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A non-local continuum model including long-range forces between non-adjacent volume
elements has been studied in this paper. The proposed continuum model has been
obtained as limit case of two fully equivalent mechanical models: (i) A volume element
model including contact forces between adjacent volumes as well as long-range interac-
tions, distance decaying, between non-adjacent elements. (ii) A discrete point-spring
model with local springs between adjacent points and non-local springs with distance-
decaying stiffness connecting non-adjacent points. Under the assumption of fractional dis-
tance-decaying interactions between non-adjacent elements a fractional differential equa-
tion involving Marchaud-type fractional derivatives has been obtained for unbounded
domains. It is shown that for unbounded domains the two mechanical models revert to
Lazopoulos and Eringen model with fractional distance-decaying functions. It has also been
shown that for a confined bar, the stress–strain relation is substantially different from that
obtained simply using the truncated Marchaud derivatives since a double integral instead
of convolution integral appears. Moreover, in the analysis of bounded domains, the govern-
ing equations turn out to an integro-differential equation including only the integral part of
Marchaud fractional derivatives on finite interval. The mechanical boundary condition for
the proposed model has been introduced consistently on the basis of mechanical consider-
ations, and the constitutive law of the proposed continuum model has been reported by
mathematical induction. Several numerical applications have been reported to show, verify
and assess the concepts listed in this paper.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Mechanics of generalized continua that accounts for long-range forces in elastomechanics had gained strong interest by
the scientists all over the world in the late 1960s as reported in several studies (e.g. Kroner, 1967; Krumhanls, 1967; Eringen,
1972; Eringen and Edelen, 1972). The use of these theories in fields showing the failure of classical continuum mechanics had
impressive effects in the explanation of unpredicted phenomenon; for instance, they succeed in considerably smoothing the
unrealistic stress-singularities at crack-tips. Anyway, the lack of mechanical grounds in the evaluation of non-local forces led
to a progressive indifference to the field orienting researchers to capture non-local effects by description of materials at mi-
cro and nano-scale. As in fact any engineering material possesses an internal substructure which may be observed at molec-
ular level. Internal constitutive substructure at molecular or crystalline level may be considered by means of molecular
dynamics as shown in some studies conducted in the late fifties.

Despite paradoxes of continuum mechanics observed in the study of some problems, the powerful approach of the well-
established mathematical theory of elasticity is extremely attractive to model and solve the engineering problems. Some at-
. All rights reserved.
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tempts to conjugate the accuracy of atomic theory and the simplicity of continuum mechanics have been formulated intro-
ducing in the material constitutive equations some terms accounting for long-range interactions between non-adjacent par-
ticles. In this context, two wide classes of theories have been well enstablished: The gradient elasticity theory (weak non-
locality) and the integral non-local theory (strong non-locality). The first approach consists in the introduction of opportune
terms including gradient of strains in the constitutive equations of the considered material (Mindlin and Eshel, 1968; Aifan-
tis, 1994) with opportune coefficients dependent on material microstructure. The main drawback of gradient elasticity mod-
el regards fulfilment of the boundary conditions associated to the problem considered. In this context several strategies,
which make use of variational formulations, have been recently proposed (Polizzotto, 2001, 2003). In other studies the prob-
lem has been framed in thermodynamic setting (Polizzotto and Borino, 1998; Borino et al., 2003). The approach yields results
in good agreement with experiments but the mechanical aspects of the boundary conditions and selections of parameters
involved in the analysis are still an open problem. For a review of the recent developments in gradient theories see Aifantis
(2003) and references cited therein.

As an alternative non-local integral model of elasticity has been introduced as intuitive extensions of interpolation formulas
of molecular dynamics accounting for discrete-continuum equivalence (Kroner, 1967; Eringen, 1972). The resulting non-local
elastic model includes additional integral term of the strain field with kernel represented by an opportune attenuation function
decaying with distance (Gaussian or exponential). In the late 1980s, this approach has been revisited and reconsidered in the
fields related to dissipation, damage and plasticity (Bav̂zant and Belytschko, 1984; Pijaudier-Cabot and Bav̂zant, 1987). For re-
cent advances on the non-local integral theory the readers are referred to several papers (Bav̂zant and Jirásek, 2002; Benvenuti
et al., 2002; Fuschi and Pisano, 2003). A different framework was proposed lately reconsidering the long-distance forces with
the aid of internal state variables accounting for non-local effects (Ganghoffer and de Borst, 2000).

Recently, the problem of non-local continuum has been faced by fractional calculus approach (Lazopoulos, 2006). Frac-
tional calculus has been applied, in the last decade, to several fields of applied mechanics such as the description of damage
and fatigue in heterogeneous media (Carpinteri et al., 2001, 2004; Carpinteri and Cornetti, 2002), the representation of vis-
cous forces (Narahari Achar et al., 2004) and in stochastic dynamics setting (Cottone and Di Paola, 2007). The most important
feature of fractional derivatives is that they represent an intermediate machinery between differential and integral approach
so that non-local mechanics handled with fractional calculus is an intermediate approach between gradient and integral the-
ory of non-local interactions.

On the one hand, the analysis of unbounded non-local continuum with fractional calculus (Lazopoulos, 2006) may be con-
sidered an effective procedure to handle generalized continua. On the other hand, bounded media analyzed in the context of
fractional calculus provide some inconsistencies that have already been encountered with other approaches involving non-
local integral models. In more detail, it has been observed that the local case cannot be obtained as limit case of the Eringen
model since some Dirac’s delta functions appear at the borders of the bar. Moreover, equivalent non-local formulation for
unbounded and bounded analyses is obtained in the latter case, clipping the attenuation function in the neighbourhood
of the borders (see, e.g. paper by Fuschi and Pisano, 2003; Benvenuti et al., 2002).

In the authors opinion, these aforementioned inconsistencies are due to the fact that the non-local constitutive law is pos-
tulated without underlying mechanical model. In order to formulate properly on the basis of physical interpretation two
fully equivalent models are proposed here: (i) The actions on an elementary volume are produced by contact forces arising
from surface separation of adjacent volumes and by other central forces, decaying with the distance between non-adjacent
volumes. (ii) A point-spring model with springs connecting adjacent points takes into account the local contribution, while
the non-local contribution is taken into account with other distance-decaying linear springs connecting the point with all
other points. At the limit, when the interdistance between the adjacent points goes to zero, the two aforementioned models
give rise to the same differential equation. In the two physical models, one may select any attenuation function (Gaussian,
Exponential, Mexican hat, etc.). Here, we select an attenuation function proportional to the interdistance jxj � xhj�(1+a). With
this choice, the differential equation in terms of displacement involves the Marchaud fractional derivatives. Since the latter
operator is an intermediate one between classical derivatives and convolution integrals we may state that the formulation
presented in this paper is a unified approach of weak and strong non-locality theory. It is shown that the stress–strain law
involves Marchaud fractional integral in such a form that the problem of mechanical boundary conditions is definitively
overcome.

The outline of this paper reports on the existent fractional integral model definition in Section 2. In Section 3, the incon-
sistencies of the non-local integral model with fractional attenuation function are pointed out. Section 4 has been devoted to
the analysis of infinite domain with the proposed model of long-range forces with fractional decay. In Section 5, the analysis
of finite extension domain has been reported with a proper definition of the mechanical boundary conditions. A point-spring
model, totally equivalent to the mechanical model in Section 5 has been proposed in Section 6 and significant numerical
applications with closure have been reported in Sections 7 and 8, respectively.
2. Fractional model of integral non-local elasticity

The strong non-local theory of long-range forces has been proposed in the early 1970 (Eringen and Edelen, 1972) to cap-
ture some unexpected effects observed in the experimental data and unpredicted by classical mechanics. To this aim, the
stress–strain relation for an elastic bar of length L has been taken in the form
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rðxÞ ¼ EeðxÞ � g
Z L

0
eðnÞ~gðx; nÞdn; ð1Þ
where E is the longitudinal modulus and e(x) = du(x)/dx is the local strain, r(x) is the axial stress, g is an opportune constant
of proportionality. The kernel ~gðx; nÞ is the attenuation function, a monotonically decreasing function of the distance jx � nj,
that accounts for the contribution of the strain at abscissa n on the stress at location x. Eq. (1) has been proposed in the gen-
eralized context of lattice theory of molecular interactions to represent long-distance forces between non-adjacent particles
within the context of continuum mechanics (Kroner, 1967). Non-local mechanics modelled as in Eq. (1) requires the spec-
ification of the boundary conditions associated to the problem at hand. In the original paper by Kroner the boundary con-
ditions have been specified as in classical ‘‘local” fashion (see, e.g. Kroner, 1967 Eq. (25)). In more recent papers, some
other comments about the boundary conditions associated in the Eringen model have been addressed (see e.g. Polizzotto,
2001). Anyway, problem involved in the boundary conditions in the non-local integral model in Eq. (1) is still an open prob-
lem at the best of the author’s knowledge.

The idea to include some fractional integral term in the governing equation of the elastic problem has been proposed by
Lazopoulos (2006). He starts by assuming that the strain energy can be assumed as the sum of two contributions: (i) a local
part of the kind Ee2 (x)/2 (ii) and a contribution of non-local nature defined as
�geðxÞ½ðD�b
0þeÞðxÞ � ðD

�b
L�eÞðxÞ�=2; 0 < b < 1; ð2Þ
involving the left and right Riemann–Liouville fractional derivatives ðDa
0þeÞðxÞ and ðDa

L�eÞðxÞ defined for a generic function
s(x) as
ðDb
0þsÞðxÞ ¼def 1

Cð1� bÞ
d
dx

Z x

0

sðnÞdn

ðx� nÞb
; 0 < c < 1 ð3aÞ

ðDb
L�sÞðxÞ ¼def ð�1Þ

Cð1� bÞ
d
dx

Z L

x

sðnÞdt

ðn� xÞb
; 0 < c < 1 ð3bÞ
where C(b) is the Euler-gamma function (see Appendix A). Variation of the total stored energy with respect to the state var-
iable e(x) yields the stress–strain relation in a form involving fractional derivatives as
rðxÞ ¼ EeðxÞ � g½ðD�b
0þeÞðxÞ � ðD

�b
L�eÞðxÞ�: ð4Þ
Eq. (4) has been formulated (Lazopoulos, 2006) under the assumptions of vanishing boundary condition of the model as
u(0) = u(L) = 0.

By assuming Eq. (4) as the starting point in the next section we derive the differential equation of equilibrium in
order to show some inconsistencies for the bounded domain. To this aim, the fractional non-local model represented
in Eq. (4) must be compared with the strong non-local theory of long-range interactions (Eq. (1)) that can be achieved
by means of proper manipulations. In more detail accounting for the relations between Riemann–Liouville fractional
derivatives and Riemann–Liouville fractional integrals ðD�b

0þeÞðxÞ ¼ ðI
b
0þeÞðxÞ and ðD�b

L�eÞðxÞ ¼ �ðIbL�eÞðxÞ Eq. (4) may be cast
as
rðxÞ ¼ EeðxÞ � g½ðIb0þeÞðxÞ þ ðI
b
L�eÞðxÞ�; ð5Þ
where ðIb0þsÞðxÞ and ðIbL�sÞðxÞ are the left and right, respectively, Riemann–Liouville fractional integral is defined as
ðIb0þsÞðxÞ ¼def 1
CðbÞ

Z x

0

sðnÞ
ðx� nÞ1�b

dn; ð6aÞ

ðIbL�sÞðxÞ ¼def 1
CðbÞ

Z L

x

sðnÞ
ðn� xÞ1�b

dn: ð6bÞ
The stress–strain relation may be further expanded as
rðxÞ ¼ EeðxÞ � g½ðIb0þeÞðxÞ þ ðI
b
L�eÞðxÞ� ¼ EeðxÞ � g

Z L

0
eðnÞ~gðx; nÞdn ð7Þ
that is equivalent to Eq. (1) selecting the attenuation function in the form
~gðx; nÞ ¼ 1=ðCðbÞ j x� nj1�bÞ; 0 < b < 1: ð8Þ
The particular choice of such an attenuation function is very attractive because the parameter b yields a large variety of dis-
tance-decaying interactions and it plays the role of a scale parameter in the strong non-local elasticity theory.

At this stage we may conclude that the strong non-local theory of elasticity (Kroner, 1967) may be framed, under proper
assumption about the boundary conditions, in the context of fractional calculus as from the original idea of Lazopoulos
(2006). The latter consideration is worthy to be remarked as the strong theory of non-local elasticity showed some incon-
sistencies in the presence of bounded domains as it will be reported in the following section.
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3. Inconsistencies of the eringen model with fractional attenuation function

In this section, some additional comments to the non-local integral model with fractional attenuation function will be
introduced to remark that, in the presence of impending boundaries, the non-local integral model yields an inconsistent
mechanical formulation. The latter aspect is hereinafter detected by formulating the governing equation of the problem
in terms of the displacement function. The equation is obtained, for unbounded domain x 2 R, replacing the stress–strain
constitutive equation (Eq. (7)) in the equilibrium equation, dr(x)/dx = �f(x) with f(x) the axial body force field, yielding
the fractional differential equation
d2uðxÞ
dx2 � g

E
ððD2�b

þ uÞðxÞ þ ðD2�b
� uÞðxÞÞ ¼ � f ðxÞ

E
; x 2 R; ð9Þ
that is a fractional differential equation involving the left and right Riemann–Liouville fractional derivatives. Eq. (9) may be
converted in a more appropriate form, by the use of the Marchaud fractional derivatives ðDb

þsÞðxÞ and ðDb
�sÞðxÞ related to the

Riemann–Liouville operators as (Appendix A)
ðDb
þsÞðxÞ ¼ 1

Cð1� bÞ

Z x

�1

s0ðnÞ
ðn� xÞb

dn ¼ ðDb
þsÞðxÞ; ð10aÞ

ðDb
�sÞðxÞ ¼ 1

Cð1� bÞ

Z 1

x

s0ðnÞ
ðx� nÞb

dn ¼ ðDb
�sÞðxÞ; ð10bÞ
and that are defined for unbounded domain as
ðDb
þsÞðxÞ ¼def b

Cð1� bÞ

Z x

�1

sðxÞ � sðnÞ
ðx� nÞð1þbÞ dn; ð11aÞ

ðDb
�sÞðxÞ ¼def b

Cð1� bÞ

Z þ1

x

sðxÞ � sðnÞ
ðn� xÞð1þbÞ dn: ð11bÞ
The governing equation (9) may be cast in terms of the Marchaud fractional derivatives as
d2uðxÞ
dx2 � g

E
ððD2�b

þ uÞðxÞ þ ðD2�b
� uÞðxÞÞ ¼ � f ðxÞ

E
: ð12Þ
Despite the formal identity of Eqs. (9) and (12), the problem formulated in terms of the Marchaud fractional derivatives
yields a consistent mechanical representation of the non-local contribution as it will be reported in the following sections.
It may be also observed that in the absence of impending boundaries the strong non-local theory, assuming attenuation
function reported in Eq. (8), perfectly corresponds to the fractional model of the non-local problem.

A different scenario can be observed solving the elastic problem for a confined bar of length L and replacing the Riemann–
Liouville fractional derivatives in the unbounded domain, in (10b) and (10a) with their counterpart defined on finite support.
It may be shown, after some straightforward manipulation (see Appendix A) that the following relations hold:
ðDb
0þsÞðxÞ ¼ d

dx
ðI1�b

0þ sðxÞÞ ¼ sð0Þ
Cð1� bÞxb

þ 1
Cð1� bÞ

Z x

0

s0ðnÞ
ðx� nÞ1�b

dn ¼ ðDb
0þsÞðxÞ; ð13aÞ

ðDb
L�sÞðxÞ ¼ d

dx
ðI1�b

L� sðxÞÞ ¼ sðLÞ
Cð1� bÞðL� xÞb

þ 1
Cð1� bÞ

Z L

x

s0ðnÞ
ðn� xÞ1�b

dn ¼ ðDb
L�sÞðxÞ ð13bÞ
with the Marchaud fractional derivatives on finite domain ðDb
0þsÞðxÞ and ðDb

L�sÞðxÞ defined as
ðDb
0þsÞðxÞ ¼ ðbDb

0þsÞðxÞ þ sðxÞ
Cð1� bÞxb

; ð14aÞ

ðDb
L�sÞðxÞ ¼ ðbDb

L�sÞðxÞ þ sðxÞ
Cð1� bÞðL� xÞb

; ð14bÞ
where the integral operators ðbDb
0þsÞðxÞ and ðbDb

L�sÞðxÞ are defined as
ðbDb
0þsÞðxÞ ¼def b

Cð1� bÞ

Z x

0

sðxÞ � sðnÞ
ðx� nÞð1þbÞ dn; ð15aÞ

ðbDb
L�sÞðxÞ ¼def b

Cð1� bÞ

Z L

x

sðxÞ � sðnÞ
ðn� xÞð1þbÞ dn; ð15bÞ
yielding the governing equation of the elastic problem in terms of the Marchaud fractional derivatives in the form
d2uðxÞ
dx2 � g

E
ððD2�b

0þ uÞðxÞ þ ðD2�b
L� uÞðxÞÞ ¼ � f ðxÞ

E
ð16Þ
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Observation of Eqs. (16) and (12) shows that they are formally equivalent but not substantially coincident. The main differ-
ence is the presence of the algebraic terms in Eqs. (14a) and (14b) that diverge at the borders unless homogeneous boundary
conditions in terms of displacements and fixed support strains are imposed u(0) = u(L) = 0 and This is automatically ac-
counted in Lazopoulos derivation since derivation has been performed assuming that u(0) = u(L) = 0 but in the context of
the strong non-local theory with attenuation function in Eq. (8) the elastic problem ruled by Eq. (16) yields mathematical
inconsistencies for a bar with free ends.

Anyway, the divergent behaviour in passing from the Marchaud or the Riemann–Liouville derivative on infinite support to
the case of bounded bar does not have mechanical explanation at the present time leading to conclude that the requirement
of a mathematically and mechanically consistent model is imperative dealing with enriched continuum with cohesive inter-
actions. In the opinion of the authors, the main drawbacks in the strong non-locality model is due to the fact that the gov-
erning equation in Eq. (16) is postulated without underlying mechanical model. In this perspective, long-range interactions
will be described on mechanical grounds already used in lattice mechanics (Born and Huang, 1954; Lax, 1963). This will be
done in the next sections.

4. Elastic bar with long-range interactions: unbounded domain

In this section, the first of the two equivalent physical models will be addressed. Let us consider an elastic bar with infi-
nite length, as depicted in Fig. 1a, loaded with external self-equilibrated volume forces denoted f(x) and let us discretize the
bar in volume elements Vj = ADx(j = �1, . . . ,1) with A the cross-section and Dx the length of the element. Volume element Vj

is located at abscissa xj = (j � 1)Dx and it is in equilibrium under external loads, contact forces provided by adjacent volume
elements, Vj�1 and Vj+1, denoted NjandNj+1, respectively, and the resultant of long-range actions Qj applied on Vj by the sur-
rounding non-adjacent elements of the bar (Fig. 1b). Under these circumstances the equilibrium equation of volume Vj is
provided as
Fig. 1.
equilib
DNj þ Q j ¼ DNj þ
X1

m¼jþ1

Q ðm;jÞ �
Xj�1

m¼�1
Q ðm;jÞ ¼ �fjADx; ð17Þ
where fj = f(xj), DNj = Nj+1 � Nj is the difference between the contact forces Nj and Nj+1 provided by volume elements Vj+1,Vj�1

and Q(h,j) are the long-range forces that surrounding volume elements Vh (h = �m, . . . ,�2,�1,0,1,2, . . . ,m (m ?1),h 6¼ j) ap-
ply on element Vj as in Fig. 1c, where only long-range forces have been highlighted. The long-range forces Q(h,j)

(h = �1, . . . ,0 , . . . ,h 6¼ j, . . . ,1) represent molecular interactions between non-adjacent volume elements, and hence they de-
hVjV

( )h, jQ ( )h, jQ

hV

( )h, jQ ( )h, jQ

x

x

A

( )jf x

( )jf x AΔ

jN 1jN +

jQ

jV A

a

b

c

Δ

x

(a) Discretized elastic bar loaded by an external volume force field f(x). (b) Equilibrium of the volume element Vj. (c) Long-range forces in the
rium of volume element Vj.
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pend on both volume sizes Vj and Vh of interacting volumes as in applied mechanics problems with interacting axial molec-
ular forces (see, e.g. Krumhanls, 1963, Eq. (18); Kunin, 1963, Eq. 2.4–5). In the following long-distance interactions Q(h,j) will
be modelled as forces depending on the products of volume elements Vj and Vh as well as the relative displacement
u(xh) � u(xj) and on a decaying function g(jxh � xjj), that is,
Q ðh;jÞ ¼ sgnðxh � xjÞðuðxhÞ � uðxjÞÞgðj xj � xh jÞVjVh; ð18Þ
where sgn(�) is the well-known signum function defined as
sgnðxÞ ¼
�1; x < 0;
1; x P 0:

�
ð19Þ
The decaying function g(jxj � xhj) selected is a real-valued, monotonically decreasing function expressed as
gðj xj � xh jÞ ¼
Ecaa

ACð1� aÞ j xj � xhj1þa ð0 6 a 6 1Þ: ð20Þ
The particular choice of molecular interactions described in Eq. (20) has been selected to capture long-range interactions
used in the field of crystal lattices in the presence of central forces. Functional form reported in Eq. (20) for the attenuation
function is capable to describe either forces inversely proportional to the square of the distances of unstrained lattice and to
the distance lattices (see, e.g. Born and Huang, 1954, Section 11). It will be observed that the classical continuum mechanics,
without cohesive forces, may be recovered as a ? 0. Direct substitution of Eq. (20) in the equilibrium equation (Eq. (17)),
yields the equilibrium equation of volume Vj that, under the assumption Vj = Vh = Vr = ADx, may be written as
DNj �
EcaaADx
Cð1� aÞ

Xj�1

h¼�1

uðxjÞ � uðxhÞ
ðxj � xhÞ1þa Dxþ

X1
r¼jþ1

uðxjÞ � uðxrÞ
ðxr � xjÞ1þa Dx

" #
¼ �fjADx: ð21Þ
Dividing Eq. (21) by Dx and taking limit for Dx ? 0 the differential equilibrium equation is obtained as
dNðxÞ
dx

� EcaAððDa
þuÞðxÞ þ ðDa

�uÞðxÞÞ ¼ �f ðxÞA: ð22Þ
Eq. (22) may be recast in terms of the local conventional stress rl(x) = N(x)/A as
drlðxÞ
dx

� EcaððDa
þuÞðxÞ þ Da

�ðuÞðxÞÞ ¼ �f ðxÞ: ð23Þ
Eq. (23) is the equilibrium equations of the volume dV = Adx located at abscissa x in which long-range interactions between
surrounding non-adjacent volumes have been taken into account.

Assuming linear elastic material, the stress–strain relation may be used:
rlðxÞ ¼ EeðxÞ ¼ Edu=dx: ð24Þ
By using Eq. (24) in Eq. (23), and performing manipulations the equilibrium equation in terms of the displacement field for
the infinitesimal volume is written as
d2uðxÞ
dx2 � caððDa

þuÞðxÞ þ ðDa
�uÞðxÞÞ ¼ � f ðxÞ

E
: ð25Þ
Direct comparison of Eq. (25) with Eq. (12) shows that the two equations coalesce in the case of unbounded domain since
Riemann–Liouville and Marchaud fractional derivatives coincide. That is, by assuming the long-range interactions as in Eq.
(18) with the attenuation function reported in Eq. (20), the proposed model coincides formally under condition b = a + 2 with
the Lazopoulos and Eringen model with attenuation function reported in Eq. (3). This is, a remarkable consideration since in
the Eringen model a convolution integral of the strain e(x) = du/dx is involved, whereas the proposed model of long-range
interactions depends on the relative displacements of non-adjacent volumes. In the unbounded domain, these two represen-
tation of non-local effects coalesce since fractional operators are involved and 10b and 10a holds. This is not the case of the
bounded domain as it will be shown in the following. The mechanical representation of Marchaud fractional derivatives of
displacement functions in the fractional integral model of non-local interactions is now highlighted: It represents the resul-
tant of long-range interactions in the equilibrium of volume dV = Adx.

By summing up, if we select the attenuation function as in Eq. (20) and we assume that long-distance interactions Q(h,j)

are reported in Eq. (18), then the differential equation in terms of displacements is an ordinary fractional differential equa-
tion formally coalescing with Eq. (12) obtained by manipulation from Lazopoulos model similar to that described in Section
3. On this perspective, the reader could guess that the machinery presented in this section could be avoided by direct intro-
duction of an opportune attenuation function with proper exponent (b = a + 2) in the Eringen model. At this stage, we may
only emphasize that the long-range interactive forces exploited in Eq. (18) now have a clear mechanical interpretation and it
allows for two main considerations: (i) The problem of boundary condition in a finite domain will be introduced in a natural
way as it will be shown in the following section. (ii) The continuous model proposed here has a correspondence with a
mechanical discrete model as will be reported later in the course of this paper. These two main features remain hidden
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by the direct use of the non-local integral model. It will be stressed that the assumption reported in Lazopulous may now be
considered on mechanical basis that the long-range interactive forces have to be expressed as in Eq. (18). This is the crucial
point that allow us to formulate the problem in a finite domain.
5. Analysis of finite domain with long-range interactions

In this section, the problem of finite domain with long-range interactions will be treated with the aid of a mechanical
interpretation given in the previous section. The problem is introduced considering a bar of finite length L loaded by external
axial force field f(x). The same arguments leading to Eq. (17) for the equilibrium equation of volume Vj = ADx with Dx = L/m
(m the total number of volumes), yield, dividing by Dx, the equation
DNj

Dx
� EcaaA

Cð1� aÞ
Xj�1

h¼1

uðxjÞ � uðxhÞ
ðxj � xhÞ1þa Dxþ

Xmþ1

h¼jþ1

uðxjÞ � uðxhÞ
ðxj � xhÞ1þa Dx

" #
¼ �fjA ð26Þ
that represents the analogous equilibrium equation reported in Section 3 but with finite number of terms due to the finite
extension of the bar. Discrete equilibrium equation may be converted into integro-differential equation similar to Eq. (23) by
the use of Euler–McLaurin interpolation formula assuming that displacement field u(x) 2 C1 for x ? 0,L with C1 the class of
infinitely derivable functions. In this case, letting Dx ? 0 and neglecting higher-order terms in the Euler–McLaurin interpo-
lation formula the integro-differential equilibrium equation may be written, with the same considerations leading to Eq. (23)
as
d2uðxÞ
dx2 � caððbDa

0þuÞðxÞ þ ðbDa
L�uÞðxÞÞ ¼ � f ðxÞ

E
: ð27Þ
Such a consideration about the Euler–McLaurin formula is unnecessary in the presence of unbounded domains since no cor-
rective terms are involved in the formula. Direct comparison of terms retained in Eq. (27) with Eq. (16) reveals a substantial
difference between the differential equation obtained by direct consideration of the attenuation function in the Eringen
model (Eq. (16)) and that derived on the mechanical model of long-range forces proposed here. In Eq. (27), only the integral
part of the Marchaud fractional derivative appears instead of the Marchaud fractional derivative on a finite support. The two
equations coincide formally only for a bar of infinite length. It is to be stressed that in Eq. (27) the divergent terms at the
borders of the bar domain, appearing in the integral non-local model and in the fractional model, are not present. This is
a very remarkable result, since it leads us automatically, to a governing integro-differential equation without divergent
boundary terms. The latter aspects are a fundamental step in the present derivation since we may now formulate, consis-
tently, the boundary conditions for the non-local continuum.

Boundary conditions associated to Eq. (27) involving kinematic conditions may be imposed for the axial displacements at
the restrained locations. If some static boundary condition, say an external force F is applied at the edge then we must define
the overall resultant stress r (x) at cross-section x. To this aim, we observe that the following relation holds:
ðbDa
0þuÞðxÞ þ ðbDa

L�uÞðxÞ ¼ a
Cð1� aÞ

d
dx

Z L

n1 :x

Z x

n2 :0

uðn1Þ � uðn2Þ
j n2 � n1j1þa dn1 dn2: ð28Þ
And Eq. (27) may be recast in terms of the overall stress r(x) as
d
dx

E
du
dx
� caa

Cð1� aÞ

Z L

n1 :x

Z x

n2 :0

uðn1Þ � uðn2Þ
j n2 � n1j1þa dn1 dn2

 !
¼ drðxÞ

dx
¼ �f ðxÞ ð29Þ
with the stress r(x) defined by
rðxÞ ¼ E
du
dx
� caa

Cð1� aÞ

Z L

n:x

Z x

n2 :0

uðn1Þ � uðn2Þ
j n2 � n1j1þa dn1 dn2

 !
: ð30Þ
From Eq. (30) we may observe that the overall stress r(x) is the sum of the local stress rl(x) = Edu/dx and a non-local con-
tribution rnl(x) represented by the second term on the right-hand side of Eq. (30). To derive the mechanical boundary con-
ditions this fundamental equation does not show any mathematical inconsistence, and static boundary conditions may now
be applied requiring, as in classical local mechanics, that the applied force at the edges F is equal to rA. Moreover, at the
boundary of the bar (x = 0,L), the contribution to the overall stress due to the non-local term in Eq. (30) vanishes, that is,
the mechanical boundary conditions are simply rl(0)A = �F0 and rl(L)A = FL. Eq. (30) may be also drawn from mechanical
basis, but this cannot be assessed at the present stage, and it will be addressed after the introduction of the mechanical mod-
el of the non-local interactions reported in Section 6. Summing up, if we postulate that the long-range forces descend by the
Eringen model we may use the usual rule of the fractional calculus in the presence of homogeneous boundary condition (Eq.
(16)) to formulate a governing equation similar to Eq. (12). Since engineering problems may involve also non-homogeneous
boundary conditions, we propose to assume long-range forces on physical grounds. In this context, the analysis of finite bar
does not involve divergent terms anymore allowing for non-homogeneous boundary conditions but integral operators
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ðbDa
0þ �ÞðxÞandðbDa

L� �ÞðxÞ are now fractional operators of different natures (and the usual rules of fractional calculus do not hold).
The mechanical boundary conditions for a finite-extension bar may be easily imposed by means of Eq. (30).

Now we suppose that the discrete form of Eq. (27) (that is expressed in Eq. (26)) is not known and we want to use the
tools of discretization of fractional calculus. This may be provided resorting to fractional finite differences (Shkanukov,
1996). In this context, introducing a proper discretization of the bar in m intervals of amplitude Dx = L/m and representing
the fractional differential operator ðbDa�ÞðxÞ ¼ ðbDa

0þ�ÞðxÞ þ ðbDa
L��ÞðxÞ at the material point xj = (j � 1)Dx j = 1,2, . . . ,m + 1 by the

difference operator Da
xi

given by
bDa½s�ðxjÞ ¼ Da
xj

sðxÞ þ OðDxÞ; ð31Þ
where O(Dx) means a quantity of order Dx and the fractional difference operator Da
xi

is represented as
Da
xj

sðxÞ ¼ a�1

Cð1� aÞ
Xj�1

h¼1

½ðxj�hþ1Þ�a � ðxj�hÞ�a�sðxhÞ þ
Xm

r¼jþ1

½ðxj�rÞ�a � ðxjþ1�rÞ�a�sðxrÞ
( )

: ð32Þ
Discretizing Eq. (27) by operator in Eq. (32) and neglecting terms of order Dx an algebraic, fractional difference, system in the
unknown displacement field u(xj) is obtained as
EA
Dx D2uðxjÞ � EcaADx

Cð1�aÞ
Pj�1

h¼1
uðxjÞððxj�hÞ�a � ðxjþ1�hÞ�aÞ � uðxhÞððxj�hÞ�a � ðxjþ1�hÞ�aÞ

� �
þ� EcaADx

Cð1�aÞ
Pm
r¼j

uðxjÞððxr�jÞ�a � ðxrþ1�jÞ�aÞ � uðxrþ1Þððxr�jÞ�a � ðxrþ1�jÞ�aÞ
" #

¼ �FðxjÞDx;

ð33Þ
holding for j = 1,2, . . . ,m + 1 and with the finite differences D2u(xj) = u(xj+1) � 2u(xj) + u(xj�1) with F(xj) = f(xj)A. In passing, we
remark that the approximation scheme involved by fractional finite differences may be applied also at the boundary-value
problem in Eq. (16), since it requires homogeneous boundary condition for the unknown function. This behaviour is due to
the presence of the divergent boundary terms at the boundaries that is overcome for homogeneous boundary conditions, as
it has been proposed in scientific literature with Riemann–Liouville fractional derivative with bounded intervals (see, e.g.
Kilbas et al., 2006, pp. 272).

System of m algebraic equations reported in Eq. (33) in the unknown displacements u(xj) of the grid points used to dis-
cretize fractional differential equation may be reported in compact form as
Ku ¼ f; ð34Þ
where nodal displacement and force vectors u and f, respectively, are given as
uT ¼ u1 u2 . . . um½ �; ð35aÞ
fT ¼ f1 . . . . . . fm½ �ADx; ð35bÞ
and the non-local coefficient matrix K = Kl + Knl has been introduced in which contact contributions due to adjacent ele-
ments have been considered in the tri-diagonal matrix Kl, collecting elements Kl = EA/Dx as
Kl ¼

K l �K l . . . . . . 0
�K l 2K l �K l . . . 0
. . . . . . . . . . . . . . .

. . . . . . �K l 2K l �K l

0 . . . . . . �K l K l

26666664

37777775 ð36Þ
and non-local interactions have been considered in the symmetric, fully populated, matrix
Knl ¼ caADx
Cð1�aÞ

Knl
11 �Dx�a ½Dx�a � ð2DxÞ�a� . . . ½ððm� 1ÞDxÞ�a � ðmDxÞ�a�
�Dx�a Knl

22 �Dx�a . . . ½ððm� 2ÞDxÞ�a � ððm� 1ÞDxÞ�a�
..
. ..

. ..
. ..

. ..
.

½ððm� 2ÞDxÞ�a � ððm� 1ÞDxÞ�a� . . . . . . . . . . . .

½ððm� 1ÞDxÞ�a � ðmDxÞ�a� . . . . . . �Dx�a Knl
mm

2666666664

3777777775
;

ð37Þ
where elements jh of the matrix Knl, Knl
jh ¼

R xh
xj

gðxj; nÞdnðj 6¼ hÞ and Knl
jj ¼ �

Pm
h ¼ 1
h 6¼ j

Knl
jh , with function g(xj,n) defined in Eq.

(20). Displacements at the grid points used to discretize the model are provided by inversion of the stiffness matrix K
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accounting for the appropriate kinematic and static boundary conditions at the borders of the solid. Formal equivalence of
Eq. (34) with the solving equations of elastic problems suggests that an elastic mechanical model may be used to represent
mechanics of long-range enriched continuum as will be reported in the following section.

6. The mechanical equivalent model of non-local bar

At this point, some new insights on the mechanics of the non-local problem may be introduced with the aid of the dis-
crete spring-point model reported in Fig. 2 with few nodes for clarity. A similar idea to capture non-local effects has also been
proposed in the context of finite element method (Liu et al., 2004) connecting two adjacent nodes by a spring to account for
local effects and nodes i � 2,i, i + 2 with other springs to obtain non-local effects.

In the following, a more refined non-local model that reflects the mechanical framework proposed in this paper will be
reported representing local forces between adjacent particles have been considered by springs with elastic stiffness Kl = EA/
Dx. Long-distance interactions have been introduced by mechanical connections of all non-adjacent particles with linear
springs with distance-decaying stiffness as Knl

jh ¼ gðj xh � xj jÞ. Under these circumstances, the model in Fig. 2 may be studied
by the classical displacement approach, observing that the equilibrium equations of the elastic model including long-range
effects may be formulated as
K lu1 � K lu2 � A2Dx
Xm

h¼2

gðj x1 � xh jÞðuh � u1Þ ¼ F1; ð38aÞ

� K luj�1 þ 2K luj � K lujþ1 � A2Dx
Xmþ1

h ¼ 1
h 6¼ j

gðj xj � xh jÞðuh � ujÞ ¼ Fj; j ¼ 2; . . . ;m� 1; ð38bÞ

K lum � K lum�1 � A2Dx
Xm

h¼2

gðj xm � xh jÞðum � uhÞ ¼ Fm: ð38cÞ
First terms in Eqs. (38a)–(38c) correspond to contact forces and the sums represent non-local forces applied at material par-
ticle located at abscissa xj by the surrounding particles located at abscissas xh. The right-hand side of Eqs. (38a) and (38c) is
related to the body forces applied at material particles. Nodal forces reported on the right-hand side of Eqs. (38a)–(38c) are
expressed as Fj = f(xj)A.

Equilibrium equations reported in Eqs. (38a) and (38c) may be rewritten in matrix form similar to Eq. (34) introducing the
non-local stiffness matrix K = Kl + Knl in which we denoted Kl the local stiffness matrix (Eq. (36)). In the discrete point-spring
model, it may be easily shown that the non-local interactions are described in the symmetric, fully populated, non-local stiff-
ness matrix as
Knl ¼

Knl
11 �A2Dxgðj x2 � x1 jÞ �A2Dxgðj x3 � x1 jÞ . . . �A2Dxgðj xm � x1 jÞ
�A2Dxgðj x2 � x1 jÞ Knl

22 �A2Dxgðj x3 � x2 jÞ . . . �A2Dxgðj xm � x2 jÞ
..
. ..

. ..
. ..

. ..
.

..

. ..
. ..

. ..
. ..

.

�A2Dxgðj xm � x1 jÞ . . . . . . �A2Dxgðj x2 � x1 jÞ Knl
mm

2666666664

3777777775
;

ð39Þ
where Knl
jj ¼

Pm
h¼1;h 6¼jkjk and kjk ¼ A2Dxgðj xj � xh jÞ. The non-local stiffness matrix reported in Eq. (39) has been obtained by

induction evaluating the equilibrium equations for an increasing number of interconnected points. Moreover, close observa-
tion of Eq. (39) contrasted with coefficient matrix in Eq. (37) shows that by selecting the spatially decaying function
24k

13k

14k

23
lK k+12

lK k+ 34
lK k+

3 41 2

4F1F

Fig. 2. Discrete point-spring non-local model with spatially decaying stiffness.
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g(jxj � xhj) with expression in Eq. (20) as soon as D x ? 0 matrix in Eq. (39) reverts to the non-local coefficient matrix defined
in Eq. (37) and obtained with fractional finite differences. This is a very remarkable result enabling us to validate the pro-
posed non-local model of long-range interactions and gives a new perspective in the analysis of enriched continuum.

At this stage, we may use the point-spring model to gain some additional insights about the boundary conditions asso-
ciated to the mechanics of the non-local continuum. First of all, we observe that if some node of the model is restrained, then
it involves the cancellation of the corresponding row and column in the stiffness matrix K = Kl + Knl. If some static boundary
condition is involved in the considered problem, then this is automatically accounted introducing the known load at the cor-
responding joint in the point-spring model. Now, we want to derive the constitutive law of the non-local model by the anal-
ysis of the point-spring model. The overall stress r(x) in the discrete model is the resultant stress provided by the springs by
a fictitious cut of the model in two parts, for instance at location 0 < x < Dx. Thus, the overall stress is furnished as
rðxÞ ¼ 1
A

Xm

j¼2

Q ð1;jÞ þ klðu2 � u1Þ
 !

; 0 < x < Dx; ð40Þ
where the long-distance forces Q(1,j) are represented with the proposed point-spring model as Q(1,j) = g(jxj � x1j)(uj � u1)VjV1.
If the overall stress r(x) is evaluated in the interval D x < x < 2Dx or 2Dx < x < 3Dx, then it reads respectively,
rðxÞ ¼ 1
A

Xm

j¼3

Q ð1;jÞ þ
Xm

j¼3

Q ð2;jÞ þ klðu3 � u2Þ
 !

; Dx < x < 2Dx; ð41aÞ

rðxÞ ¼ 1
A

Xm

j¼4

Q ð1;jÞ þ
Xm

j¼4

Q ð2;jÞ þ
Xm

j¼4

Q ð3;jÞ þ klðu4 � u3Þ
 !

; Dx < x < 3Dx ð41bÞ
yielding, by mathematical induction, the overall stress for rD x < x < (r + 1)Dx as
rðxÞ ¼ 1
A

Xm

j¼rþ1

Q ð1;jÞ þ
Xm

j¼rþ1

Q ð2;jÞ þ � � � þ
Xm

j¼rþ1

Q ðr�1Þj þ klðurþ1 � urÞ
 !

¼ 1
A

Xm

j¼rþ1

Xr

h¼1

Q ðh;jÞ þ klðurþ1 � urÞ
 !

: ð42Þ
The continuous model with long-range forces is derived from Eq. (42), substituting for the long-range interactions Q(h,j), the
expressions reported in Eq. (18), accounting for Eq. (20), that reads
rðxÞ ¼ acaA
Cð1� aÞ

Xm

j¼rþ1

Xr

h¼1

ðuj � uhÞ
j xj � xhj1þa ðDxÞ2 þ E

ður � ur�1Þ
Dx

 !
ð43Þ
and letting Dx ? 0, as in Section 5, Eq. (30) is fully recovered and now has a remarkable mechanical equivalence since it rep-
resents the non-local Cauchy stress at cross-section x obtained as the sum of two contributions: (i) The local Cauchy stress
represented by the first term in Eq. (43) and (ii) a non-local stress represented by the latter contribution in Eq. (43). Static
boundary conditions may then be applied to the continuous model with long-range interactions requiring that the overall
stress, coalescing at the borders with the local stress rl, is equivalent to the applied load as rA = F.

Summing up the elastic equilibrium problem for 1D solid, in the presence of fractional form of long-range interactions
involves equilibrium, compatibility and constitutive relations, respectively, given as
drðxÞ
dx

¼ d
dx
ðrlðxÞ þ rnlðxÞÞ ¼ �f ðxÞ; ð44aÞ

du
dx
¼ eðxÞ; 0 6 x 6 L; ð44bÞ

rðxÞ ¼ E
du
dx
� aca

Cð1� aÞ

Z L

n1 :x

Z x

n2 :0

uðn1Þ � uðn2Þ
j n2 � n1j1þa dn2dn1

 !
; ð44cÞ
with associated boundary conditions, respectively, kinematic or static, in the form
uð0Þ ¼ u0; uðLÞ ¼ uL; ð45aÞ
rð0Þ ¼ rlð0Þ ¼ �F0=A; rðLÞ ¼ rlðLÞ ¼ FL=A; ð45bÞ
since the non-local contribution provided by the double integral in Eq. (44c) vanishes at the edges (for x ? 0or x ? L) or their
combination in the case of mixed boundary conditions.

It is to be remarked that all the considerations provided about the mechanical models presented in this paper hold true
also for different classes (exponential-type, Gaussian, Mexican hat, etc.) of the distance-decaying stiffness of the springs rep-
resenting long-range forces as it will be reported in a forthcoming paper dedicated to this topic. Moreover, we must claim
that all the proposed governing equations and associated boundary conditions may be also derived by the application of var-
iational calculus, once appropriate form of the strain energy function has been deduced from the mechanical model pre-
sented here. This aspect has already been investigated and derived by the authors and it cannot be reported in this paper
for brevity. Anyway, the fundamental relations of the proposed continuum with long-range forces such as the virtual work
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principles, the elastic potentials and all the variational formulations, already obtained by the authors, will be presented in a
study totally devoted to this fundamental matter.

In the presence of unbounded domains (44a) and (44b) hold true while (44c) must be replaced with
rðxÞ ¼ E
du
dx
� aca

Cð1� aÞ

Z 1

x

Z x

�1

uðn1Þ � uðn2Þ
j n2 � n1j1þa dn2 dn1

 !
; ð46Þ
that has been derived from the relation
ðDa
þuÞðxÞ þ ðDa

�uÞðxÞ ¼ a
Cð1� aÞ

d
dx

Z 1

x

Z x

�1

uðn1Þ � uðn2Þ
j n2 � n1j1þa dn1 dn2 ð47Þ
A close inspection of Eq. (47) reveals that double integral at the right-hand side times a/C(1 � a) is the Marchaud fractional
integral that coincides in unbounded domains with the difference of Riemann–Liouville fractional integrals as (see Appendix
A for details)
ðIaþuÞðxÞ � ðIa�uÞðxÞ ¼ ðIa�1;1uÞðxÞ ¼ a
Cð1� aÞ

Z 1

x

Z x

�1

uðn1Þ � uðn2Þ
j n2 � n1j1þa dn1 dn2: ð48Þ
A different scenario happens for the double integral in Eq. (44c) that does not coalesce with the fractional Riemann–Liouville
fractional integral on a finite support, since it remains just the integral counterpart of the sum of ðbDa

0þuÞðxÞandðbDa
L�uÞðxÞ as
ðbIa
0;LuÞðxÞ ¼ a

Cð1� aÞ

Z L

x

Z x

0

uðn1Þ � uðn2Þ
j n2 � n1j1þa dn1 dn2: ð49Þ
The stress–strain relation, for unbounded and bounded domain may then be reported as
rðxÞ ¼ EeðxÞ � EcaðIa�1;1uÞðxÞ; �1 < x <1; ð50aÞ

rðxÞ ¼ EeðxÞ � EcaðbIa
0;LuÞðxÞ; 0 6 x 6 L: ð50bÞ
Such a stress–strain relation for a bounded domain is very different from the constitutive relationship proposed in Eq. (1),
without underlying the mechanical model or with that exploited in Eq. (7) in the fractional model, because they depend of
the relative displacements at different locations instead of the strain field as in Eqs. (1) and (7). Moreover, a double integral is
involved in (50b) and (50a) instead of single convolution integral involved in the non-local integral theories.

At this stage, we now have the machinery to represent the mechanical equivalence of the non-integral terms retained in
the non-local integral model obtained by the direct use of Eringen model (Eq. (16)). The divergent boundary terms in Eqs.
(14a) and (14b) are, in the point-spring non-local model, elastic springs connecting the point to the ground with loca-
tion-dependent stiffness (as shown in Fig. 3) that reads, at location xj = (j � 1)Dx:
kj ¼
EcaDx

ACð1� aÞ
1
xa

j

þ 1
ðL� xjÞa

 !
ð51Þ
Thus for the model directly derived from the Eringen model the stiffness matrix of the non-local model is provided as
K = Kl + Knl + Kr with the additional, diagonal matrix Kr of the form
Kr ¼

k1 0 . . . 0
0 k2 . . . 0

..

. ..
. ..

. ..
.

0 0 . . . km

266664
377775 ð52Þ
24k

13k

14k

23
lK k+12

lK k+ 34
lK k+

3k2k1k 4k

3 41 2
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1F

Fig. 3. Mechanical equivalence of the Eringen model with point-spring model with additional elastic restraints.
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As soon as Dx ? 0 matrix in Eq. (39) tends to the fractional difference matrix and the non-integral terms in the integral non-
local model are provided by the additional terms reported in Eq. (51), yielding the governing Eq. (16). The specific form of the
additional stiffness in Eq. (51) led us to the conclusion that (i) the stiffness of the spring located at the border of the bar is
infinitely large corresponding to a fixed support; (ii) the presence of the additional springs is not consistent with the studied
bar that is not connected to the ground. These considerations appearing for the finite bar are not involved in the analysis of
bar with unbounded domain, since in that latter case the stiffness of the additional springs is vanishing everywhere.

As a conclusion, Eq. (16) directly derived from the Eringen model is inconsistent from a mechanical point of view, because
it corresponds to some additional restraints and spring connections that are not present in the mechanical model. It follows
that the only way to define the non-local model of a finite bar is that provided in Eq. (27) that contains integral partsbDa

0þ ½uðxÞ�andbDa
L� ½uðxÞ� instead of the Marchaud fractional derivatives on finite supports and it has formulated on mechanical

grounds. Henceforth, we conclude that the mechanical model introduced in this paper does not correspond, for a bounded
bar, neither to the Eringen model nor to the fractional model presented by Lazopulos but that it represents a novel model to
account for long-range forces and appropriate investigations will be reported elsewhere.

As soon as the linear point-spring model of long-range interactions has been introduced and established, we may inquire
about the influence of parameters a,ca and E on the non-local response of a system. The couple of parameters a and ca are
involved in the non-local contribution to the overall Cauchy stress (see 44c). Increasing value of parameter ca corresponds to
larger long-range interactions for specified distance of the particles, whereas the real parameter a controls the influence of
the edge-effect on the structural response. Values of these parameters strongly depend on the inner structure of the material
and they must be set to describe the measured data field. Parameter E influences the amount of strain energy stored in the
specimen and it may be estimated once a standard experimental set-up has been established.

Several numerical investigations have shown that the concepts expressed in this paper about the mechanical represen-
tation of long-range interactions may be applied also for different classes of attenuation functions (Gaussian, Mexican hat,
exponential) as it will be reported in forthcoming papers.
7. Numerical applications

Numerical investigations reported in this paper have been devoted to highlight concepts and discussions of the previous
sections. To this aim in Fig. 4a–c, a critical comparison between the integral non-local model and the proposed representa-
tion of cohesive forces has been reported for different cases of bar length. The bar has been loaded by self-equilibrated forces
applied at fixed distance d = 5 mm from the central cross-section of the bar allowing to represent edge effect. In Fig. 4a, the
axial displacements of the bar obtained with the proposed model (continuous line) have been contrasted with the discrete
point-spring model of non-local interactions (dots) and with integral fractional model of Section 3 (dashed line). It may be
observed with the length of the bar L = 200 mm the Eringen model yields displacement function almost similar to the axial
displacement field obtained with the proposed interpretation of long-range forces. These effects may be discussed with the
arguments of Section 4, where we reported the case of bar of infinite length remarking that in this context the integral non-
local model yields the same governing equation of the proposed model of non-local interactions. This may be explained
observing that the axial displacements of the free end of the bar are nearly vanishing for the mechanical model in Fig. 2,
so that the fixed support at the end of the Eringen integral model in Fig. 3 is ineffective.

A different scenario is provided with other lengths of the bar, namely L = 50 mm and L = 10 mm, as it may be observed in
Fig. 4b and c, respectively, where the marked differences between the non-local integral model and the proposed represen-
tation of long-range interactions may be detected.

This behaviour is explained by the considerations reported in Section 5 for the mechanical model of long-range interactions
proposed. As soon as the distance between the borders of the bar and the external loads decreases, stronger edge effects due to
the elastically restrained supports may be observed as in Fig. 4b and c, showing significant differences with the proposed non-
local model. This is because as soon as the external forces are closer to the end of the bar, the proposed non-local model yields
non-vanishing axial displacements at the borders that are no more coincident with the Eringen fractional integral model of non-
local interactions (Fig. 4). This effect is still more highlighted for the bar in Fig. 4), where axial displacements corresponding to
the mechanical model of non-local interactions are very different from the non-local fractional integral model.

The displacement field obtained for assigned boundary forces has been reported in Fig. 5a for different values of the size
of the grid scheme used. It has been observed that the equivalent point-spring model do provide the same numerical values
and it has not been reported for clarity. Number of points used to discretize the model has been assumed equal to m = 400
(dotted line), m = 800 (dot-dashed line), m = 1600 (dashed line) and m = 2400 (continuous line). In particular, it may be ob-
served that as soon as the grid used become more and more refined, the displacement field tends toward the continuous line
that may be assumed coinciding with the correct solution of Eq. (27) (obtained for m = 4800). Moreover, the presence of
long-range forces is significant at the border of the domain, where the displacement field shows significant deviations from
the linear behaviour predicted by classical continuum mechanics.

In the central part of the specimen, almost linear behaviour of the displacement field may be withdrawn from Fig. 5b
leading to conclude that the presence of long-range forces does not alter the characters of the displacement field in the core
domain. This behaviour is enhanced in Fig. 5b reporting the strain field of the specimen for different values of the grid
scheme used and it may be observed that, independently of the discretization step, non-uniform strains are present at



x

Fig. 4. (a) Axial displacements of the proposed fractional model vs the equivalent point-springs model (dots) and the Eringen model (dashed) for a self-
equilibrated bar with L = 200 mm. (b) Axial displacements of the proposed fractional model vs the equivalent point-springs model (dots) and the Eringen
model (dashed) for a self-equilibrated bar with L = 50 mm. (c) Axial displacements of the proposed fractional model vs the equivalent point-springs model
(dots) and the Eringen model (dashed) for a self-equilibrated bar with L = 10 mm.
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the border of the specimen. In more detail, the non-local character of the model is always respected and as soon as the gird
step decreases the strain field tends toward the continuous line representing the solution of Eq. (27) (obtained for m = 4800).



Fig. 5. (a) Axial displacement field of fractional continuum of a free-free bar for different finite difference discretization grids. (b) Axial strain of fractional
continuum of a free-free bar for different finite difference discretization grids.
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The effects of the parameters involved in the proposed model of long-range interactions have been reported in Fig. 6a and
b illustrating the behaviour of the conventional strain e(x) of a free-free bar with applied self-equilibrated axial loads for dif-
ferent values of the coefficients a (Fig. 6a) and ca (Fig. 6b). It may be observed that, for the limiting case of a ? 0 or ca ? 0,
the proposed non-local model yields the well-known local case without distance-decaying long-range forces.

8. Conclusions and discussion

This paper aims to overcome the problem of mechanical boundary conditions for a non-local bar with finite length as well
as to unify the gradient and the integral theory of non-local continua.

Initially, it has been shown that proper selection of the attenuation function in the Eringen model yields stress–strain
relation involving fractional derivatives instead of classical derivatives or convolution integrals. Fractional derivatives or
fractional integrals are neither else than differentials of convolution integrals and then by introducing the non-local contri-
bution in the stress–strain relation we obtain an intermediate operator between weak and strong non-local theories. It has
been shown that the direct substitution of the fractional attenuation function in the Eringen integral model yields some
inconsistencies at the border of the finite bar that do not allow to satisfy the mechanic boundary conditions. This happens,
in the author’s opinion, because the direct introduction of the non-local contribution in the constitutive law of the material
does not have any mechanical equivalence and only in the presence of unbounded domain these inconsistencies disappear.

Non-local effects have then been proposed, consequently, introducing two different, but totally equivalent, mechanical
models. The first one is obtained by considering that in each volume element we have contact forces arising from the surface
of separation of adjacent volumes and other central forces provided by the surrounding, non-adjacent, volumes. The latter
forces depend on the product of non-adjacent volumes, on the relative displacements of the non-adjacent volumes and on a
decaying function of the distance between the interacting masses. It has been shown that for unbounded domain, by select-
ing the decaying function as proportional to jxj � xhj�(1+a) then the Marchaud fractional derivative of the displacement field
appears in the equilibrium equation. Moreover, for a bar of finite extension, only the integral part of the Marchaud fractional



Fig. 6. (a) Axial strain field of clamped-free for different values of real parameter a. (b) Axial strain field of clamped-free 1 for different values of real
parameter ca.
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derivative appears. It follows that the divergent term of Marchaud fractional derivative on finite support is not involved in
the analysis. This is a very remarkable aspect since for an unbounded bar the non-local contribution is represented by the
Marchaud fractional derivative, while for a finite support, only the integral term of the Marchaud fractional derivative in fi-
nite support is present and then the governing differential equation in terms of displacements is no more a fractional differ-
ential equation. This feature leads us to conclude that Eringen model with fractional attenuation function is equivalent to the
proposed mechanical model of non-local interaction only in the case of unbounded domain. This is due to the equivalence of
the Riemann–Liouville fractional derivatives present in the Eringen model with Marchaud fractional derivatives involved in
the present analysis for unbounded domains. This is no more the case for bounded bar where the proposed non-local inter-
action model involve only the integral part of the Marchaud fractional derivative and this part is no more equivalent to the
Riemann–Lioville fractional derivative on bounded intervals involved in Eringen model with a proper selection of the decay-
ing function.

The second equivalent mechanical model accounting for non-local contribution is a point-spring model. The local contri-
bution is taken into account by springs connecting adjacent points while the non-local contributions are considered by
springs with distance-decaying stiffness. It is shown that at the limit, for a bar of finite length, the governing equations ex-
actly coalesce with the previously proposed model. This second mechanical model of long-range interactions allows to de-
fine the overall Cauchy stress in a given location of the model simply by the sum of two contributions: The first is the local
stress due to the contact of the points (local spring); the second is the resultant, in terms of the stress of the springs connect-
ing non-adjacent points (non-local springs). The overall stress leads us to formulate, consistently, the boundary condition of
the 1D continuum with long-range forces.

The proposed models of long-range forces lead us to derive a stress–strain relation for the non-local 1D bar for both un-
bounded and bounded domains that is composed by the local contribution and the non-local one represented by a Marchaud
fractional integral. Since the latter is a double convolution integral we may state that the proposed non-local interaction
model with mechanical equivalence does not correspond to the Eringen model in bounded domains.
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The concepts presented in this paper are not only related to the choice of the attenuation function in order to obtain a
fractional differential equation. As in fact the readers may verify that with different attenuation functions describing
long-range forces the non-local stress is still defined by a double convolution integral (no more Marchaud-type).

Several numerical applications have been reported in this paper to highlight the effect of long-range forces and impend-
ing boundaries on the proposed mechanical model of the solid.
Acknowledgements

The authors are very grateful to MIUR for research project by the University of Palermo. This financial support has been
greatly appreciated.

Appendix A. Details about fractional calculus

In this appendix, we give some details on fractional calculus and we consider functions defined in a finite interval. Given a
Lebesgue measurable function w(x) on the closed interval [a,b], briefly w(x) 2 Leb1([a,b]), it is possible to define the left–
handed RL fractional derivative ðDc

aþwÞðxÞ with c 2 R, given by
ðDc
aþwÞðxÞ ¼def 1

Cð1� cÞ
d
dx

Z x

a

wðnÞdn

ðx� nÞc
; 0 < c < 1 ðA1Þ
and the right–handed RL fractional derivative ðDc
b�wÞðxÞ in the form
ðDc
b�wÞðxÞ ¼ ð�1Þ

Cð1� cÞ
d
dx

Z b

x

wðnÞdt
ðn� xÞc

; 0 < c < 1; ðA2Þ
Useful representations of Eq. (A1) and (A2) are
ðDc
aþwÞðxÞ ¼ 1

Cð1� cÞ
wðaÞ
ðx� aÞc

þ
Z x

a

w0ðnÞdn

ðx� nÞc
� �

; 0 < c < 1; ðA3Þ

ðDc
b�wÞðxÞ ¼ 1

Cð1� cÞ
wðbÞ
ðb� xÞc

�
Z b

x

w0ðnÞdn

ðn� xÞc

" #
; 0 < c < 1; ðA4Þ
as reported in the book by Samko et al. (1988). In order to extend the definition of fractional derivative of order greater than
1, first, we recall a standard notation, indicating with [c] the integer part of a real number and with {c} the fractional part,
that is c = [c] + {c}. Then, for every positive real number c the Riemann–Liouville fractional derivatives are defined as
ðDc
aþwÞðxÞ ¼ 1

Cðn� cÞ
dn

dxn

Z x

a

wðnÞdt

ðx� nÞc�nþ1 ; n ¼ ½c� þ 1; ðA5Þ

ðDc
b�wÞðxÞ ¼ ð�1Þn

Cðn� cÞ
dn

dxn

Z b

x

wðnÞdn

ðn� xÞc�nþ1 ; n ¼ ½c� þ 1; ðA6Þ
Comparing the definitions, it follows that the fractional derivatives and fractional integrals are related by the simple
relations
ðDc
aþwÞðxÞ ¼ dn

dxn
ðIn�c

aþ wÞðxÞ; n ¼ ½c� þ 1; ðA7Þ

ðDc
b�wÞðxÞ ¼ ð�1Þn dn

dxn
ðIn�c

b� wÞðxÞ; n ¼ ½c� þ 1: ðA8Þ
The presence of the derivatives of order n in the fractional derivatives definitions involves more strict conditions to the exis-
tence of the fractional derivative. A sufficient condition is the function having continuous derivatives up to the order [a] � 1.

In the presence of unbounded domain, the RL fractional derivatives reads
ðDc
�wÞðxÞ ¼ 1

Cð1� cÞ
d
dx

Z 1

0

wðx� nÞdn

nc ðA9Þ
for 0 < c < 1 or, for c > 0, it is expressed as
ðDc
�wÞðxÞ ¼ ð�1Þn

Cðn� cÞ
dn

dxn

Z 1

0
nn�c�1wðx� nÞdn; n ¼ ½c� þ 1: ðA10Þ
On the real axis, Eq. (A9) can be written in more convenient form, working out a little on definition. In fact, suppose first that
the function w(x) is continuously differentiable and with its first derivative w0(x), vanishes at infinity as jxjc�1�e,e > 0, and
consider 0 < c < 1. Under these assumptions the chain of equalities is true:
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ðDc
�wÞðxÞ ¼ 1

Cð1�cÞ
d

dx

R1
0

wðx�nÞdn
nc ¼ 1

Cð1�cÞ
R1

0
w0 ðx�nÞdn

nc ¼

¼ c
Cð1�cÞ

R1
0 w0ðx� nÞdn

R1
t

dn
n1þc ¼

¼ c
Cð1�cÞ

R1
0

wðxÞ�wðx�nÞdn

n1þc ¼defðDc
�wÞðxÞ

ðA11Þ
The operators ðDc
þwÞðxÞ and ðDc

�wÞðxÞ in Eq. (A11) are the Marchaud fractional derivatives for an unbounded domain. The
advantage of this definition is that the integral converges under more general assumptions for the function, not requiring a
good behavior at infinity, i.e., a function growing at infinity as jxjc�e, with e > 0 has a Marchaud fractional derivative. There-
fore, the RL derivative and the Marchaud derivative coincide only for a class of functions. Conditions on the equivalence are
reported in (Samko, pp 224–229). The Marchaud fractional derivatives in a finite interval is obtained from Eq. (A11) by
continuing the function f(x) by zero beyond the interval [a,b], that is
w�ðxÞ ¼
wðxÞ; x 2 ½a; b�;
0; x 62 ½a; b�;

�
ðA12Þ
obtaining the useful relations
ðDc
aþwÞðxÞ ¼defðbDc

aþwÞðxÞ þ wðxÞ
Cð1� cÞðx� aÞc

; x 2 ½a; b�; ðA13Þ

ðDc
b�wÞðxÞ ¼defðbDc

b�wÞðxÞ þ wðxÞ
Cð1� cÞðb� xÞc

; x 2 ½a; b�; ðA14Þ
where ðbDc
aþwÞðxÞ and ðbDc

b�wÞðxÞ represent the defined integrals
ðbDc
aþwÞðxÞ ¼ c

Cð1� cÞ

Z x

a

wðxÞ �wðnÞ
ðx� nÞð1þcÞ dn ðA15Þ

ðbDc
b�wÞðxÞ ¼ c

Cð1� cÞ

Z b

x

wðxÞ �wðnÞ
ðn� xÞð1þcÞ dn ðA16Þ
Equivalence between Riemann–Liouville fractional derivative and Marchaud fractional derivatives in the presence of
bounded intervals may be proved by integrating in Eqs. (A3) and (A4) by parts obtaining
ðDc
aþwÞðxÞ ¼ 1

Cð1�cÞ
wðaÞ
ðx�aÞc þ

R x
a ðx� nÞ�cd½wðnÞ �wðxÞ�

h i
¼ 1

Cð1�cÞ
wðxÞ
ðx�aÞc þ lim

n!x

wðnÞ�wðxÞ
ðx�nÞc þ c

R x
a

wðxÞ�wðnÞ
ðx�nÞðcþ1Þ dn

� �
¼def 1

Cð1�cÞ
wðxÞ
ðx�aÞc þ c

R x
a

wðxÞ�wðnÞ
ðx�nÞðcþ1Þ dn

h i
¼ ðDc

aþwÞðxÞ;

ðA17Þ

ðDc
bþwÞðxÞ ¼ 1

Cð1�cÞ
wðbÞ
ðb�xÞc þ

R b
x ðx� nÞ�cd½wðnÞ �wðxÞ�

h i
¼ 1

Cð1�cÞ
wðxÞ
ðb�xÞc þ lim

n!x

wðnÞ�wðxÞ
x�nÞc þ c

R b
x

wðxÞ�wðnÞ
ðn�xÞðcþ1Þ dn

� �
¼def 1

Cð1�cÞ
wðxÞ
ðb�xÞc þ c

R x
a

wðxÞ�wðnÞ
ðn�xÞðcþ1Þ dn

h i
¼ ðDc

bþwÞðxÞ:

ðA18Þ
The equivalence between the Riemann–Liouville fractional integrals and the proposed Marchaud fractional integral in the
unbounded domain reported in Eq. (50) may be withdrawn from Eq. (A11) casting the sum ðDa

þwÞðxÞ þ ðDa
�wÞðxÞ in the form
ðDc
þwÞðxÞ þ ðDc

�wÞðxÞ ¼ ðDc
þwÞðxÞ þ ðDc

�wÞðxÞ ¼ 1
Cð1� cÞ

d
dx

Z x

�1

wðnÞ
ðx� nÞc

dn�
Z 1

x

wðnÞ
ðx� nÞc

dn

� �
: ðA19Þ
and the left-hand side of Eq. (A19) is written, accounting for Eq. (49), in the equivalent form
ðDc
þwÞðxÞ þ ðDc

�wÞðxÞ ¼ c
Cð1� cÞ

d
dx

Z 1

x

Z x

�1

wðn1Þ �wðn2Þ
j n2 � n1j1þc dn1 dn2 ðA20Þ
And by equating the right-hand side of Eqs. (A19) and (A20) the following equality holds:
c
Cð1� cÞ

d
dx

Z 1

x

Z x

�1

wðn1Þ �wðn2Þ
j n2 � n1j1þc dn1 dn2 ¼

1
Cð1� cÞ

d
dx

Z x

�1

wðnÞ
ðx� nÞc

dn�
Z 1

x

wðnÞ
ðx� nÞc

dn

� �
: ðA21Þ
Thus, conducting to the conclusion that apart an inessential constant their primitives must coincide
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c
Cð1� cÞ

Z 1

x

Z x

�1

wðn1Þ �wðn2Þ
j n2 � n1j1þc dn1 dn2 ¼ ðI1�c

�1;1wÞðxÞ ¼ ðI1�c
þ wÞðxÞ � ðI1�c

� wÞðxÞ ðA22Þ
as reported in Eq. (50).
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