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In this paper we present an analytical forms for the inversion of general periodic
tridiagonal matrices, and provide some very simple analytical forms which immediately
lead to closed formulae for some special cases such as symmetric or perturbed Toeplitz for
both periodic and non-periodic tridiagonal matrices. An efficient computational algorithm
for finding the inverse of any general periodic tridiagonal matrices from the analytical
form is given, it is suited for implementation using Computer Algebra systems such as
MAPLE, MATLAB, MACSYMA, and MATHEMATICA. An example is also given to illustrate the
algorithm.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The solution of a variety of problems in many areas of physics and mathematics as well as in electrical engineering
requires finding analytical formulae for the inversion of the general periodic tridiagonal matrices:

J (d1, cn;dk,ak, ck;a1,an) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 c1 0 · · · 0 −d1
−d2 a2 c2 0

0
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

0 −dn−1 an−1 cn−1
cn 0 · · · 0 −dn an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n×n)

. (1.1)

In the simplest cases the matrices J (0,0;d,a, c;a,a), J (0,0;d,a, c;a1,an), J (d, c;d,a, c;a,a), and J (d1, cn;d,a, c;a1,an) are
respectively, called Toeplitz, perturbed Toeplitz, Toeplitz periodic, and perturbed Toeplitz periodic tridiagonal matrices.

The inversion of J (d1, cn;dk,ak, ck;a1,an) in (1.1) has been studied extensively with an attempt to find a simple and
analytic expression for the inverse. However, most of the efforts ended up with formulae for some special cases like
J (0,0;dk,ak, ck;a1,an), J (0,0;−ck,ak, ck;a1,an), J (0,0;d,a, c;a,a), . . . , see for example [3,6,7,9,11,12,14–23] in addition to
several others.

This comment is motivated by the work of Huang and McColl [15] who solved for the inverse of the general tridiagonal
matrices J (0,0;dk,ak, ck;a1,an). This paper is concerned with generalizing their work, to provide analytical formulae for the
inverse of J (d1, cn;dk,ak, ck;a1,an) as in (1.1). These formulae are expressed in term of determinants of specific submatrices
of J (d1, cn;dk,ak, ck;a1,an). The values of the determinants are related to the solutions of second order linear recurrences,
which can explicitly be expressed in term of the elements of the matrices. The present formulae can immediately lead to
explicitly closed forms for certain matrices such as perturbed Toeplitz for both periodic and non-periodic tridiagonal cases.
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In 1979, Yamamoto and Ikebe [21] obtained formulae for the inverses of banded matrices. In 1988, Chakraborty [2] gave
an efficient algorithms for solving general periodic Toeplitz systems. A best known algorithm designed for serial implemen-
tation, for the solution of periodic tridiagonal linear system is given by Chawla [3]. In 2006, El-Mikkawy and Karawia [9]
presented an efficient algorithms to find the inverse of a general tridiagonal matrix. An efficient computational algorithm
for finding the inverse of any general periodic tridiagonal matrices J (d1, cn;dk,ak, ck;a1,an) as in (1.1) is given, it is suited
for implementation using Computer Algebra systems such as MAPLE, MATLAB, MACSYMA, and MATHEMATICA. An example
is also given to illustrate the algorithm.

The paper is organized as follows. In Section 2, we discuss properties of some tridiagonal matrices. Section 3 is devoted
to the main analytical results, in which we state and prove some relationships between two sequences of determinants.
The proof of the main theorem is also obtained. Illustrative examples and computational algorithm for general periodic
tridiagonal matrix inversion are given in Section 4.

2. Properties of some tridiagonal matrices

Let J (dk,ak, ck) ≡ J (0,0;dk,ak, ck;a1,an) be an invertible tridiagonal matrix of order n such that

J (dk,ak, ck) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 c1 0 · · · 0 0
−d2 a2 c2 0

0
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

0 −dn−1 an−1 cn−1
0 0 · · · 0 −dn an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(n×n)

. (2.1)

The determinant Δn
1 of J (dk,ak, ck) is easily evaluated from three-term recurrence relations

Δi
1 = aiΔ

i−1
1 + dici−1Δ

i−2
1 , i = 2,3, . . . ,n, (2.2)

where Δ−1
1 = 0, Δ0

1 = 1, Δ1
1 = a1, and

Δn
j = a jΔ

n
j+1 + d j+1c jΔ

n
j+2, j = n − 1,n − 2, . . . ,1, (2.3)

where Δn
n+2 = 0, Δn

n+1 = 1, Δn
n = an .

The elements of the vectors (Δi
1)i and (Δn

j ) j in (2.2) and (2.3) are precisely the determinants of specific submatrices of
the matrix J (dk,ak, ck).

The elements of the inverse matrix J−1(dk,ak, ck) = (Li j), 1 � i, j � n can be computed according to the next lemma,
which has been derived in [19], see also [4,11,15,20] and [23]:

Lemma 2.1. The elements of J−1(dk,ak, ck) = (Li j), 1 � i, j � n, can be expressed as

Li j =

⎧⎪⎨
⎪⎩

(−1)i+ j Δi−1
1 Δn

j+1

Δn
1

∏ j−1
k=i ck for i � j,

Δ
j−1
1 Δn

i+1
Δn

1

∏i
k= j+1 dk for i � j,

(2.4)

where j = 1,2, . . . ,n, d1 = 0, cn = 0.

Notice that the problem of the determination of the elements Li j , 1 � i, j � n reduces to solving the recurrent relations
(2.2) and (2.3). Those are homogeneous linear recurrence relations of second order with variable coefficients. In 2001,
Mallik [16] obtained closed form expression for the solutions of such recurrence relations. In fact, based on these results
in recurrence relations in [16], explicit expressions for the elements Li j , 1 � i, j � n were given in terms of the matrix
elements. These results can be summarized in the following two propositions (cf. formulae (16), (18), (63a), (63b) and (72)
in [16]):

Proposition 2.1. The solution of the recurrence relation

Em(l) = −am

cm
Em−1(l) + dm

cm
Em−2(l), 1 � m � n, 1 � l � m (2.5)

is given by

Em(l) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)m−l+1∏m
j=l c j

(∏m
j=l a j +∑� m−l+1

2 �
q=1

∑
(k1,...,kq)∈Sq(l+1,m) σl,m(k1, . . . ,kq)

)
for l = 1, . . . ,m − 1, m = 2, . . . ,n,

− am
cm

for l = m, m = 1, . . . ,n,

1 for l = m + 1, m = 0, . . . ,n,

(2.6)
0 otherwise,
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where

σl,m(k1, . . . ,kq) =
m∏
j=l

a j

q∏
i=1

cki−1dki

aki−1aki

, (2.7)

and the definition of the set Sq(l+1,m) has been introduced in [16] as follows: Let N denote the set of natural numbers. For q, L, U ∈ N,
Sq(L, U ) is the set of all q-tuples with elements from {L, L +1, . . . , U } arranged in ascending order so that no two consecutive elements
are present, that is:

Sq(L, U ) =

⎧⎪⎪⎨
⎪⎪⎩

{L, L + 1, . . . , U } for U � L and q = 1,

{(k1, . . . ,kq): k1, . . . ,kq ∈ {L, L + 1, . . . , U }; kl − kl−1 � 2 for l = 2, . . . ,q
}

for U � L + 2 and 2 � q � � U−L+2
2 �,

∅, otherwise.

(2.8)

Proposition 2.2. Explicit formula for the elements Li, j,1 � i, j � n is given by

Lij =
⎧⎨
⎩

− Ei−1(1)En( j+1)

c j EN (1)
for i � j,

F j−1(1)Fn(i+1)

di+1 Fn(1)
for i > j,

(2.9)

where En(1) �= 0, c1, c2, . . . , cn−1 �= 0,d2,d3, . . . ,dn �= 0 and

Fm(l) := (−1)m−l
m∏
j=l

(
c j

d j+1

)
Em(l), for l � m. (2.10)

Remark 2.1. The expression for σl,m(k1, . . . ,kq) is well defined even if some of the a’s are zero, since all the denominators
aki−1aki (i = 1, . . . ,q) cancel out with some factors in

∏m
j=l a j .

Formulae (2.9) and (2.10) follow from (71) and (72) in [16], and the invertibility condition is a consequence of formula
(77) in [16], which reads as

det J (dk,ak, ck) = (−1)n

(
n∏

j=1

c j

)
En(1). (2.11)

In fact, Mallik [16] obtained the explicit expressions (2.9) and (2.10) for the elements Li j,1 � i, j � n by solving recur-
rence relation (2.5) with (2.7), as well as

Em(l) = −al

cl
Em(l + 1) + dl+1

cl+1
Em(l + 2), 1 � l � m, 1 � m � n (2.12)

(cf. (25), (63a) and (63b) in [16]). Now, using (2.2), (2.5) and (2.7) one observes that

Δm
1 = (−1)m

(
m∏

j=1

c j

)
Em(1), −1 � m � n. (2.13)

Similarly, using (2.3), (2.7) and (2.12), one finds that

Δn
m = (−1)n−m+1

(
n∏

j=m

c j

)
En(m), 1 � m � n + 2. (2.14)

The relations (2.13) and (2.14) show that Lemma 2.1 and Proposition 2.2 are consistent. In fact, Lemma 2.1 can be derived
from Proposition 2.2.

Notice that:

1. In our results, there are no conditions on the elements of the matrix, but in Mallik [16], the elements in the off-
diagonals are not allowed to equal zero.

2. It is not easy to directly work with the explicit expression for Em(l) as in Proposition 2.1.

Lemma 2.2. Let A be invertible matrix of order n, partitioned in the form

A =
[

A11 A12
A21 A22

]
, (2.15)

in which A11 and A22 are of order m and n − m, respectively, 1 � m < n, and will be assumed invertible. A′
12 and A21 are of n − m

rows and m columns, where A′ refers to the transpose of A12 . Then
12
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(i) B = A11 − A12 A−1
22 A21 is invertible,

(ii) C = A22 − A21 A−1
11 A12 is invertible.

In this case two different representations for the inverse of A are given by

A−1 =
[

B−1 −B−1 A12 A−1
22

−A−1
22 A21 B−1 A−1

22 + A−1
22 A21 B−1 A12 A−1

22

]
(2.16)

and

A−1 =
[

A−1
11 + A−1

11 A12C−1 A21 A−1
11 −A−1

11 A12C−1

−C−1 A21 A−1
11 C−1

]
. (2.17)

A direct verification that the identity (2.16) (or (2.17)) holds can be obtained by multiplying the right member in either
direction by the right member of (2.15), yielding the unit matrix.

A matrix with the form of B (or C ) is called a Schur complement. An excellent review of Schur complement and their
applications is given by Cottle [5], see also [8,10] and [13, Section 07.3, p. 18].

Remark 2.2. The off-diagonal blocks of A−1 can alternatively be expressed using the identities

B−1 A12 A−1
22 = A−1

11 A12C−1 and A−1
22 A21 B−1 = C−1 A21 A−1

11 . (2.18)

Therefore

det A = det A11.det C = det A22.det B. (2.19)

3. Main analytical results

The main purpose of this contribution is to find analytical formulae for the inverse of a general periodic tridiagonal
matrices (1.1). It is formulated in the next theorem:

Theorem 3.1. The elements of J−1(d1, cn;dk,ak, ck;a1,an) = (qij), 1 � i, j � n can be expressed as

qij = 1

Δ

⎧⎨
⎩

(−1)i+ j[Δi−1
1 Δn

j+1 + d1cnΔi−1
2 Δn−1

j+1]∏ j−1
k=i ck + Δ

j−1
i+1

∏n
k= j+1 dk

∏i
k=1 dk for i � j,

[Δ j−1
1 Δn

i+1 + d1cnΔ
j−1
2 Δn−1

i+1 ]∏i
k= j+1 dk + (−1)i+ j+nΔi−1

j+1

∏ j−1
k=1 ck

∏n
k=i ck for i � j,

(3.1)

where

Δ = anΔn−1
1 + d1cnΔn−1

2 + dncn−1Δ
n−2
1 − (−1)n

n∏
k=1

ck −
n∏

k=1

dk (3.2)

with
∏l

l+1(.) = 1, and the sequence of determinants {Δ j
i } is computed by the three-term recurrence relations (3.4), (3.5) and (3.6).

Before giving the proof of Theorem 3.1, we first state and prove two auxiliary lemmas which establish relationships
between the elements of the sequence {Δ j

i }.

3.1. Relationships between two sequences of determinants

The determinant Δ
j
i can be written as

i i + 1 i + 2 · · · k · · · j − 1 j

Δ
j
i =

i

i + 1

i + 2
.
.
.

k
.
.
.

j − 1

j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ai ci 0 · · · 0

−di+1 ai+1 ci+1

.

.

.

0
. . .

. . .
. . .

.

.

.

−dk ak ck

. . .
. . .

. . . 0
−d j−1 a j−1 c j−1

0 · · · 0 −d j a j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, j > i (3.3)
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which has the following recurrence relations, i < j:

Δ
j
i = a jΔ

j−1
i + d jc j−1Δ

j−2
i , (3.4)

and

Δ
j
i = aiΔ

j
i+1 + di+1ciΔ

j
i+2, (3.5)

with

Δ
j
i =

{ai, i = j,
1, i = j + 1,

0, i � j + 2.

(3.6)

Following, for example, [6] (see also [18,20]), it is easy to verify that

Δ
j
i =

j∏
k= j

γk and Δ
j
i =

j∏
k=i

δk, (3.7)

where

γk =
{

ai, k = i,
ak + ck−1dk

γk−1
, k = i + 1, i + 2, . . . , j, (3.8)

δk =
{

a j, k = j,

ak + ckdk+1
δk+1

, k = j − 1, j − 2, . . . , i.
(3.9)

Lemma 3.1.

Δ
j
i = Δk

i Δ
j
k+1 + ckdk+1Δ

k−1
i Δ

j
k+2, i � k � j. (3.10)

Proof. Expanding the determinant Δ
j
i in terms of elements of the kth row, i � k � j leads to the relation

Δ
j
i = Δ

j
k+1

(
akΔ

k−1
i + ck−1dkΔ

k−2
i

)+ ckdk+1Δ
k−1
i Δ

j
k+2.

Using formula (3.4), formula (3.10) immediately follows. �
Formula (3.10) agrees with that of [1,11].
Note that formula (3.10) can be expressed as the following alternating form

Δ
j
1 = Δi−1

1 Δ
j
i + ci−1diΔ

i−2
1 Δ

j
i+1. (3.11)

Lemma 3.2.

Δk
1Δ

n
i = Δk

i Δ
n
1 − (−1)k−i−1Δi−2

1 Δn
k+2

k∏
l=i−1

cl

k+1∏
l=i

dl, 1 � i, j � n. (3.12)

Proof. For i = 1, j = n, formula (3.10) becomes

Δn
1 = Δk

1Δ
n
k+1 + ckdk+1Δ

k−1
1 Δn

k+2. (3.13)

On multiplying the both sides of formula (3.15) with Δk
i , we get

Δn
1Δ

k
i = Δk

i Δ
k
1Δ

n
k+1 + ckdk+1Δ

k
i Δ

k−1
1 Δn

k+2. (3.14)

It is easy to see, after adding and subtracting the term ckdk+1Δ
k−1
i Δn

k+2Δ
k
1 to the right-hand side of (3.14) and using

formula (3.13), that

Δn
1Δ

k
i = Δn

i Δ
k
1 + ckdk+1Δ

n
k+2

(
Δk

i Δ
k−1
1 − Δk−1

i Δk
1

)
. (3.15)

Using formula (3.11), we get

Δk
i Δ

k−1
1 − Δk−1

i Δk
1 = ci−1diΔ

i−2
1

(
Δk

i Δ
k−1
i+1 − Δk−1

i Δk
i+1

)
. (3.16)

Using formula (3.5). Formula (3.16) becomes

ΔkΔk−1 − Δk−1Δk
1 = −ci−1cididi+1Δ

i−2(Δk Δk−1 − Δk−1Δk )
. (3.17)
i 1 i 1 i+1 i+2 i+1 i+2
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Using formula (3.5) repeatedly, we obtain

Δk
i Δ

k−1
1 − Δk−1

i Δk
1 =

i+1∏
l=i−1

cl

i+2∏
l=i

dlΔ
i−2
1

[
Δk−1

i+3 Δk
i+2 − Δk

i+3Δ
k−1
i+2

] = · · ·

= (−1)k−i−1
k−2∏

l=i−1

cl

k−1∏
l=i

dlΔ
i−2
1

(
Δk−1

k Δk
k−1 − Δk

kΔ
k−1
k−1

)

= (−1)k−i−1
k−1∏

l=i−1

cl

k∏
l=i

dlΔ
i−2
1 . (3.18)

Insertion of formula (3.18) into formula (3.15) leads to the formula (3.12). �
Some other relationships between the sequence of determinants of specific submatrices are collected in the following

corollary.

Corollary 3.1.

Δn−2
1 Δn−1

l+1

Δn−1
1

= Δn−2
l+1 − (−1)n−l−4 Δl−1

1

Δn−1
1

n−2∏
r=l

cr

n−1∏
r=l+1

dr, (3.19)

Δn−1
2 Δl−1

1

Δn−1
1

= Δl−1
2 − (−1)l−4 Δn−1

l+1

Δn−1
1

l−1∏
r=1

cr

l∏
r=2

dr, (3.20)

Δl−1
1 Δn−1

k+1

Δn−1
1

= Δl−1
k+1 − (−1)l−k−3 Δk−1

1 Δn−1
l+1

Δn−1
1

l−1∏
r=k

cr

l∏
r=k+1

dr . (3.21)

Proof of Theorem 3.1. Let J (d1, cn;dk,ak, ck;a1,an) be partitioned in the form

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 c1 0 · · · 0 −d1
−d2 a2 c2 0

0
. . .

. . .
. . .

.

.

.

.

.

.
. . .

. . .
. . . 0

0 −dn−1 an−1 cn−1

cn 0 · · · 0 −dn an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡
[

J11 J12
J21 J22

]
(3.22)

with J22 ≡ the single element an , J11 ≡ (n − 1) × (n − 1) matrix, J12 ≡ (n − 1) × 1 column vector, J21 ≡ 1 × (n − 1) row
vector, where

J11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1 c1 0 · · · 0 0
−d2 a2 c2 0

0
. . .

. . .
. . .

.

.

.
.
.
.

. . .
. . .

. . . 0
0 −dn−2 an−2 cn−2
0 0 · · · 0 −dn−1 an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(n−1×n−1)

,

J ′
12 = [ −d1 0 · · · 0 cn−1 ] , and J21 = [ cn 0 · · · 0 −dn ] .

We then have that the elements of J−1
11 = (Li j)n−1×n−1, are the same as that given as in Lemma 2.1 with the indices i and

j range from 1 to n − 1. If

J−1(d1, cn;dk,ak, ck;a1,an) =
[

C11 C12
C21 C22

]
, (3.23)

is partitioned conformally, we then have that, from Lemma 2.2, C22 is invertible, and the Schur complement of J11 is given
by
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J22 − J21 J−1
11 J12

= an −
{

cn

[
cn−1

Δ0
1Δ

n−1
n

Δn−1
1

(−1)n
n−2∏
l=1

cl − d1
Δ0

1Δ
n−1
2

Δn−1
1

1∏
l=2

dl

]
− dn

[
cn−1

Δn−2
1 Δn−1

n

Δn−1
1

n−2∏
l=n−1

cl − d1
Δ0

1Δ
n−1
n

Δn−1
1

n−1∏
l=2

dl

]}

= Δ

Δn−1
1

≡ C−1
22 , (3.24)

where Δ is the same as that given in formula (3.2).
To find the elements of the matrix C11 = (ci j), 1 � i, j � n − 1, we first calculate the elements of the column vector

J−1
11 J12. It is easy to verify that

J−1
11 J12 = 1

Δn−1
1

(
(−1)i+n−1Δi−1

1

n−1∏
k=i

ck − Δn−1
i+1

i∏
k=1

dk

)
1�i�n−1

. (3.25)

Secondary, we calculate the elements of the row vector J21 J−1
11 , it is easy to verify that

J21 J−1
11 = 1

Δn−1
1

(
(−1)1+ jΔn−1

j+1cn

j−1∏
k=1

ck − Δ
j−1
1

n∏
k= j+1

dk

)
1� j�n−1

. (3.26)

By formula (2.17), and using formulae (3.24), (3.25), (3.26) and Lemma 2.1 with the indices i and j range from 1 to n − 1,
we have

ci j = 1

Δn−1
1 Δ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{[anΔn−1
1 Δi−1

1 Δn−1
j+1 + d1cnΔn−1

2 Δi−1
1 Δn−1

j+1 + dncn−1Δ
n−2
1 Δi−1

1 Δn−1
j+1](−1)i+ j ∏ j−1

k=i ck

+ (−1)i+ j+nΔi−1
1 Δn−1

j+1

∏n
k=1 ck

∏ j−1
k=i ck − (−1)1+ jΔn−1

i+1 Δn−1
j+1cn

∏ j−1
k=1 ck

∏i
k=1 dk

+ (−1)i+ j+1Δi−1
1 Δn

j+1

∏ j−1
k=i ck

∏n
k=1 dk + (−1)i+ j+nΔi−1

1 Δn−1
j+1cn

∏ j−1
k=1 ck

∏n−1
k=i dk

− (−1)i+n−1Δi−1
1 Δ

j−1
1

∏n−1
k=i ck

∏n
k= j+1 dk + Δn−1

i+1 Δ
j−1
1

∏i
k=1 dk

∏n
k= j+1 dk

}
, i � j,{[anΔn−1

1 Δ
j−1
1 Δn−1

i+1 + d1cnΔn−1
2 Δ

j−1
1 Δn−1

i+1 + dncn−1Δ
n−2
1 Δ

j−1
1 Δn−1

i+1 ]∏i
k= j+1 dk

− (−1)nΔ
j−1
1 Δn−1

i+1

∏n
k=1 ck

∏i
k= j+1 dk + (−1)i+ j+nΔi−1

1 Δn−1
j+1

∏ j−1
k=1 ck

∏n
k=i ck

− (−1)1+ jΔn−1
i+1 Δn−1

j+1cn
∏ j−1

k=1 ck
∏i

k=1 dk − (−1)i+n−1Δi−1
1 Δ

j−1
1

∏n−1
k=i ck

∏n
k= j+1 dk

}
, i � j.

(3.27)

Using Corollary 3.1, after simplification, formula (3.27) becomes

ci j = 1

Δ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)i+ j[Δi−1
1 (anΔn−1

j+1 + dncn−1Δ
n−2
j+1) + d1cnΔi−1

2 Δn−1
j+1]∏ j−1

k=i ck + Δ
j−1
i+1

∏n
k= j+1 dk

∏i
k=1 dk

for i � j,

[Δ j−1
1 (anΔn−1

i+1 + dncn−1Δ
n−2
i+1 ) + d1cnΔ

j−1
2 Δn−1

i+1 ]∏i
k= j+1 dk + (−1)i+ j+nΔi−1

j+1

∏ j−1
k=1 ck

∏n
k=i ck

for i � j,

(3.28)

where Δ is the same as that given in formula (3.2).
Observe that the elements of the vectors C12 = (α j) j , C21 = (β j) j , and C22 in (3.23), are obtained from the elements of

the matrix C11 = (ci j), by replacing, j by n in the case i � j; i by n in the case i � j, and i, j by n in the case i � j or i � j,
respectively. Finally, we get

α j = 1

Δ

(
(−1)1+ jΔn−1

j+1cn

j−1∏
k=1

ck − Δ
j−1
1

n∏
k= j+1

dk

)
, (3.29)

β j = 1

Δ

(
(−1)1+ jΔn−1

j+1cn

j−1∏
k=1

ck − Δ
j−1
1

n∏
k= j+1

dk

)
, (3.30)

C22 = Δn−1
1

Δ
, (3.31)

where Δ is the same as that given in formula (3.2). Hence the theorem is proved. �
This result agrees with that obtained by Cichocki and Unbehauen [4] using different approaches based on the coats flow

graph technique of a linear system.
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As a simple consequence of Theorem 3.1, we consider a perturbed Toeplitz periodic tridiagonal matrices J (d1, cn;d,a, c;
a1,an), in which the boundary elements a1,d1, cn and an are different from the remaining elements, i.e., ai = a for i =
2,3, . . . ,n − 1, a1,an �= a; di = d for i = 2,3, . . . ,n; d1 �= d and ci = c for i = 1,3, . . . ,n − 1, cn �= c

J (d1, cn;d,a, c;a1,an) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 c 0 · · · 0 −d1

−d a c
. . . 0

0
. . .

. . .
. . .

.

.

.
.
.
.

. . . 0
0 −d a c
cn 0 · · · 0 −d an

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.32)

For this matrix, we have the following corollary.

Corollary 3.2. The elements of J−1(d1, cn;d,a, c;a1,an) = (uij), 1 � i, j � n, can be expressed in the following form

uij = 1

Δ1

⎧⎨
⎩

(−c) j−i[Δi−1
1 Δn

j+1 + d1cnΔi−1
2 Δn−1

j+1] + d1Δ
j−1
i+1 dn− j+i−1 for i � j,

[Δ j−1
1 Δn

i+1 + d1cnΔ
j−1
2 Δn−1

i+1 ]di− j − cnΔi−1
j+1cn+ j−i−1 for i � j,

(3.33)

where

Δ1 = d1cnΔn−1
2 − d1dn−1 + (−1)n+1cncn−1 + [

hn+1 + (a1 + an − 2a)hn + (an − a)(a1 − a)hn−1
]
. (3.34)

For λ1 �= λ2 , λk
1 − λk

2 = hk(λ1 − λ2), λ1,2 = 1
2 [a ± √

a2 + 4dc ],
Δl

k = hl−k+2 + (ak + al − 2a)hl−k+1 + (an − al)(a1 − ak)hl−k, 1 � k, l � n. (3.35)

For λ1 = λ2 = a
2 , 1 � k, l � n

Δl
k =

(
a

2

)l−k−1{
(l − k)(a1 − ak)(an − al) + (l − k + 1)(ak + al − 2a)

(
a

2

)
+ (l − k + 2)

(
a

2

)2}
. (3.36)

In the case when d1 = 0, cn = 0, the elements of J−1(0,0;d,a, c;a1,an) = (uij), 1 � i, j � n, become

uij = 1

Δ1

{
(−c) j−iΔi−1

1 Δn
j+1 for i � j,

Δ
j−1
1 Δn

i+1di− j for i � j,
(3.37)

where

Δ1 = hn+1 + (a1 + an − 2a)hn + (an − a)(a1 − a)hn−1 (3.38)

and Δl
k defined as in (3.35) and (3.36).

It is straightforward to show that the present results are generalized some well known results, see for example [14,15,
17,20–22] and [23].

4. Illustrative examples

To illustrate the advantages of the proposed approach and the usefulness of the formulae (3.1), (3.2) we present a number
of special cases (examples) and discuss some numerical results.

Example 4.1. In the numerical solution of some partial differential equations which arise in electromagnetic field theory
there occurs the need to invert the following matrix

J (pr,1 + qr, r) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + qr r 0 · · · 0 0

−pr 1 + qr r
. . .

.

.

.

0
. . .

. . .
. . .

.

.

.
. . . 0

−pr 1 + qr r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.1)
0 0 · · · 0 −pr 1 + qr
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Putting a1 = an = a = 1 + qr, d1 = cn = 0, c = r and d = pr in Corollary 3.2, we obtain immediately the elements of J−1(pr,
1 + qr, r) = (vij), 1 � i, j � n, given by

vij = 1

hn+1

{
hihn− j+1(−r) j−i for i � j,

h jhn−i+1(pr)i− j for i � j,
(4.2)

for λ1 �= λ2, λk
1 − λk

2 = hk(λ1 − λ2), λ1,2 = 1+qr
2 ±

√
(

1+qr
2 )2 + pr2, and

vij = 1

n + 1

{
i(n − j + 1)(− 2

1+qr )
j−i for i � j,

j(n − i + 1)(
2pr

1+qr )
i− j for i � j,

(4.3)

for λ1 = λ2 = 1
2 (1 + qr).

Note that, in the special case when p < 0 the inverse can be expressed by, Un(x), the nth Chebyshev polynomials of the
second kind, given by

vij = |p|( j−i−1)/2

rUn(x)

{
Ui−1(x)Un− j(x) for i � j,

U j−1(x)Un−i(x) for i � j,
(4.4)

where x = 1+qr
2r

√|p| .

Example 4.2. Consider the following periodic matrix J (1,1;1,a,1;1,1)

J (1,1;1,a,1;1,1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a −1 0 · · · 0 −1

−1 a −1
. . .

.

.

.

0
. . .

. . .
. . .

.

.

.
. . . 0

−1 a −1
−1 0 · · · 0 −1 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.5)

It is easy verify that the elements of J−1(1,1;1,a,1;1,1) = (θi j), 1 � i, j � n, by putting a1 = an = a, d1 = d = 1 and
cn = c = −1 in Corollary 3.2, are:

θi j = 1

hn+1 + hn−1 − 2

{
hn− j+1hi − hi−1hn− j + h j−i for i � j,

hn−i+1h j + h j−1hn−i − (−1)n+ j−ihi− j for i � j,
(4.6)

for λ1 �= λ2, where λ1,2 = 1
2 [a ± √

a2 − 4 ], λk
1 − λk

2 = hk(λ1 − λ2), and

θi j = 1

δ

{
i(n − j + 1)( a

2 )n+i− j−1 − (i − 1)(n − j)( a
2 )n+i− j−3 + ( j − i)( a

2 ) j−i−1 for i � j,

j(n − i + 1)( a
2 )n+ j−i−1 + ( j − 1)(n − i)( a

2 )n+ j−i−3 − (−1)n+ j−i( j − i)( a
2 ) j−i−1 for i � j,

(4.7)

for λ1 = λ2 = a
2 , where δ = (n + 1)( a

2 )n − (n − 1)( a
2 )n−2 − 2.

It should be noted that this example has been previously studied by several authors; see, for instance, [11,18] and [22].

4.1. Algorithm for general periodic tridiagonal matrix

In this subsection, we will develop an efficient computational algorithm for inverting the general periodic tridiagonal
matrices (1.1):

Algorithm 4.1. To find the n × n inverse matrix of a general periodic tridiagonal matrices A ≡ J (d1, cn;dk,ak, ck;a1,an) of
the form (1.1), we may proceed as follows:

INPUT Order of the matrix n and the components dk,ak, ck , k = 1,2, . . . ,n.

OUTPUT The entries qij , 1 � i, j � n of the matrix inversion A−1 ≡ J−1(d1, cn;dk,ak, ck;a1,an).

Step 1 Designing a function for computing the product of any series S from i to j and name it P (S, i, j) as follows:
Step 1-1 if i < j, then P (S, i, j) = 1,
Step 1-2 set f = 1,
Step 1-3 for k from i to j set f = f ∗ S(k),
Step 1-4 set P (C, i, j) = f .



132 M.A. El-Shehawey et al. / J. Math. Anal. Appl. 345 (2008) 123–134
Step 2 Designing a function for computing the continuants Δ
j
i and name it C(A, i, j) as follows:

Step 2-1 for k from 1 to n, set a(k) = A(k,k), c(k) = A(k,k + 1), d(k + 1) = −A(k + 1,k),
Step 2-2 set G(1) = a(i),
Step 2-3 set G(1) = x whenever G(1) = 0,
Step 2-4 for k from 2 to j − i + 1, set G(k) = a(i + k − 1) + c(i + k − 2) ∗ d(i + k − 1)/G(k − 1),
Step 2-5 set G(k) = x whenever G(k) = 0 for any k = 2,3, . . . , j − i,
Step 2-6 set C(A, i, j) = P (G,1, j − i + 1).
Step 3 Set D1 = C(A,1,n) + d(1) ∗ c(n) ∗ C(A,2,n − 1) − P (c,1,n) ∗ (−1)ˆn − P (d,1,n).
Step 4 If the D1 = 0, then OUTPUT (’no inverse exist’); STOP.
Step 5 For i from 1 to n, for j from 1 to n:
Step 5-1 if i � j, then set q(i, j) = ((C(A, j + 1,n) ∗ C(A,1, i − 1)+d(1) ∗ c(n) ∗ C(A,2, i − 1) ∗ C(A, j + 1,n − 1)) ∗ P (c, i, j −

1) ∗ (−1)ˆ(i + j) + C(A, i + 1, j − 1) ∗ P (d, j + 1,n) ∗ P (d,1, i))/D1,
Step 5-2 else, set q(i, j) = ((C(A, i + 1,n) ∗ C(A,1, j − 1) + d(1) ∗ c(n) ∗ C(A,2, j − 1) ∗ C(A, i + 1,n − 1)) ∗ P (d, j + 1, i) +

((−1)ˆ(n + i + j)) ∗ C(A, j + 1, i − 1) ∗ P (c,1, j − 1) ∗ P (c, i,n))/D1.
Step 6 OUTPUT the inverse matrix A−1 = (qij), 1 � i, j � n.

Appendix A. A Maple procedure for inverting the general periodic tridiagonal matrices

> # A Maple procedure for inverting the periodic general tridiagonal matrices
> restart:
> with(LinearAlgebra);
> # A function for computing the product of any Series C from i to j
> pro:=proc(C,i,j)
> local M,k:
> if j<i then M:=1
> else
> M:=1:
> for k from i to j do
> M:=M*C[k]:
> end do
> end if:
> eval(M);
> end proc:
> # A function for computing the contiuant of the matrix from i to j
> continuant:=proc(A,i,j)
> local k,a,c,d,G,M,n:n:=RowDimension(A):
> a:=Array(1..n):c:=Array(1..n-1): d:=Array(2..n):
> if i=j+1 then M:=1
> elif i=j+2 then M:=0
> else
> G:=Array(1..j-i+1):
> for k from 1 to n do
> a[k]:=A[k,k]:
> end do:
> for k from 1 to n-1 do
> c[k]:=A[k,k+1]:
> d[k+1]:=-A[k+1,i]:
> end do:
> G[1]:=a[i]:
> if G[1]=0 then G[1]:=x end if:
> for k from 2 to j-i+1 do
> G[k]:=a[i+k-1]+c[i+k-2]*d[i+k-1]/G[k-1]:
> if G[k]=0 then G[k]:=x end if:
> end do:
> M:=1:
> for k from 1 to j-i+1 do
> M:=M*G[k]:
> end do:
> end if:
> eval(M);
> end proc:
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> # The main program
> ptdmi:=proc(A)
> local k, l,a, c, d, F, O, s, n:
> n:=RowDimension(A):
> a:=Array(1..n):c:=Array(1..n):d:=Array(1..n): s:=Matrix(1..n,1..n):
> for k from 1 to n do
> a[k]:=A[k,k]:
> end do:
> for k from 1 to n-1 do
> c[k]:=A[k,k+1]:
> end do:
> for k from 2 to n do
> d[k]:=-A[k,k-1]:
> end do:
> c[n]:=A[n,1]:
> d[1]:=-A[1,n]:
> D1:=continuant(A,1,n)+d[1]*c[n]*continuant(A,2,n-1)

-pro(c,1,n)*(-1)^n-pro(d,1,n);
> if D1=0 then
> print ("singular matrix, no inverse");
> break:
> end if:
> for k from 1 to n do
> for l from 1 to n do
> if k<= l then
> s[k,l]:=(continuant(A,l+1,n)*continuant(A,1,k-1)+d[1]*c[n]

*continuant(A,2,k-1)*continuant(A,l+1,n-1))*pro(c,k,l-1)*(-1)^(k+l)
+continuant(A,k+1,l-1)*pro(d,l+1,n)*pro(d,1,k):

> else
> s[k,l]:=(continuant(A,k+1,n)*continuant(A,1,l-1)+d[1]*c[n]

*continuant(A,2,l-1)*continuant(A,k+1,n-1))*pro(d,l+1,k)+((-1)^(n+k+l))
*continuant(A,l+1,k-1)*pro(c,1,l-1)*pro(c,k,n):

> end if
> end do
> end do:
> print("A=",A);print("Inverse of A=",’1/D’(subs(x=0,simplify(s))));
> print("D="(subs(x=0,simplify(D1))));
> end proc:

Consider the following matrix

A =
⎡
⎢⎣

a 1 0 −1
−1 a 1 0
0 −1 a 1
1 0 −1 a

⎤
⎥⎦

to use the last procedure, just define our matrix as follows

> A := Matrix(1..4,1..4,[[a,1,0,-1],[-1,a,1,0],[0,-1,a,1],[1,0,-1,a]]);
> ptdmi(A);

Then we can get the following result

Inverse of A = 1

D

⎡
⎢⎣

a(a2 + 2) −a2 2a a2

a2 a(a2 + 2) −a2 2a
2a a2 a(a2 + 2) −a2

−a2 2a a2 a(a2 + 2)

⎤
⎥⎦ , D = a2(a2 + a

)
.
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