatic activity, deoxyribophosphatase (dRPase), excising
dRP (short-patch BER, Fig. 1), or by continuing DNA synthe-
sis with strand displacement, followed by degradation of the
displaced strand (long-patch BER). The whole process cur-
rently draws much attention due to its antimutagenic and
tumor suppression role [2].
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The dRPase activity, a rate-limiting step in BER [3], plays a
central role in switching between its short- and long-patch
branches. In Escherichia coli, two main dRPase activities have
been observed. A Mg**-dependent RecJ deoxyribophosphodi-
esterase hydrolyzes the 3’-phosphodiester bond in dRP releas-
ing deoxyribo-5'-phosphate [4]. Formamidopyrimidine-DNA
glycosylase (Fpg) does not depend on Mg?" and catalyzes
B-elimination of dRP rather than its hydrolysis (deoxyribo-
phosphate lyase), the product being 2-hydroxy-5-oxopent-3-
enyl phosphate [5]. Both RecJ and Fpg leave a 5'-terminal
phosphate in DNA, creating a substrate for DNA ligase. Little
Mg?*-independent activity was observed in fpg null cells [3],
although dRPase activity in vitro has also been reported for
E. coli endonuclease VIII (Nei), a homolog of Fpg [6]. Nei
dRPase activity may explain the lack of phenotype in fpg recJ
double mutants [4].

The major dRPase in mammalian cells is DNA polymerase
B (Polp) [7.,8], which has a dRP lyase domain [9,10]. Polf-
deficient cells show low dRPase activity [7], but some residual
dRP removal by extracts from these cells is still present [11]. A
dRPase activity in vertebrates was also shown for the mito-
chondrial DNA polymerase y [12-14], translesion DNA poly-
merases 1 [15] and 2 [16], and a Mg**-dependent activity was
purified from human cells and calf thymus [17]. It is possible
that while Polf carries out the bulk of dRP removal, other
activities could be more specifically employed for some lesions,
cell or tissue types, or at certain cell cycle points.

Recently, three mammalian homologs of Fpg and Nei have
been identified and termed NEIL (Nei-like, or endonuclease
VIII-like)-1, -2, and -3 [18-23]. Based on the similarity of their
active sites to those of Fpg and Nei (Fig. 2), one could expect
that they also display dRPase activity. In this report we show
that two of these proteins, NEIL1 and NEIL2, are capable of
removing dRP from DNA with the efficiency comparable to
that of Polp, and that they can substitute for Polp dRPase
activity in a reconstituted BER system.

2. Materials and methods

2.1. Oligonucleotides and enzymes

ODNs were synthesized from phosphoramidite precursors (Glen
Research) using established protocols. The modified 23-mer strand,
5’-CTCTCCCTTCXCTCCTTTCCTCT-3', where X is uracil (U) or
8-oxoguanine (8-0x0G), was 5'-labeled using y[>*P]-ATP and polynu-
cleotide kinase, purified by PAGE, precipitated and annealed to a
complementary 23-mer strand 5'-AGAGGAAAGGAGNGAAGG-
GAGAG-3 (N=A, C, G, or T). To label the modified ODNs at the
3’-terminus, they were annealed to a 25-mer complementary strand,
5'-GTAGAGGAAAGGAGNGAAGGGAGAG-3/, and the overhang
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Fig. 1. General scheme of base excision repair. Main stages of the short-patch BER sub-pathway and the relevant enzymes are shown schematically
for a U:G mispair (I) formed by spontaneous cytosine deamination: (a), excision of the damaged base by a DNA glycosylase (UNG) with formation
of an AP site (I1); (b), 5'-incision of the AP site by AP endonuclease (APE1) with formation of a dRP site (I11); (c), insertion of a correct nucleotide by
a DNA polymerase (Polp for mammalian short-patch BER) with formation of a “hanging” dRP site (IV); (d), elimination of the dRP site by a dRP
lyase (Polf, or, possibly, NEIL1/NEIL2) with formation of a nick in DNA (V); (e), ligation of the nick by a DNA ligase (DNA ligase III for

mammalian short-patch BER) and restoration of undamaged DNA (VI).

was partially filled by Klenow fragment using o[**P]-dATP. T4 poly-
nucleotide kinase, T4 DNA ligase and E. coli uracil-DNA glycosylase
(Eco-Ung) were purchased from New England Biolabs. Exonuclease-
deficient Klenow fragment was a gift from Dr. Holly Miller (SUNY
Stony Brook); human uracil-DNA glycosylase (UNG) was kindly pro-
vided by Dr. Alexander Ischenko (Institut Gustave Roussy, France).
NEILI and NEIL2 proteins, wild-type and dRPase-deficient Polf} were
expressed in E. coli and purified as described [24-26]. 8-Oxoguanine-
DNA glycosylase (OGG1) and AP endonuclease (APE1) were ex-
pressed as Hisg-tagged proteins and purified using Ni**-chelate
chromatography [27]. Concentrations of active forms of NEILI1 and
NEIL2 were determined by NaBHy-stabilized crosslinking of the
enzyme (10 nM) to saturating amounts (5 uM) of a dRP substrate as
described in the following section.

2.2. dRPase and crosslinking assays

To prepare a dRP substrate, the 3’-labeled U-containing duplex
(20 nM unless indicated otherwise) was treated with 1 U Eco-Ung
and 1 uM APEl in 25 mM K-phosphate (pH 7.4), 5 mM MgCl, and
1 mM dithiothreitol for 10 min at 25 °C. To obtain a substrate with
an inserted nucleotide, this reaction mixture was supplemented with
40 nM mPolf and 1 mM dGTP. To analyze dRPase activity, NEILI,
NEIL2, or Polf was added (20 pl final reaction volume) and incubated
for 10 min at 25 °C. The reaction products were stabilized by 50 mM
NaBH, for 30 min on ice. The reaction products were resolved by
20% denaturing PAGE and quantified using Molecular Imager FX
(Bio-Rad). To analyze crosslinking, 50 mM NaBH, was added to-
gether with dRP lyases and incubated for 30 min on ice. The products
were resolved by 12% SDS-PAGE and imaged as above.

2.3. Base excision repair reconstitution assay

The reaction mixtures (20 pl) included 50 mM Tris-HCI (pH 7.5),
10 mM MgCl,, 10 mM dithiothreitol, | mM ATP, 25 pg/ml bovine ser-
um albumin, 10 nM substrate duplex, | mM dGTP, 600 nM APEl,
500 nM Polp or mPolf, T4 DNA ligase (1 Weiss unit), and, if needed,

75 nM NEILI or 150 nM NEIL2. When the repair of an AP site was
reconstituted, the U-containing substrate was pre-treated with 1 U
Eco-Ung as above. When the repair of U or 8-oxoG was studied,
the reaction mixture was supplemented with 400 nM UNG or
OGGl, respectively. The reaction mixture was incubated for 20 min
at 25 °C and analyzed by 20% denaturing PAGE.

3. Results

dRPase activity can be revealed with 3’-labeled nicked
abasic ODN substrates, which were prepared by end-filling of
5'-overhanging ODN duplexes with **P-labeled dATP and the
treatment of the duplex with Ung and APE1. As the resulting
dRP site is unstable in nucleophilic buffers and is degraded
during migration through Tris-containing gels, the products
were stabilized by NaBH, reduction immediately after the
dRPase reaction. Under these conditions, B-elimination of
dRP leads to a product with a slightly higher mobility (the
bottom arrow in Fig. 3A) compared to the dRP-containing
substrate (the middle arrow in Fig. 3A). Fig. 3A illustrates that
both NEIL1 and NEIL2 possess a dRP-removing activity.
This activity was similar in potassium phosphate and Tris—
HCI buffers and was not affected by the presence or absence
of Mg?" ions in the reaction mixture (data not shown). The
dRPase activities of NEIL1 and NEIL2 demonstrated the
enzyme concentration and time dependence expected of an
enzyme-catalyzed reaction (Fig. 3B and data not shown).
The activity of NEIL1 in these experiments appeared higher
than that of NEIL2 (Fig. 3B). Both NEIL1 and NEIL2 excised



4918 LR. Grin et al. | FEBS Letters 580 (2006) 4916-4922
Fpg FLEEETSRRGIUEPHLV[G- - - = - = === == - - - ATILHAVVRNGRLR------=-=-=-=-- 34
Nei WIRHGIFENRRAADNIFEAAIKG- - - === === === - = KPLTDVWFAFPQLK-----=-=-=-=--- 34
NEIL1 (i33GIyEfHLASHF\Y NETCKG--------=-=----~ LVFGGCVEKSSVSR------------ 34
NETL2 |{#33Gj3S|/RKFHHL)SPFVGRKVVKTGGS SKKLHPAAFQSLWLQDAQVHGKKLFLRFDPDE 60
Fpg ----- WPVSEEIYRLSDQPVLSVQRRAKYLLLELP------- EGWIIIHLGMSGSLRELP 82
Nei  ----- PYQSQLIG- - --QHVTHVETRGKALLTHFSN--- - - - DLTLYSHNQLYGVWR)YVD 79
NEIL1l ----- NPEVPFESSAYHISALARGKELRLTLSPLPGSQPPQKPLSLVFRFGMSGSFQI*VP 89
NEIL2 EMEPLNSSPQPIQGMWQKEAVDRELALGPSAQEPSAGPSGSGEPVPSRSAETYNLGKi{PS 120

Fpg  EELPPEKHDHVD#VMS--------------
Nei TGEEPQTTRVLR)JKLQ------===----=
NEIL1 AEALP---RHAH/RFY--------------

- --NGKVLRYTDPRRFGAWLWTKELEGHNV 125
---TADKTILLYSASDIEMLTPEQLTTHPF 122
- --TAPPAPRLALCFVDIRRFGHWDPGGEW 129

NEIL2 ADAQRWLEVRFGHFGSIWVNDFSRAKKANKKGDWRDPVPRLVLHFSGGGFLVFYNCQMSW 180

Fpg LTHLGPEPLSDDFNGEYLHQKCAK - - -KKTAIKPWI# /I8 KL IYASIHS| GiH 182
Nei LQRVGPDVLDPNLTPEVVKERLLSPRFRNRQFAGLI# e AFL. LRVIZTI®QVGIET 182
NEIL1 QPGRGPCVLLEYERFRENVLRNLSDKAFDRPICEAIRORFF LRAIZFTI®YRLKP 189
NEIL2 SPPPVIEPTCDILSEKFHRGQALEALSQAQPVCYTiyeKYFS IIK RARJIH 240

Fpg PDRLASSMSLAECELLAR------------
Nei  GNHKIKD AAQLDALAH------------

——————— VIKATLLRSIEQGGTTLKDFLQS 223
------- ALLE{PRFSYATRGQVDENKHHG 223

NEIL1 PFEK'RT!LEALQQCRPSPELTLSQKIKAKLQNPDLLELCH PKEVVQLGGKGYGPERG 249

NEIL2 PLSLESC

Fpg DGKPGYFAQELQV){GR- === === === ===
Nei  ------ ALFRFRV|JHR-----------ooo--

SSSSREAFVD------------

__________ H)\VEFSKDWLRDKFQGKERH 278

KGEPERVEG- - -~ === mo - - T 249
DGZPSEREG- - -~ - - - - - - - == - S 243
NEIL1 EEDFAAFRAWLRC)/GVPGMSSLRDRHGRTIWFQG»PPLAPKGGRSQKKKSQETQLGAED 309

NEIL2 ---------- TQINOK-----m-==== ==

Fpg PIVATKHAQTATFYCRQEQK----------
Nei  IIEKTTLSS:PFYWCPGEQH----------

- - - - 12Q&PS[EHQVMK - - - ==~ = === == = = E 296

NEIL1 RKEDLPLSS!:{SVSRMRR:RKHPPKRIAQQSEGAGLQQNQETPTAPEKGKRRGQRASTGHR 369
NEIL2 TFGPPDGLQILTWWCPQEQPQPSSKGPQNLPSS-----------------mm e oo 329

Fpg  ----------mmmmm - -
Nei  --------mmmmmmmemmm -

NEIL1 RRPKTIPDTRPREAGESSAS 389
NEIL2 ------------mmmmmm—-

Fig. 2. Alignment of Escherichia coli Fpg and Nei with murine NEIL proteins. The N-terminal PE helix inferred from the crystal structure of Fpg,
Nei and NEILI is boxed. Highlighting indicates absolutely conserved (black with white lettering), highly conserved (C, > 9; dark gray with white
lettering) and conserved (C,, > 7; light gray) positions; conservation numbers are calculated using the AMAS algorithm [48] from the standard
Taylor set of physicochemical properties [49]. The alignment was produced by Clustal W 1.82 [50].

dRP with similar efficiency when A, C, or T were placed oppo-
site the lesion, and the excision opposite G was 1.5-2-fold
lower (data not shown); Polf removed dRP equally well from
all opposite-base contexts.

To confirm that dRP removal by NEIL1 and NEIL2 pro-
ceeds by B-elimination, as in Polf and Fpg, we have performed
the reaction in the presence of NaBH,, which reduces the Schiff
base formed between the catalytic nucleophile of dRP lyases
and C1’ of the dRP site. Such trapped enzyme-DNA com-
plexes are stable enough to be resolved by regular SDS-
PAGE. As can be seen from Fig. 3C, NEIL1 and NEIL2, as
well as Fpg and Polp, formed low-mobility complexes upon
incubation with the 3’-labeled dRP-containing substrate and
NaBH,, although the extent of crosslinking was rather low
due to competing fast reduction of dRP. The molecular masses
of the complexes were in the expected order, from the highest
(NEIL1, 43.5kDa of the protein part) to the intermediate
(NEIL2 and Polf, 38.2kDa and 39.0 kDa, respectively) to
the lowest (Fpg, 30.2 kDa). In addition, this experiment shows
that the observed dRP lyase activity is not due to a contamina-
tion by Fpg or Nei from the E. coli expression host, since in
this case the mobility of the cross-linked species would corre-
spond to the Fpg-DNA complex.

To compare the efficiency of NEIL1 and NEIL2 as dRPases
with the same activity of DNA polymerase 3, the best-known
mammalian dRPase, we have analyzed steady-state enzyme ki-
netic for all three enzymes. The results of these experiments are
summarized in Table 1. The kinetic data suggest that NEIL1
is as good a dRPase as Polf, and they both surpassed NEIL2
in their ability to remove dRP from DNA. Ky, of NEILI was
~5-fold lower than Ky, of Polp, indicating that NEIL1 might
bind dRP-containing substrate more tightly; on the other
hand, Polf processed the substrate ~5-fold faster than did
NEIL1, resulting in nearly equal specificity constants for both
enzymes. NEIL2 had an intermediate catalytic constant and
the poorest binding of all three mammalian dRP lyases.

In regular BER, dRP is mainly removed by Pol} dRPase
after the insertion of the correct nucleotide by the polymerase
activity of Polf (Fig. 1, steps ¢ and d). We have used a dRPase-
deficient PolB mutant K35A/K68A/K72A (mPolp), capable of
nucleotide insertion but not dRP removal, to inquire whether
the dRPase activities of NEIL proteins prefer the substrate
with the “hanging” dRP (IV in Fig. 1) to a dRP substrate
before the repair DNA synthesis (III in Fig. 1). As Fig. 4
demonstrates, the hanging dRP was indeed a better substrate
for both NEIL1 and NEIL2 dRPase activity.
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Fig. 3. dRPase activity of NEIL1 and NEIL2. A, Cleavage of a dRP site by NEIL1 and NEIL2. 3’-labeled substrate (20 nM) was treated with 40 nM
NEIL1 or 70 nM NEIL2 for 10 min. Lane 1, U-containing ODN; lanes 2-5, dRP-containing ODN treated with alkali (lane 2), NEIL1 (lane 4) or
NEIL2 (lane 5). In lanes 3-5, the dRP-containing ODN was stabilized with NaBH, to prevent its degradation during electrophoresis. Arrows left to
the panels indicate positions of the respective ODN species after PAGE. B, Time course of dRP excision by NEILI1 (filled circles) and NEIL2 (open
circles). The concentration of the substrate was 100 nM and of both enzymes, 10 nM. C, Crosslinking of dRP lyases to a dRP-containing substrate
(40 nM) stabilized by NaBH,4: lane 1, no enzyme; lane 2, NEIL1 (0.9 puM); lane 3, NEIL2 (1.8 uM); lane 4, Polf (1.8 pM); lane 5, Fpg (0.9 uM).

Table 1
Kinetic parameters of dRPase activity of NEIL1, NEIL2, and Polf3

KM (“-M) kcal (minil) kcat/KM (“M71 minil)
NEIL1 0.21£0.03 0.65 £ 0.04 3.1
NEIL2 22£0.7 1.6+0.1 0.74
PolB 1.0+0.1 3.0%0.1 3.0

The experiments with individual enzymes suggest that
NEIL1 and NEIL2 possess a dRPase activity and could substi-
tute for Polp dRPase in BER. To analyze the proficiency of
NEIL1 and NEIL2 dRPase in a multienzyme BER process,
we have reconstituted the base-excision, AP site-incision,
gap-filling and dRP-excision stages of BER using mammalian
enzymes (UNG, OGG1, APEL, Polp and NEIL1 or NEIL2)
and ODN substrates containing three widely encountered
DNA lesions: U, AP site or 8-0x0G. Fig. 5A shows that when
a U-containing DNA is processed by the joint action of UNG
and APEI1 endonuclease, gap-filling and dRP elimination by a
fully functional Polf generates a high percentage of nicks in
DNA subject to further ligation (Fig. 5A, lanes 1-3). If mPolf
was used, the insertion step was as efficient as with wild-type
Pol, but the fraction of ligatable nicks was low (Fig. SA, lanes
4-6; see the figure legend for definition of the fraction of ligat-
able nicks), presumably due to the hanging dRP moiety left
unrepaired and interfering with DNA ligase. Both NEIL1
(Fig. 5A, lanes 7-9) and NEIL2 (Fig. 5A, lanes 10-12) restored

0l A B
Q
= 20
o
10
0 5 10 15

t, min

Fig. 4. dRPase activity of NEIL1 and NEIL2 on substrates mimicking
post-incision and post-insertion BER intermediates. Panel A: NEIL1
(1 nM). Panel B: NEIL2 (5 nM). Filled symbols indicate the control
dRPase reactions performed in the presence of 40 nM mPolf; open
symbols indicate the dRPase reactions performed after pre-incubation
of the dRP substrate with 40 nM mPolf and 1 mM dGTP to allow
insertion of a single nucleotide but not dRP excision by Polf.
Concentration of the substrate was 100 nM.

the ligation efficiency, indicating that they could rescue BER of
U lesions driven by a dRP-deficient Polf. The proficiency of
NEIL1 in the full BER was higher compared with NEIL2, in
agreement with the kinetic parameters (Table 1). NEIL1, but
not NEIL2, alone had weak activity against U in an U:C mis-
pair (Fig. 5A, lane 14), confirming the recent literature reports
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[21,28]. This activity obviously did not interfere with further
lesion processing by downstream BER enzymes.

We have also reconstituted the repair of AP sites pre-formed
in DNA. No major difference from the repair of U was ob-
served, except that the fraction of ligatable nicks was higher
for all enzymes (72% for Polf, 10% for mPolf, 74% for
NEIL1, and 32% for NEIL2; data not shown).

The effect of NEIL1 and NEIL2 with 8-oxoG-containing
substrate was not as pronounced due to higher residual repair
supported by mPolf, which might be due to partial removal of
the nascent AP site through the combined action of OGGI1
(producing o,B-unsaturated 3’-terminal aldehyde) and APEl
(removing this product with formation of a single-nucleotide
gap in DNA). Nevertheless, both NEIL proteins could clearly
restore the ligation efficiency at dRP sites (Fig. SB). In the case
of NEILI1, the full BER cycle was of lower efficiency due to
formation of a /8 elimination product by the combined action
of OGG1 and NEILI, as recently reported [29]. Such reaction
produces a 3’-terminal phosphate residue, which is poorly
removed by APE1 (Fig. 5B, the lowermost band in lanes 11—
13). When this competing reaction was accounted for and
the percentage of ligatable nicks calculated, the effect of
NEIL1 was more pronounced than that of NEIL2, as was
observed with the repair of U and AP site.

4. Discussion

Removal of a dRP moiety is a critical reaction in eukaryotic
BER, defining the dichotomy between single-nucleotide and
long-patch repair. If dRP can be removed, the repair synthesis
involves insertion of one nucleotide by Polp and ligation by
DNA ligase III/XRCCI [30]. Otherwise the immediate ligation
is impossible and, after insertion of one nucleotide by Polf
[31], a polymerase switch occurs, with further DNA synthesis
catalyzed by DNA polymerase 6 or g, promoting a displace-
ment of the downstream DNA strand. The displaced flap
structure is later cropped by FEN1 endonuclease, with the

resulting nick ligated by DNA ligase I [30]. The two subpath-
ways of BER seem to have different roles. Most notably, dis-
abling single-nucleotide BER in PolB-null mouse embryonic
fibroblasts renders them hypersensitive to DNA-methylating
agents, an effect that can be rescued by reinstatement of
dRPase but not polymerase activity of Polf [7] despite long-
patch BER is restored in the latter case [11]. Single-nucleotide
BER accounts for most of the repair of U [32,33], 8-0x0G [34—
36], and thymine glycols [37], whereas both subpathways con-
tribute into the repair of natural AP sites, hypoxanthine and
1,N®-ethenoadenine [30,35,38].

The ability to carry out single-nucleotide BER is clearly
important for cellular genome protection. Removal of dRP is
a rate-limiting step in this process [3], representing the most
convenient point for the regulation of the entire BER pathway.
Unsurprisingly, Polf is not the only cellular dRPase; several
eukaryotic DNA polymerases (y, 1 and A) have been found
to possess this activity [12-16]. BER of 5-hydroxymethyluracil
initiated by DNA glycosylase SMUG!1 was drastically de-
creased by additional immunodepletion of DNA polymerase
A in extracts of PolB-deficient mouse embryo fibroblasts [39];
however, the role of DNA polymerase A in the repair of other
lesions has not been addressed. Unknown proteins of 30-
40 kDa are photocrosslinked to substrates imitating dRP in
mouse cell extracts [40,41]. Here, we show that two other
DNA repair enzymes, NEIL1 and NEIL2, are functional dRP-
ases in vitro, with their kinetic parameters comparable to those
of Polp dRPase, and that they can replace Polp dRPase in a
reconstituted BER system.

The in vivo functions of mammalian NEIL proteins, discov-
ered in the past five years [18-23], are not entirely clear. DNA
glycosylase activity of NEIL1 and NEIL2 against several oxi-
datively damaged nucleobases have been confirmed [18—
23,25,42-45]. However, it generally overlaps with other known
mammalian DNA glycosylases, so NEILs have been regarded
as back-up enzymes that become important when the major
glycosylases are absent [21,46]. Down-regulation of NEIL1
by RNA interference sensitize cells to low-dose radiation
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[23], which was attributed to the ability of NEIL1 to excise for-
mamidopyrimidine derivative of adenine and 5S,6R stereoiso-
mer of thymine glycol. NEIL2 uniquely prefers bubble DNA
substrates, suggesting its possible role in DNA repair con-
nected with transcription or replication [42]. Unexpectedly, re-
cently produced NEIL1 knockout mice show no increased
DNA damage or carcinogenesis, but suffer from a syndrome
apparently related to dysregulation of fat or sugar metabolism
[47]. This observation implies that either NEIL1 works in met-
abolic pathways beyond DNA repair, or that its repair role can
be essential in specific organs or tissues, perhaps in adipocytes
or brain. Clearly, there is no a priori reason to believe that the
functions of NEILs in vivo are limited to their glycosylase
activity.

As a rule, dRPase activity is fairly low in PolB-deficient
mouse embryonic fibroblasts [7,8] or in the cells with Polf
knocked down by RNA interference (DOZ, unpublished),
most likely reflecting the relative abundance of Polff and other
dRPases in this cell line. Still, some residual dRPase activity
has been observed in these cells [11]. In addition, other cell
types could be less dependent on Polf as their major dRPase,
or other dRPases could act in the repair of specific lesions or at
specific points of the cell cycle. Whether NEIL proteins could
indeed account for the residual dRPase activity in the absence
of Polf, or could manifest their dRPase activity in some par-
ticular in vivo systems, is a question warranting further inves-
tigation.
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