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I. INTRODUCTION 

We shall use the notation and results of Part I of this article [8]. In [8], 
we have already remarked that 

and 
h(v - 1) = 0 (mod k - 1) (1) 

hv(v - 1) = 0 (mod k(k - 1)) (2) 

are necessary conditions for the existence of a (0, k, A)-BIBD with u > 0, 
and we have mentioned 

THE EXISTENCE CONJECTURE. Given positive integers k and A, there 
exists a constant C = C(k, A) such that v E B[k; A] for every integer v 3 C 
which satisjies the congruences (1) and (2). 

The most significant work to date on the Existence Conjecture is that of 
Hanani [3, 4, 51. It is shown that the conditions (1) and (2) are both 
necessary and sufficient for the existence of a (v, k, A)-BIBD when k = 3,4 
and for all A. Hanani also proves that (1) and (2) are sufficient for the 
existence of a (v, 5, A)-BIBD with one exception: namely, no (15, 5, 2)- 
BIBD exists. 

Recall that a set K of positive integers is said to be PBD-closed (or 
simply a cZosed set) iff K is equal to its closure B[KJ From [8, Proposition 
5.21, we have 
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State Research Foundation Project Nos. 2548 and 2736). 
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1.1. LEMMA. For any K and A, B[K; A] is a closed set. 

With the Existence Conjecture in mind, this observation suggests the 
undertaking of the study of the structure of closed sets in general. It is at 
first surprising that closed sets must necessarily behave very regularly at 
their “tail ends.” Given any set K, we denote by p(K) the greatest common 
divisor of the numbers {k(k - 1) / k E K} (see Section 2). 

MAIN THEOREM. Every closed set K is eventually periodic with period 
P(K). That is, there exists a constant C such that, for every k E K, 
{v I v >, C, v = k (mod /3(K))} _C K. 

An interesting consequence of the Main Theorem is that every closed 
set K is finitely generated in the sense that there exists a finite set K, C K 
such that K = B[K,]. Applications to the sets B[k; X] yield 

THEOREM. The Existence Conjecture is valid for a pair k, h whenever 
(i) k/(k, A) is one or a prime power (in particular, whenever k is a prime 
power), or (ii) h > ([$k] - l)([+k] - 2). 

Partial results can be given in any case and the problem is at least 
greatly reduced. For example, we prove that all sufficiently large integers 
v = 1 or 6(mod 30) belong to B[6] and that, if there exists a single 
v,, E B[6] with v0 = 16 or 21 (mod 30), then the Existence Conjecture holds 
for k = 6, h = 1. 

It is hoped that the theory of closed sets can be applied to other problems 
concerning pairwise balance of the form of the Existence Conjecture. 
Indeed, a similar conjecture concerning the sets B[K; h] can be formulated 
and we give analogous results. The sets F,[dJ can also be described in 
terms of K. 

2. THE EXTENDED EXISTENCE CONJECTURE, 
THE PARAMETERS (Y AND /3 

In this section we will want to consider the greatest common divisor of 
possibly infinite sets J of integers. We define gcd(J) to be the unique non- 
negative generator of the ideal in the ring of integers which is generated by 
J. One sees immediately that d = gcd(J) is the unique non-negative integer 
satisfying (i) d / k for all k E J, and (ii) if c 1 k for all k E J, then c 1 d. 
Clearly, if J1 L Jz , then gcd(J,) I gcd(J,). We shall also need 

2.1. PROPOSITION. There is afinite set JO C Jsuch that gcd(JO) ==gcd(J). 
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Proof. Since gcd(J) is an element of the ideal generated by J, we have 
gcd(J) = alk, + a,k, + ... + ankn for some integers a, and elements 
ki E J. Putting JO = (k, , k, ,..., k,), it easily follows that gcd(J) = gcd(J,,). 

Given a set K of positive integers, we define the parameters: 

al(K) = gcd{k - I j k E K}, 

/3(K) = gcd{k(k - 1) / k E K}. 

2.2. PROPOSITION. Zf ZI E B[K; A], then 

and 

h(v - 1) = 0 (mod a(K)), (3) 

hu(v - 1) = 0 (mod /3(K)). (4) 

Proof. Given v E B[K; X], let (X, 2) be a (v, K, ;\)-PBD, where 
8 = (Bi / i E Z) is the family of blocks. Fix 0 E X. We count the number 
N of pairs (x, i) such that x # 8, (x, 0} _C Bi . If we fix an index i,, E Z, then 
the number of x # 8 such that {x, e> C BiO is either 0 or 1 BiO 1 - 1 = 0 
(mod u(K)). Thus N = 0 (mod a(K)). On the other hand, if we fix x,, # 8, 
then the number of indices i E Z for which {x, , e} L Bi is h and hence 
N = h(v - 1). This proves congruence (3). 

Now we count the number N’ of ordered triples (x, JJ, i) such that 
x # y, (x, JJ} C Bi . If we fix an index i,, E Z, then the number of pairs 
(X, Y>, X f Y, {X3 Y> 2 Bio > is ( Bi, I (1 BiO I - 1) = 0 (mod /3(K)). Thus 
N’ = 0 (mod /l(K)). If we fix an ordered pair (x, v), x # y, then the 
number of indices i E Z such that {x, y} C Bi is h and thus N’ = hv(v - 1). 
This proves congruence (4). 

Remark. In some particular cases, it is easy to prove the non-existence 
of certain PBD’s with potentially multiple block sizes. For example, 
45 $ B[{6,7}; I] although the necessary conditions (3) and (4) are satisfied. 
As in [6], consideration of the dispersion at any point of a hypothetical 
(45, (6,7}, l)-PBD shows that there must be precisely 4 blocks of size 7 
which contain that point. But it would then follow that the total number 
of blocks of size 7 is 45 . 417 which is not an integer. 

We generalize the Existence Conjecture: 

THE EXTENDED EXISTENCE CONJECTURE. Given a set K of positive in- 
tegers and a positive integer& there exists a constant C = C(K, A) such that 
v E B[K; A] for all integers v > C satisfying congruences (3) and (4). 
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Some cases of this conjecture are known to be valid. In his work on 
BIBD’s, Hanani [3] proves that B[{3,4, 6}] consists of those positive 
integers u = 0 or 1 (mod 3); B[(4, 5, 8, 9, 1211 of those v = 0 or 1 (mod 4). 

We seek to describe a closed set K in terms of al(K) and p(K). For a 
closed set K = B[K], the Extended Existence Conjecture would assert the 
existence of a constant C such that (21 E K 1 v > C} consists of precisely 
those 11 3 C satisfying 

and 

v = 1 (mod a(K)) (5) 

v(v - 1) = 0 (mod p(K)). (6) 

2.3. PROPOSITION. For any set K of positive integers, cy(B[K]) = a(K) 

and PWQ = B(K). 
Proof. Since KC B[K], we have a(B[K]) [ a(K) and P(B[K]) 1 P(K). On 

the other hand, Proposition 2.2 asserts that al(K) 1 u - 1 and B(K) 1 v(v - 1) 
for every 0 E B[K], and hence cx(K) I ol(B[K]), p(K) I j?(B[K]). 

Given a set K, we note that a(K) = 0 iff P(K) = 0 iff K = m or {I}. 
Since u(K) / k(k - 1) for every k E K, we have 

a(K) I B(K). (7) 

Since 2 / k(k - 1) for all k E K, 

2 I PUO (8) 

We define y(K) = P(K)/a(K) if a(K) # 0 and y(K) = 1 if cy(K) = 0 Note 
that y(B[k]) = y({k}) = k. 

2.4. PROPOSITION For any set K, N(K) and y(K) are relatively prime. 

Proof. If a(K) = 0, we are done. Assuming E(K) # 0, let d be a com- 
mon divisor of a(K) and /3(K). Then d. a(K) / k(k - 1) for each k E K. 
Now a(K), and hence d, divides each k - 1; therefore both u(K) and dare 
relatively prime to each k E K. Then d . u(K) 1 k - 1 for each k E K and 
consequently d . a(K) I a(K). We conclude d = f 1 and the proposition is 
established. 

Conditions (7) and (8) and Proposition 2.4 characterize those pairs of 
integers which occur as al(K) and p(K) for some K. Indeed, let a and b be 
non-negative integers such that a I b, b is even, and (a, b/u) = 1 (admitting 
a = b = 0). To the pair a, b we may attach the “model” closed set 
H = H(a, b) = {v > 0: a I v - 1, b I v(u - 1)). 
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2.5. PROPOSITION. a(H) = a, p(H) = b, and H is a closed set. 

Proof. Clearly a I al(H) and b j /3(H). For any n > 0, nb + 1 E H, and 
hence /I(H) ( nb(nb + 1). If /3(H) = 0, it follows b = a = 0, H = (I). 
Otherwise we may take n = 1, - 1 (mod p(H)) successively to find 
P(H) / b(b + 1) and /3(H) I b(b - 1). Since b is even, (b - 1, b + 1) = 1, 
from which it follows that /3(H) 1 b. Hence P(H) = b. 

Since (a, c) = 1, where c = b/a, we can select v > 0 such that v = 0 
(mod c) and z, = I (mod a). Then v E H, hence a(H) 1 v - 1, and conse- 
quently (a(H), c) = 1. But then, a / n(H) / /3(H) = ac implies a(H) = a. 

By 2.2, v E B[H] implies al(H) / v - 1 and P(H) 1 v(v - 1). From what 
we have proved above, this means v E H. Thus H is closed. 

It is easy to see that {k E K I k = 1 or k 3 M} is a closed set for any 
closed set K. We say that two sets S and T eventually coincide iff there 
exists a constant M such that {s ES ( s > M) = {t E T j t > M). The 
Extended Existence Conjecture for X = 1 is equivalent to the assertion 
that for any closed set K, H(ol(K), /l(K)) and K eventually coincide. 

3. EVENTUAL PERIODICITY AND FIBERS 

Z will denote the ring of integers and for any integer n, Z/(r) is to be 
the ring of residue classes modulo n. Let J be a set of integers. A r-fiber of 
Jis a residue classyE Z/(r) for which there exists k E J with k = f (mod m). 
Thus the set of all n-fibers of J is just the image of J under the canonical 
epimorphism Z + Z/(n). A rr-fiber f of J is said to be complete iff there 
exists a constant M such that (v I v > M, v =f(mod z-)} C J. Finally, we 
say that J is eventually periodic with period r iff all n-fibers are complete. 
Loosely speaking, then, this requires that the “tail end” of J be the union 
of arithmetic progressions to the modulus ii- and that each progression 
that has been “started” somewhere in J must eventually be completed. 

The O-fibers of a set J are precisely the elements of J, for Z/(O) = Z. If 
n # 0, then there can be only finitely many n-fibers of J, and thus the 
assertion that J is eventually periodic with period r is equivalent to the 
existence of a constant A4 such that for every k E J, (v I v > M, v .= k 
(mod n)) C J. (This equivalence also holds for r = 0.) 

Essential to our proof of the Main Theorem is 

3.1. PROPOSITION. The eventual periods of a set Jform an ideal in Z. 

Proof. Every set J is eventually periodic with period 0. Now let 7r1 and 
rrz be two eventual periods of J and let 7~ = srrl + tr, where s, t E Z. We 
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assume rz # 0. There are constants Mr , M, such that for any k E J, 
{v/v>Mi,u=k(mod~i)}CJ,i=1,2.PutM=max(M,,M,)and 
let k, E J be given. 

Suppose v > M and v = K, (mod n), say v - k, = nrr = nsn, + ntn, . 
Select an integer m such that M, < v - nsrrl + mrrlr2 = I, say. (Any m 
will suffice if rTT1 = 0.) Now 1~ K,, (mod rrz) and I > M, , so 1 E J. And 
v = I (mod nl), v > Ml, so v E J. In summary, {v 1 v > M, v = k, 
(mod z-)) C J. We have established that n is an eventual period of J and 
this proves the proposition. 

The unique non-negative generator of the ideal of eventual periods of a 
set J will be called the primitive eventual period. 

Let K be a closed set. We refer to the /3(K)-fibers of K simply as the 
fibers of K. The assertion that an integer is a fiber of K will mean that that 
integer, when read modulo /3(K), is a fiber of K. The Extended Existence 
Conjecture in conjunction with 2.2 would assert that the fibers of K are 
precisely those f~ Z/@(K)) satisfying f - 1 = 0 (mod a(K)) and 
f(f- 1) =O (modP(KN, and that every fiber is complete. This latter 
assertion is precisely the Main Theorem. After it is proved, we will know 
that either p(K) or *p(K) is the primitive period in view of 

3.2. PROPOSITION. Let K be a closed set which is eventually periodic 
with period rr > 0. If 7~ is even, then p(K) 1 T, and ifrr is odd, then p(K) 1 257. 

Proof. Recall that every closed set K contains 1. If /3(K) = 0, then 
K = {I} and has only the eventual period 0. Assuming p(K) > 0, we note 
that, since 1 E K, we have 1 + nr E K for all sufficiently large integers n. 
Then, of course, p(K) 1 np(l + nn). Taking n = *I (mod p(K)), we find 
/3(K) / ~(1 + z-) and P(K) / ~(1 - 7~). If n is even, then (1 + m, 1 - r) = 1 
and hence P(K) / n. If x is odd, then (1 + T, 1 - n) = 2 and hence 
P(K) I 2~. 

COROLLARY. If the closed set K has an odd eventual period, then 
/3(K) = 2 (mod 4) and K contains elements congruent to 2 or 3 module 4. 

Proof. Since p(K) divides twice the eventual period, it is clear that 
/3(K) = 2 (mod 4). Necessarily then, there is some k E Kwith k(k - 1) + 0 
(mod 4). This is the case iff k = 2 or 3 (mod 4). 

Every closed set K has at least one fiber, namely, 1. Since k E B[k], k is a 
fiber of the closed set B[k]. From the congruences (1) and (2), all fibers 
f of B[k] are solutions of the system 

.f-1 =O(modk-I), 

f(f - 1) E 0 (mod k(k - 1)). 
(9) 
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If k is a prime power, then (1, k} is the complete set of fibers of B[k], for 
these are the only solutions modulo k(k - 1) = p(B[k]) to the system (9). 
If k has two distinct prime divisors, then (9) has more than two solutions 
(see below). But, unfortunately, the author knows of no other fibers of 
any set B[k] besides 1 and k. 

3.3. PROPOSITION. The number of residue classes f modulo /I(K) 
satisfying 

J’ - 1 = 0 (mod E(K)), 

ftf - 1) = 0 (mod B(K)) 
(10) 

is 2’ where r is the number of distinct prime divisors of y(K). 

ProoJ Since (a(K), y(K)) = 1, f satisfies the congruences ifff - 1 = 0 
(mod a(K)) and f(f - 1) = 0 (mod y(K)). Writing y(K) = P,‘1P,“I ... PF 
as the product of powers of distinct primes, the latter system is equivalent 
to 

f - 1 = 0 (mod a(K)) 

f(f - 1) = 0 (mod Pp) 

f(f - 1) = 0 (mod PF). 

There is a unique solution modulo B!(K) to f - 1 = 0 (mod a(K)) while 
there are two solutions modulo PIi to f(f - 1) = 0 (mod P;i). Since 
a(K), Pp,..., Pp are pairwise prime, the Chinese remainder theorem 
asserts that the number of solutions modulo /3(K) to the system is 2’. 

The sets H(a, b) introduced in Section 2 are examples of closed sets 
where every solution of (10) is a fiber. If y(K) = 1 for some closed set K 
then, by 3.3, 1 is the only fiber of K. If y(K) > 1 then, as we shall see later, 
K has at least two fibers. We are not able to verify the part of the Extended 
Existence Conjecture which asserts that all solutions of (10) are fibers of K, 
but we will prove that the number of fibers is always a power of 2. 

4. LEMMAS ON BIBD’s AND CLOSED SETS 

If we are to construct PBD’s by recursive composition techniques, then 
clearly it is necessary to have something to start with. The following result 
of the author’s paper [7, Lemma 1 and Theorem 51 is thus of utmost 
importance here: 
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4.1. LEMMA. Let k > 2, h >, 1 be given and let q be a prime power, 
q > {&k(k - l))“‘*-1). 1f X(q - 1) - 0 (mod k(k - I)), then q E B[k; h]. 

We shall make several references to Dirichlet’s famous theorem on 
primes in arithmetic progressions, which we now state. 

4.2. LEMMA (Dirichlet). If (a, m) = 1, then the arithmetic progression 
tm + a, t = 1, 2 ,..., contains intnitely many prime numbers. 

The only part of 4.1 we will need for the proof of the Main Theorem is 

4.3. PROPOSITION. Every closed set K # (1) is injinite. 

Proof. Take k E K, k > 2. By 4.2, there are infinitely many primes 
p = 1 (mod k(k - 1)) and all such, which are sufficiently large, belong to 
B[k] by 4.1. Since K is closed, B[k] C K. 

Aside from 4.1 and the fact the sets B[K; h] are closed (Lemma 1. l), the 
only other information concerning h > 1 we require is furnished by 

4.4. PROPOSITION. If h = a,& + ad, + ..’ + an& for integers 
ai 3 0, Xi 3 1, then fly=, B[K; hi] C B[K; h]. 

Proof. Given v E (12, B[K; hiI, there exists a (u, K, XJ-PBD 
(X 22, i = 1, 2 ,..., n. Put 9 = a,J.Yio, + ... + a,$?, (this is the 
family of blocks obtained by counting each block B with a multiplicity 
m = alml + ... + anmn , where mi is the number of times B occurs in the 
family J?~). The design (X, 3’) is then a (v, K, X)-PBD and hence v E B[K; h]. 

COROLLARY. Zf fh, I X, then B[K; h,,] C B[K; h]. 

Remark. Let K be any set and put h, = (X, p(K)). Keeping in mind the 
fact that CY(K) I /3(K), it is easily verified that h(u - 1) = 0 (mod a(K)) and 
Xv(v - 1) E 0 (mod p(K)) iff h,(o - 1) = 0 (mod a(K)) and h&u - 1) = 0 
(mod /3(K)). Thus, since B[K; h,,] _C B[K; h], if the Extended Existence 
Conjecture is valid for the pair K, h, , then it is valid for K, X. So the 
Conjecture is valid for a fixed set K and all X iff it is valid for those h which 
divide /3(K). In particular, if it is valid, then the constant C(K, h) may be 
chosen to be independent of h. 

Another result of utmost importance to us is that of Chowla, ErdBs, and 
Straus 121, which in our terminology reads 

4.5. LEMMA. There exists a constant oa(k) such that m E OA[k] for all 
m > oa(k). 
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We use oa(k) to denote the minimum such constant so that 
oa(k + 1) > oa(k). 

All other necessary preliminary results are furnished by [8]. The GDD 
Composition Theorem [8, Theorem II.21 and Hanani’s observation that 
RI, is a closed set [S, Theorem 10.11 will be instrumental. We state below 
several variations of assertions of [8] which will be used often: 

4.6. LEMMA. If e, e + 1, m, and t are elements of a closed set 
K(ort=O)andO<t<m,m>oa(e+l),thenem+tEK. 

Proof. By [8, Lemma 10.21, em + t E B[(e, e + 1, m, t}]. But, since Kis 
closed, this latter set is contained in K. 

4.7. LEMMA. Let K be a closed set. Zf JC K, then G,[J] C K. If 
j + 1 E Kfor every j E J, then w + 1 E Kfor every w E G,[J]. 

Proof. These are special cases of the Adjunction theorem [8, Theorem 
11.11 with d = 0,l. 

4.8. LEMMA. If v E B[k] and v - 1 > oa(k), then 

kv, k(v - 1) + 1 E B[k]. 

Proof. In Lemma 4.7, take K = B[k], J = {a} and then J = {v - 1). 
This is also a special case of [8, Theorem 9.11. 

4.9. LEMMA. Zf v E F,[u], v > u, then there exists a GDD with block 
sizes from K and group type {u} + (v - u)(l) (v(1) ifu = 0). 

Proof. Let (X, a) be a (0, K, I)-PBD with a flat F of order U. Then 
(X, {F} u {{x} 1 x E X - F), 02 - @ 1 F) is the required GDD (omit F as a 
group if u = 0). 

5. THE FIBER 1 OF B[k] Is COMPLETE 

5.1. THEOREM. Let k > 2 be given. There exists a constant C = C(k) 
such that v E B[k] for all integers v > C sarisfying v = 1 (mod k(k - 1)). 

The proof is broken up into several steps in order to emphasize the 
main points. It is convenient to work within the closed set 

Rk = {r > 0 I r(k - 1) + 1 E B[k]) 

and we note here that the theorem is equivalent to the assertion of the 
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existence of a constant C’ such that r E Rk for all r > C’ satisfying r = 0 
(mod k). k is to remain fixed throughout this section. By 4.3, B[k], and 
hence RI, , is infinite. 

5.2. STEP 1. There exists a positive integer r* such that r* = 0 
(modk)andr*,r*+l,r*+k,r*+k+lERI,. 

Proof. Select u E B[k] with u - 1 > oa(k). By 4.8, 

ku, k(u - 1) + 1 E B[k]. 

Again by 4.8, (with z, = k(u - 1) + 1, ku), we find that k(k(u - 1)) + 1, 
k(k(u - 1) + l), k(ku - 1) + 1, k(ku) are all elements of B[k]. We take 

r* = k2 u-l 
k--l 

The above four elements of B[k] establish, respectively, that r*, r* + 1, 
r* + k, r* + k + 1 all belong to Rk: . 

5.3. STEP 2. For every E > 1, there is a sequence rI , rz , r3 ,... of 
elements of RI, such that 1 < ri+Jri < E, i = 1, 2, 3 ,... . 

Proof. Take any tl , t2 E RI, with tl < t, and let r* be as in Step 1. By 
Lemma 4.6, if m E RI, and m > max (oa(r* + l), tz), then mr* + t, and 
mr* + t2 E R, . Select and fix an m as above which in addition is large 
enough so that 

l< 
mr* + t2 
mr* + t, < ” 

and put u = mr* + t, , v  = mr* + t, . Thus we have found u, v E Rk 
with 1 < v/u < E. 

Let n be the least integer for which (s)” > u so that 1 < z.P/v~-~ < E. 
Every positive integer i can be written uniquely as i = sn + t where 
s >, 0, 1 < t < n, and we define 

ri = rsn+t = us+n-tvt. 

Now U, v 3 m > oa(r* + 1) > a(k), so by [8, corollary to 1 I.61 used 
inductively, ri E RI, . If i = sn + t, where t < n, then 

ri+l 
Us+"-t-lvt+l V 

-zzz 
ri 

u*+n-t vt - u 9 
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and, if i = sn + n, then 

ritl 
&+l+n-lV un 

-zxz -- 

ri UW vn-l . 

In either case, 1 < ri+Jri < E as required. 

5.4. STEP 3. There exists a positive integer M and a sequence 
s1 , s2 , sa ,... of elements of R, such that 0 < si+r - si < M, i = 1, 2, 3 ,.., . 

Proof. Let r* be as in Step 1 and by Step 2, select and fix a sequence 
rl , r2 ,... of elements of Rk such that 1 < ri+Jri < E = (r* + 1)/r*. By 
omitting the first few elements if necessary, we may assume that 
rl > oa(r* + 1). Then, by Lemma 4.6, we observe: if for some i we have 
t E R, (or t = 0) and t < ri , then rir* + t E Rk: . 

We take A4 = rlr* and define the sequence s1 , s2 ,... inductively. Put 
s1 = rlr*, s2 = r,r* + rl . Then s1 , s2 E RI, by our above observation. 
Assume that we have defined sl, s2 ,..., s, E R,(n > 2) such that 
0 < si+1 - si < M for i = 1, 2,..., rz - 1. Let I be the least integer such 
that (r* + l)rl > s, (note I 3 2). Then, of course, (r* + l)r,-, < s, and, 
since rJr,-, < (r* + 1)/r*, we have rIr* < s, . Now 0 < s, - rLr* < s, , 
so surely we can find some element sj , 1 < j < n, of the partial sequence 
so far defined such that 0 < sj - (s, - rlr*) ,( M. We put t = min (rl , sj) 
and define s,+~ = rLr* + t. Then s,+~ E R, by the observation of the 
previous paragraph, and in either case for t, 0 < s,+~ - s, < M. 

5.5. STEP 4. Let r* be as in Step 1. There exists a positive integer 
h = 0 (mod k) and GDD’s with block sizes from RI, and group types 

(9 411, 

(4 (h + l>U>, 
(iii) h(l) + {r*}, 

(iv) (h + 1)U) + {r*>, 

(4 WI + {r* + k), 

(vi) (h + 1)Ul + {r* + 4. 

Proof. Select m E B[r* + k] such that m > max(oa(r* + l), 
r* + k + 1). Since r* + k E Rx and RI, is closed, m E RI,. We take 
h = mr*. Recalling that r* = 0 (mod k), h = 0 (mod k). By Lemma 4.6, 
h = mr* and h + 1 = mr* + 1 belong to RI, C FRx[O], and, by Lemma 
4.9, the GDD’s (i) and (ii) exist. Let (X, {G, , G, ,..., G,,), a) be a GD 
(r*+l,m)s~that~G,~=m,~A~=r*+lforA~~.LetH~,H,, 
H3 , H4 be subsets of G,, of cardinalities r*, r* + 1, r* + k, r* + k + 1, 
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respectively. The PBD’s Xi = (Xi , {Hi , G, ,..., G,,) u GZ I Xi), where 
Xi = Hi u G, u...u G,, , have block sizes from RI, and orders h + r*, 
h + r* + 1, h $ r* + k, h $ r* + k + 1 according as i = 1, 2, 3,4. 
Now the PBD’s X, and X, have at least one block of size r*. Thus h + r*, 
h + r* + 1 E FR,[r*]. By 4.9, GDD’s (iii) and (iv) exist. The PBD X, has a 
block of size r* + k, namely, H3. Thus h + r* + k eFRk[r* + k] and 4.9 
yields the GDD (v). The PBD X, has a block (any Gi) of size m and thus 
h+r*+k+lEFR,[m]. Rut mEB[r*+k] and m>r*+k, so 
m EF~,[T* + k]. We may conclude by [8, Proposition 3.71 that 
h + r* + k + 1 EF~,[T* + k] and then Lemma 4.9 gives the GDD (vi). 

5.6. STEP 5. For every positive integer n, there exists an integer 
d = 0 (mod k) such that d, d + k, d + 2k ,..., d + nk E Rli . 

Proof. We proceed by induction. The assertion is valid for n = 1 
where we may take d = r* as in 5.2. Fix n and assume we have found 
d = 0 (mod k) such that d, d + k ,..., d + nk E RI,. 

Let r* and h be as in Step 4. Select tn E RI,, m > max(oa(h + 2), 
d + nk) and put d* = mh + d + r*. We claim that d*, d* + k ,..., d* + 
(n + 1)k E R, . Note that d* = 0 (mod k) since h r= d = r* = 0 (mod k). 

Let 2 be given, 0 < 1 < n, and let (X, (G-, , G, , G, ,..., Gh}, a) be a 
GD(h + 2, m). We define a weighting w of X by assigning the value 1 to all 
points of G, u G, u...u Gh , weighting d + lk points of G, with 1 and 
the remaining points of G, with 0, and weighting one point of G-, with r* 
and the remaining points with 0. Now for each block A E 02 (which meets 
each group in one point), the list (w(x) / x E A, w(x) # 0) is one of the 
lists (i) through (iv) of 5.5 and thus ingredient GDD’s with blocks sizes 
from Rk. exist. We apply the GDD Composition Theorem [8, Theorem 
8.11 to construct a GDD with block sizes from RI, and group type 
h(m) + {d + Ik} + {r*}. Since all group sizes belong to Rk., the canoni- 
cally associated PBD has block sizes from RI, and order 

hm + d + Ik + r* = d* + lk. 

But RI, is closed and hence d* + Ik E R& . This holds for I = 0, l,..., n. 
It remains only to show that d* + (n + 1)k E RI, . We use the same 

recipe GDD X with the weighting w defined by assigning 1 to each point 
of G, u...u G, , weighting d + nk points of G, with 1 and the rest with 0, 
and weighting 1 point of G-, with r* + k and the remaining with 0. 
For each block A E Q!, the list (w(x) I x E A, w(x) # 0) is one of the lists 
(i), (ii), (v), or (vi) of 5.5. By [8, Theorem 8.11 we may construct a GDD 
with block sizes from RI, and group type h(m) + (d + nk) + {r* + k}. 
Again since all group sizes belong to RI, , we conclude d* + (n + I)k = 
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hm +d+nk+r* +kERK. This completes the proof of 5.6 by in- 
duction. 

Proof of Theorem 5.1. We assert the existence of a constant C’such that 
the conditions r 3 0 (mod k) and r > C’ imply r E R, . By 5.4, we have an 
integer A4 and a sequence s1 , s2, sg . . . of elements of RI, such that 
0 < si+1 - si < M. Using 5.6, we select d = 0 (mod k) such that d, 
d + k, d + 2k ,..., d + Mr* E R, , where r* = 0 (mod k) is as in 5.2. By 
dropping the first few elements of the sequence, if necessary, we may 
assume s1 2 d + Mr*. With this understanding, we put 

C’ = max(d + (oa(r* + 1) + M)r*, d + s,r*). 

Given r = 0 (mod k), r > C’, choose the largest integer m such that 
d + s,r* < r. Then d + s,r* + Mr* > d + s,+,r* > r >, C’, so that 
s, > oa(r* + 1) and r = d + lk + s,r*, where 0 < lk ,< Mr”. Now r*, 
r* + 1, d + lk, and s,~ all belong to the closed set R, and d + lk < 
d + Mr* < sI < s, , s, > oa(r* + 1). Thus, by Lemma 4.6, r = 
s,r* + d + Ik E R, and Theorem 5.1 is now proved. 

6. THE EVENTUAL PERIODICITY OF CLOSED SETS 

6.1. MAIN THEOREM. Every closed set K is eventually periodic with 
period p(K). 

We again proceed by steps. K is to be a fixed closed set throughout this 
discussion. 

6.2. STEP 1. In order to prove 6.1, it will be sufficient to show that, 
whenever 2 < k E K, 1 < v E B[k], and v = 1 (mod k(k - I)), then K is 
eventually periodic with period u - 1. 

ProoJ Assume that this statement has been shown. Given k E K, 
k 3 2, if p1 and pz are sufficiently large distinct primes, then by Theorem 
5.1, p,k(k - 1) +l and pzk(k - 1) + 1 belong to B[k]. We could then 
conclude that K is eventually periodic with periods p,k(k - 1) and 
pzk(k - 1). By Proposition 3.1, the eventual periods of K from an ideal. 
Then, in particular, k(k - 1) = (p,k(k - l), pzk(k - 1)) would be an 
eventual period of K. This holds for each k E K (even k = 1) and, again by 
3.1, K would be eventually periodic with period /3(K) =gcd{k(k - 1) 1 k E K}. 

We now fix some k E K, k 3 2, fix v E B[k], v > 1, v = 1 (mod k(k - l)), 
and let f E Z/(V - 1) be an arbitrary (v - I)-fiber of K. 



AN EXISTENCE THEORY FOR PAIRWISE BALANCED DESIGNS 259 

6.3. STEP 2. There exists u* E K with u* =,f (mod u - 1) and 
u* - 1 > oa(v). 

ProoJ: Since f is a (u - I)-fiber of K, we have by definition some 
u E K with u = f(mod u - 1). Since v - 1 = 0 (mod k(k - l)), Theorem 
5.1 says that t(v - 1) + 1 E B[k] C K for all sufficiently large t. Select and 
fix such a t large enough so that in addition t(v - 1) + 1 > oa(u) and 
u(t(v - 1) + 1) - 1 > oa(v). Put U* = u(t(v - 1) + 1). Clearly u* ,-f 
(mod v - 1) and U* - 1 > oa(v). The PBD canonically associated to a 
GD(u, t(u - 1) + l), which exists since t(v - 1) + 1 > oa(u), has order 
II* and block sizes from {u, t(v - 1) + I} C K. But K is closed, so U* E K. 

6.4. STEP 3. Let U* be as in Step 2. There exist GDD’s with block 
sizes from K and group types 

(i) {u* - I> + U*{V - I>, 

(ii) {u* - l} + (u* - I)(0 - l}. 

Proof. From 6.3, U* - 1 > oa(v). First let (X, 9, 02) be a GD(v, u*) 
and select a point 19 E X. In the PBD X = (X, 9 u 02) there will be one 
block of size U* containing 19; all other blocks through 0 have size v. Thus 
the dispersion X, at 8 is a GDD with one group of size U* - 1, other 
groups of size v - 1, and block sizes from {u*, a} C K. Since the order is 
VU* - 1, the number of groups of size u - 1 is necessarily u*, and the 
GDD has group type {u * - I> + u*{v - l} as in (i). 

Now let (Y, {G, , G, ,..., G,}, g’) be a GD(u, u* - 1). Let z be a new point 
and consider the PBD Y u (z] = (Y u (z>, (G, u (zj,..., G, u (z}] u SY), 

which has block sizes from {u*, u> C K. Through a point 0 E Y, there is one 
block of size u*; the other blocks have size v. Thus the dispersion (Y u {z})@ 
is a GDD with group type {u* - l} + (u* - l){v - l} and block sizes 
from K as claimed in (ii). 

Select and fix an integer M (by increasing the constant of Theorem 5.1 
if necessary) which has the properties A4 > u(u* - l), M >, oa(u* + 1) 
and such that w > M, w = 1 (mod k(k - 1)) assures w E B[k]. 

6.5. STEP 4. If m E 1 (mod k(k *- I)) and A4 < t < m, then 
(u* - I)vm + (v - 1)t $ 1 E K. 

Proof: Given t and m as above, let (X, (G, , G, ,..., G,,>, 02) be a 
GD(u* + 1, m). We define a weighting w of X by assigning the weight 
v - 1 to t points of G, and 0 to the remaining points of G, , U* - 1 to all 
points of G, , and v - 1 to all points of G, u G, u...u G,, . For every 
block A E G’& the list (w(x) 1 x E A, w(x) # 0) is either (u* - l} + u*{v - l} 

58za/13/2-8 
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or{u* - l> + (u* - l)(v - 1). In 6.4 we have seen that ingredient GDD’s 
with these group types and block sizes from K exist. By the GDD Compo- 
sition Theorem [8, Theorem 8.11, we may construct a GDD with block 
sizes from K and group type {m(u* - l)} + (u* - I){m(u - 1)) + 
{t(v - 1)). Now, if {m(u* - 1) + 1, m(v - 1) + 1, t(v - 1) + 1) C K, we 
may adjoin a point and conclude by Lemma 4.7 that m(u* - 1) + 
(u* - l)m(v - 1) + I(v - 1) + 1 = (u* - 1)vm + (v - I)t + 1 E K, as 
required. 

Nowv-l=O(modk(k-l)),sobotht(v-l)+landm(v-I)+1 
are congruent to 1 modulo k(k - 1) and in addition, both exceed the 
constant M. So by the definition of M, we have t(v - 1) + I, m(v - 1) + 
1 E B[k] C K. It remains only to show that m(u* - 1) + 1 E K to complete 
the proof of 6.5. By hypothesis, M < m = 1 (mod k(k - l)), so m E B[k]. 
From 6.3, U* - I > oa(u) 3 oa(k) (surely ZJ > k) and thus a GD(k, U* - 1) 
exists. In particular, k E NG[u* - 1, K]. But m E B[k] and NG[u* - 1, K] 
is a closed set by [8, Proposition 11.41, so m E NG[u* - 1, K]. Finally, 
since (u* - 1) + 1 E K, Lemma 4.7 asserts that m(u* - 1) + 1 E K. 

Proof of Theorem 6.1. In view of 6.2, it suffices to show that the 
arbitrary (u - 1)-fiberfof K is complete. Let u* and M be as above and put 
C = (v - l)[M + (u* - 1) + Mv(u* - I)] + 24*. We claim (w j w 3 C, 
w =f(mod u - 1)) _C K. 

Given such a w, we note that 

w - 21* ____ - M - (u* - 
v-l 1) - Mu(U* - 1) 

is a non-negative integer and hence can be written as a + bv(u* - l), 
where b 3 0 and 0 < a < v(u* -I)<M. Putting t=a+M and 
m=(b+M)(v-l)+l,wehaveM<t<2M<m(surelyv>3)and 
m = 1 (mod k(k - 1)). After checking that w = (v - 1)t + (u* - 1) 
urn + 1, we have w E K by 6.5. Thus the claim is verified,fis complete, and 
the Main Theorem is established. 

6.6. THEOREM. Every closed set K isJinitely generated, i.e., there is a 
finite subset K,, C K such that K = B[K,]. 

Proof. In view of Proposition 2.1, there is a finite set Kl C K such that 
fl(K,) = p(K). Let K, C K be a set of representatives for the fibers of K, i.e. 
for each fiber f of K, choose some k, E K with k, 3 f (mod p(K)) and put 
K2 = {kf / f fiber of K}. Since there are only finitely many fibers of K 
(even when /3(K) = 0, i.e., K = {I}), K2 is finite. 

We have B[K, u K,] C B[K] = K. Now B[K, u K,] and K are both 
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closed sets, p(B[K, u KJ) = p(K), and both have the same set of p(K)- 
fibers. Necessarily then, by the Main Theorem, they eventually coincide 
and we can find a constant C such that for v > C, v E K iff v E B[K, v K,]. 
With K,, = Kl u K, u {k E K / k < C}, it follows that B[K,] = K. 

7. ILLUSTRATIONS AND AN APPLICATION 

Presented with a closed set, our first interest is in the determination of /$ 
for then 6.1 yields much information. In particular, since 1 is a fiber of any 
closed set K, K will contain all sufficiently large integers congruent to 
1 module /3(K). Our second interest is the determination of the fibers. If 
all fibers are known, then we have completely described the “tail end” of 
our closed set. If the Extended Existence Conjecture is valid, then the 
determination of a(K) would suffice to describe all the fibers. 

If a closed set K is presented as K = B[K,] for a finite set K. , then we 
may easily calculate /3(K) = p(K,), a(K) = a(K,,) (by Proposition 2.3), and 
the elements of K,, are all fibers of K. For example, let K = B[{8,9}]. We 
have a(K) = (7, 8) = 1, /3(K) = (8 7, 9 . 8) = 8, and hence y(K) = 8. 
8 and 9 are elements of K and hence 0 and 1 (mod 8) are fibers of K. Since 
y is a prime power, there can be no other fibers of K (Proposition 3.3). 
Thus the “tail end” of K is known; if v is “large,” then v E K iff u = 0 or 
1 (mod 8). A similar example is B[8]. Here p = 56, LY = 7, y = 8. 1 and 8 
are the fibers of B[8]; the “tail end” of B[8] consists of those v = 1 or 
8 (mod 56). 

It is not always this easy. Consider the sets H1 = {6,9, IO}, 
Hz = {6,9}, H3 = (3,4}, Ha = {6,7}. Put Ki = B[Hi], i = 1,2, 3,4. In 
each case a(Ki) = 1, p(K,) = y(K,) = 6. 1 is a fiber of each Ki and for 
each there can be at most 4 fibers: the solutions 0, 1, 3,4 (mod 6) to 
f - 1 = 0 (mod 1) and f(f - 1) = 0 (mod 6). By inspection of the sets 
Hi, we see that 0,3,4 are fibers of Kl, 0 and 3 are fibers of K, ,3 and 4 are 
fibers of KS, and 0 is a fiber of K4 . Actually, Kl, K2, and K3 have the 
complete set (0, 1, 3,4} as fibers. This can be established by the composition 
theorem of [8]; for example, the existence of a GD(3, 4) implies 12 E KS 
so that 0 is a fiber of KS . In Section 8 we give a “composition theorem” 
(8.1) for fibers to take care of such cases without having to construct 
PBD’s in each instance. Indeed, that 0 must also be a fiber of KS is an 
immediate consequence of 8.5 which asserts that a closed set K cannot 
have precisely 3 fibers. 

The set K4 is an exception in the sense that we are not able to show 
that 3 and 4 are fibers. If 0 and 1 were the only fibers of K4, then the 
Extended Existence Conjecture would be false. A similar example is 
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B[6]. Here c4B[6]) = 5, P(B[6]) = 30, y(B[6]) = 6. 1 and 6 are fibers of 
B[6] and, by the Main Theorem, these fibers are complete. But the struc- 
ture of B[6] is not described until we know if there are any other fibers. 
The only other possibilities, i.e., solutions of the necessary conditions, are 
16 and 21 (mod 30). But this author knows of no elements u E B[6] with 
v = 16 or 21 (mod 30). However, as we shall see in Section 8, if either of 
16 or 21 is a fiber, then the other is also. 

Before we make a more detailed investigation of fibers, we consider the 
existence of PBD’s having flats of a given order. An opportunity to apply 
the Main Theorem is presented by 

7.1. PROPOSITION. F’Ju] u {l} is Q closed set. 

Proof. Let v E B[F,[u] u (l}] be given and assume u > 1. Then there 
exists a PBD X of order u and with block sizes from -FJu]. Since v > 1, 
this PBD has at least one block B, say 1 B ) = w E FJu]. B is a flat of X, so 
u E FK[w]. By [8, Proposition 3.71, we conclude z, E FJu]. Thus B[F,[u] u 
(l}] C FK[u] u (1) and this proves the assertion. 

7.2. THEOREM. Let u be an element of a closed set K. Then FJu] and 
K eventually coincide. 

Proof. We have I;,[u] C K, so b(K) / b where b = p(FJu]). If P(K) = 0 
or u = 1, the assertion is obvious. Assuming u > 1, we have b > 0 since 
u E FK[u] and therefore b / u(u - 1). 

Now I mod b is a fiber of the closed set FK[u] u {I} and by 6.1 this fiber 
is complete. In particular, there are infinitely many w E FJu] with 
w = 1 (mod 6). Let fg Z/(b) be a b-fiber of K and select v E K with 
Y = f(mod b). Taking any w E FJu] with w > oa(v) and w = I (mod b), 
we have a GD(v, w) and hence a PBD of order uw and block sizes (v, w}. 
Therefore, VW E FK[w] _C FJu] using [S, Proposition 3.71. But VW = f(mod 
b), so f is also a b-fiber of FJu] u {I}. Conversely, since F,[u] u (1) C K, 
every b-fiber of FK[u] u {I} is a b-fiber of K. 

In summary, the two closed sets FK[u] u (1) and K have the same 
b-fibers. Every k E K is congruent modulo b to somej E F,[u]. But b I j(j - 1) 
and hence b 1 k(k - 1). It follows that b / p(K) and hence j?(K) = b = 
p(FJu] u { 1)). And FJu] u {l} and K have the same fibers. Consequently, 
in view of 6.1, they eventually coincide. 

Theorem 7.2 answers many questions one might ask concerning the 
occurence of certain configurations in PBD’s. For instance, for what 
integers ZJ does there exist a (u, K, I)-PBD with 37 disjoint flats of order U? 
By 7.2, the set of all such v either is empty or eventually coincides with 
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B[K]. For if there exists a single such PBD (X, 02) of order uO, then 
a0 E B[K] and hence FK[u,,] = FBtK~[a,,] eventually coincides with B[K]. And 
given a PBD with a flat of order a0 , we may unplug it and replace it with 
(X, a) [8, Proposition 3.61. If u E B[K], the existence of such a PBD is 
easily established using transitive GD(u, m)‘s, m E B[K]. 

8. THE LATTICE OF FIBERS 

8.1. THEOREM. If f, g, h E Z/@(K)) are fibers of the closed set K, then 
f (g - h) + h is also a fiber of K. 

Proof. The theorem is immediate for K = (l}, so we may assume 
,8 = ,/3(K) > 0. S 1 t e ec v, u C K with u = f (mod p) and u = h (mod /3). The 
fiber g of K is complete and, by Theorem 7.2, K and F,[u] eventually 
coincide. So we can find some w E FK[u] with w = g (mod /3) and 
w - u > oa(u). By the Adjunction Theorem [S, Theorem 11.11, we can 
adjoin a flat of order u to a GD(a, w - U) to obtain a PBD with order 
u(w - u) + u and block sizes from K. Since K is closed, u(w - u) + u E K. 
Noting that f (g - h) + h = v(w - u) + u (mod /I) completes the proof. 

COROLLARY 1. If f and g are fibers of the closed set K, then fg is a fiber 
of K. 

Proof. Since f (f - 1) = 0, we have fg = f (g - f) +f 

COROLLARY 2. If f is a fiber of B[k], then 1 + k -f is also a fiber 

of Bkl. 
Proof. Since f = 1 (mod k - I), we have fk = k (mod k(k - 1)). 1 

and k are fibers of B[k], and 1 + k -f = f (k - 1) + 1 (mod k(k - 1)). 
Thus if either 16 or 21 is a fiber of B[6], then the other is also. 
Given a closed set K, we call 1 the minimum fiber of K for reasons which 

will become apparent later. The fiber of K are all idempotent elements of 
the ring Z/@(K)) (another way of phrasing the necessary condition 
f (f - 1) = 0 (mod p(K)) and all are congruent to 1 modulo a(K). Since 
a(K) and y(K) are relatively prime, two fibers are equal in Z/@(K)) iff 
they are congruent modulo y(K). 

8.2. THEOREM. (i) If K, is a finite set of positive integers, then 
y(K,) / lcm(K,,) (the least common multiple of elements of K,). (ii) Let K be a 
closed set. Then the unique element f 6 Z/@(K)) with f = I (mod a(K)) and 
f E 0 (mod y(K)) is a fiber of K. 
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Proof. For (i) we write K0 = {k, , k, ,..., k,} and proceed by induction 
on n. If K,, = {k}, we have y(&) = k = lcm(K,,). Assuming the validity of 
(i) for sets of n - I elements, put 2, = lcm {k, , k, ,..., k,-l}, 
010 = ol{k, )...) k-d, Po = /W, ,..., k,-,}. Our induction hypothesis then 
asserts that &, 1 c& . We have PKo) = (PO , ML - I>>, Go) = 
(01~ , k, - l), and lcm(K,,) = lcm{l, , k,} = ZOkn/(Zo , k,). Then 

dKo) . IcmW,) = ( aoZo & , & Mk - 1)). 
n 09 n 

Now /Wo) I Po I solo and p(K,) I k,(k, - 1). Consequently, /3(K,) / ol(K,) . 
Icm(K,). Equivalently, y(K,) 1 lcm(K,). 

To prove (ii), let the closed set K be given and, by Theorem 6.6, select a 
finite subset K,, Z K such that K = B[K,]. By 3.3, y(K) = y(K,). By 
Corollary 1 to 8.1, the product m of the elements of K, is a fiber of K. We 
have y(K,) I lcm(K,) I m, so that the fiber m represents the unique residue 
class f modulo /3(K) with f E 0 (mod y(K)) and f = 1 (mod a(K)). 

The fiber of a closed set K which is divisible by y(K) will be called the 
maximum fiber of K. The maximum fiber of B[k] is k. 

8.3. THEOREM. A closed set K has precisely one Jiber zJf y(K) = 1. If 
y(K) is a prime power, then K has precisely two fibers. 

Proof. If y(K) = 1, then 1 is the only solution modulo /3(K) = al(K) to 
f - 1 = 0 (mod a(K)). If y(K) > 1, then the maximum and minimum 
fibers of K are incongruent modulo /3(K) and hence are two distinct 
fibers of K. If y(K) is a prime power, then K cannot have more than two 
fibers by Proposition 3.3. 

Thus if y(K) is one or a prime power, the “tail end” of a closed set K is 
completely described. 

The set of fibers of a closed set K is a subset of idempotent elements of 
the ring Z/@(K)) and is closed under the operation f(g - h) + h. More 
generally, let I be any finite non-empty set of idempotents of a commuta- 
tive ring R which is closed under the operation a(b - c) + c. For x, y E I, 
wedefinexuy=x(y-x)+x=xysIandxny=x(x-y)+y= 
x + y - xy E 1. One readily verifies that, under these operations, 1 be- 
comes a distributive lattice (see [l] for the terminology). (The underlying 
partial ordering is a < b if a 1 b in the ring R, or equivalenty, iff ba = b.) 
Since Z is finite, there is a minimum element z and a maximum element m. 
(In the lattice of fibers of a closed set K, 1 is the minimum element and the 
maximum element is the unique fiber divisible by y(K).) For a E 1, we 
define a’ = a(m - z) + z = a u m - a u z + z = m + z - a E I and 
observe that a u a’ = a(m + z - a) = a u m + a u z - a = m and 



AN EXISTENCE THEORY FOR PAIRWISE BALANCED DESIGNS 265 

a n a’ = a + (m + z - a) - a u a’ = z. Thus the lattice is also com- 
plemented, i.e., I is a Boolean lattice. Being finite, I has finite length n. But 
it is well known [ 1, p. 159, Theorem 61 that every Boolean lattice of finite 
length n is isomorphic to the lattice of all subsets of its n points. In parti- 
cular, we have 

8.4. LEMMA. Let R be a commutative ring and let I be u$nite subset 
of idempotent elements closed under the operation u(b - c) + c. Then 
/ I / = 2” for some non-negative integer n. 

(It is interesting to note the set of all idempotents of R is closed under 
u(b - c) + c.) Immediately, from 8.1 and 3.3, we conclude 

8.5. THEOREM. The number qfJibers of a closed set K is 2”, for some 
n 3 0, which does not exceed the number of distinct prime divisors of y(K). 

By 3.2, the primitive eventual period of a closed set K is either /3(K) or 
*P(K), and the latter alternative is possible only if p(K) = 2 (mod 4). 

8.6. THEOREM. If K is a closed set and there exists a single pair of 

distinct fibers f, g E Z/@(K)) such that f E g (mod 4/3(K)), then K is 
eventually periodic with period &p(K). 

Proof. The set I C Z/(@(K)) of (+/3(K))-fibers of K is the image of the 
set of fibers of K under the canonical epimorphism Z/@(K)) + Z/(@(K)). 
Therefore Z is a set of idempotent elements of Z/(@(K)) which is closed 
under the operation u(b - c) + c. By 8.4, 1 Z 1 = 2”, for some n, while 
the number of fibers of K is 2”, for some m. Now each element of I has at 
most two fibers of K as pre-image and hence n < m < n + 1. However, at 
least one element does have two pre-images, f and g. Thus we must have 
m = n + 1 and every element of I must have two pre-images. We have 
shown that, if h is a fiber of K, then h + $/3(K) must also be a fiber and 
it follows that K is eventually periodic with period *p(K). 

9. THE SETS B[K;X] 

We apply the theory of the previous sections to B[K; A], which by 
Lemma 1.1 is a closed set. 

Given an integer n, we define 

c(n) = 21’ I , if n is even, 
if n is odd. 



266 WILSON 

Note that, if n I m and m is even, then e(n) I m. Also note E(gcd(J)) = 
gcWj) I j E J>. 

9.1. PROPOSITION. Let k 3 2, h > 1 be given. Then 

k(k - 1) 
P(Nk; xl> = E ( (h, k(k _ l))-). 

ProoJ By Proposition 2.2, hv(v - 1) = 0 (mod k(k - 1)) for every 
v E B[k; h]. Equivalenty, 

u(v - 1) = 0 (mod (hkgk-J)l)) ), 
> 

and thus 

k(k - 1) 
(A, k(k - 1)) ” 

where /3 = j?(B[k; h]). Then b I ,f3 where 

b = ’ ( @F&--l;)) ’ 
say /3 = mb. 

If P is a sufficiently large prime, P = 1 (mod b), then by Lemma 4.1, 
P E B[k; h]. Thus /3 I P(P - 1); and assuming P > /I, we have /I ] P - 1. 
Since b is even, b - 1 and b(b + 1) are relatively prime. Thus, by Dirichlet’s 
Theorem, Lemma 4.2, we can find large primes P. = b(b + 1)1 + (1 - b). 
Thus, for some Z, ,!I I b(b + l)/ - b, and hence m I (b + 1)1 - 1. In parti- 
cular, (m, b + 1) = 1, whence (/3, b + 1) = 1. Again, by 4.2, we can find 
large primes P = /It + (b + 1). Hence, for some t, p [/3t + b. Thus p 1 b 
and then /3 = b as claimed. 

9.2. PROPOSITION. Let K be a set of positive integers and A a positive 
integer. Then 

JS(B[K; A]) = E ( 
B(K) -- 0, P(K)) 1 

and 
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Proof. By 2.2, h~(a - 1) = 0 (mod /3(K)) for every u E B[K; A]. Thus 
kW)l@, P(K)) I JSVW; 4); hence 

Now, for each k E K, B[k; A] C B[K; A], and thus /3(B[K, A]) 1 P(B[k; A]). 
Using 9.1, 

and hence /3(B[K, A]) divides 

which is equal to 

E i 
P(K) 

(h,B(K))F * 1 

Consequently, 

By 2.2, X(v - 1) = 0 (mod a(K)) for every D E B[K; A] and hence 
(4)/@, 4K)) I GW; 4). S’ mce B[Kj C B[K; A], we have c@[K; A]) I a(K). 
Since (a(K), y(K)) = 1, it follows that a(B[K, A]) is relatively prime to 
y(K) and hence to y(K)/(h, y(K)). Finally, we know 

If B(K)/@, B(K)) is even, we have shown 

a’K) 1 a(B[K; A])/ ol(K) Y(K) 
G4 40 0, 6) ’ (A y(K)) 

from which we may conclude a(B[K; A]) = a(K)/@, a.(K)). If /3(K)/(h, p(K)) 
is odd, then we may only conclude 
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To complete the proof in this case, it will suffice to show that (u(B[K; A]) is 
odd or, equivalenty, that B[K; A] contains some even number. But 

P(K) 
(A pm = gcd i k(k - l) ktKI, (A B(K)) 

so necessarily there is some k E K for which k(k - l)/(h, p(K)) is odd. 
Then k(k - 1)/(X, k(k - 1)) is also odd and, if n is any multiple of the 
order of 2 modulo 

k(k - 1) 
0, W - 1)) ’ 

then 

- 2”~ 1 ( mod- k(k 1) 1 - - 
0, k(k - 1)) 

’ h(2” 1) E 0 (mod k(k 1)) 

If IE is chosen sufficiently large, then 2” E B[k; A] C B[K; A] by Lemma 4.1, 
and this completes the proof. 

9.3. THEOREM. B[K; A] is eventuallyperiodic withperiod/3(K)/(X, p(K)). 

Proof. If B(K)/@, B(K)) is even, then fl(B[K; A] = /3(K)/@, /3(K)) by 
9.2 and the conclusion is just the statement of the Main Theorem. If 
/l(K)/@, /3(K)) is odd, then 

,WW Al) = 2 gps. 3 

In this case, it will be sufficient to exhibit an element v, E B[K; A] with 

/%) 
00 = 1 + (x, B(K)) ( mod 2 

IS(K) 
0, B(K)) 1 ’ 

for then 1 and 1 + ,8(K)/(h, p(K)) are two distinct fibers of B[K; A] which 
differ by &Ll(B[K; A]) and the conclusion follows from Theorem 8.6. But, 
as in the proof 9.2, we can find some integer n such that 2” E B[K, A]. From 
h 2”(2” - 1) = 0 (mod /3(K)), or from the congruence h(2” - 1) = 0 
(mod k(k - 1)) of the proof of 9.2, we deduce that 

2” E 1 
( 
mod P(K) 

0, /WQ) 1 ’ 

Clearly 
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so it must be that 

P(K) 2” = 1 + (h, B(K))-- c mod 2 /‘NO 
0, B(K)) 1 ’ 

In view of the above theorem, it is more natural to work with the 

(B(K)/@, P(K)))-fib ers of B[K; X] rather than the fibers, i.e., /3(B[K; h])- 
fibers. The former will be called *-fibers of B[K, h]. An integer d will be 
called a *-fiber of B[K, X] iff when read modulo /3(K)/@, p(K)), d is a 
*-fiber, i.e., 

d=v mod-- 
i 

P(K) 
0, B(K)) 1 

for some v E B[K; A]. By 2.2, every *-fiber f of B[K; X] is a solution of 

and the Extended Existence Conjecture, in view of Theorem 9.3, is equiva- 
lent to the assertion that all solutions are in fact *-fibers. 

9.4. LEMMA. Let d be a integer which is a *-fiber of B[K; Ai], i = 1, 
2 ,..., n. Then d is a *-Jiber of B[K; A] whenever h = a,h, + ... + anAn for 
non-negative integers ai . 

Proof. If v is a sufficiently large integer, v = d (mod p(K)), then 

’ = d t 
p(K) 

mod (iii , p(K)). ’ i 

so by Theorem 9.3 v simultaneously belongs to all B[K; Ai], i = 1, 2,..., n. 
By Proposition 4.4, v E B[K; A]. Since 

d-v mod 
( 

?OG 
(k P(K)) 1 ’ 

d is a *-fiber of B[K, A]. 

COROLLARY. If d is afiber of B[K], then d is a *-jiber of B[K; A]. 

Given a set K, let m be an integer with m = 1 (mod a(K)) and m = 0 
(mod y(K)). Then, by 8.2 m is, a fiber (the maximum fiber) of B[K] and 
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hence m is a *-fiber of any B[K; A]. 1 is also a *-fiber of B[K; h] so an 
application of Theorem 9.3 yields 

9.5. THEOREM. Let K and h be given and put /3,, = P(K)/(A, p(K)). 
There exists a constant C such that (v I v > C, v = 1 or m (mod &,)> C 
B[K, A]. Moreover, if there exists a si;gIe vO E B[K; A] with v,, 7 f (mod /$,) 
(i.e., iff is a *-fiber of B[K; A]), then there exists a constant C’ such that 
{u ( v 3 C’, v =f(mod fir,)> r B[K; A]. 

9.6. THEOREM. The Extended Existence Conjecture is valid for a pair 
K, h whenever y(K)/@, y(K)) is one or a prime power. 

Proof. It suffices to show that every solution f modulo p(K)/@, p(K)) 
to the system (12) is a *-fiber of B[K; A]. The second congruence of (12) 
implies 

f(f - 1) = 0 (mod cxy~jr)~ > 
> 

and, if the modulus is one or a prime power, ‘then either f = 1 or 0 

( mod 
Y(K) 

(A, Y(K)) i * 
Since 

f = 1 (mod --&$&) 

and (a(K), y(K)) = 1, the first case implies 

and the second implies 

But we know 1 and m are *-fibers of B[K; A] and the theorem is proved. 

Since y({k}) = k, we have the 

COROLLARY. The Existence Conjecture is valid for a pair k, X whenever 
k/(X, k) is one or a prime power. In particular, wheneuer k is a prime power 
ork = A. 
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9.7. LEMMA. Let a and c be relatively prime integers. If h(v - 1) = 0 
(mod ac), then there exists an integer d such that h(d - v) 3 0 (mod ac), 
d- 1 -O(moda),andd(d- l)=O(modac). 

Proof. Write 

c = pl”‘pz”’ . . . p&a 
n and - (h,Cc) = P?P,“’ ... P,” 

as the product of powers of distinct primes where 0 < r < n, 1 < vi < pi 
for i = 1, 2 ,..., r, and 1 < pi for i = r + I,..., n. Now 

v(v - 1) = 0 (mod&), 

so v = ci (mod Piz) where .zi = 0 or 1, i = 1, 2 ,.,., r. Put ci = 0, say, 
for i = r + l,..., n. Select an integer t such that t = ci - v (mod P&i) and 
t = 1 - v (mod a). We may take d = v + t. 

By the choice of t, d = 0 or 1 (mod Pp) and d = 1 (mod a). Thus 
d(d - 1) = 0 (mod c) and then d(d - 1) = 0 (mod ac). By the choice of 
ci , t = 0 (mod Pp), i = l,..., r, and hence t = 0 (mod c/(h, c)), At = 
0 (mod c). Also At = h(1 - v) = 0 (mod a), so At = h(d - v) E 0 (mod 
ac). 

9.8. THEOREM. If the Extended Existence Conjecture is valid for a set 
K and h = 1, then it is valid for K and all h 3 1. 

Proof. Assuming validity for B[K], let h be given and letfbe a solution 
of the system (12). Taking a = oc(K) and c = y(K) in Lemma 9‘7, select 
an integer d, 

d - 1 = 0 (mod a(K)), d(d - 1) = 0 (mod p(K)). By our assumption, d is 
a fiber of B[K] and hence, by Lemma 9.4, d is a *-fiber of B[K; X]. But 
then so isf, and this proves the theorem. 

9.9. THEOREM. If the Existence Conjecture is valid for pairs k, h = 1 
with k > M (M is any constant), then the Extended Existence Conjecture 
holds in general. 

Proof. In view of 9.8, it will suffice to show that the Extended Conjec- 
ture holds for the sets B[K]. Let K be given and let f be a solution of 
f - 1 = 0 (mod a(K)) and f( f - 1) = 0 (mod p(K)). It remains to show 
that f is a fiber of B[K]. 
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Select k E B[K] which represents the maximum fiber of B[K], so k = 1 
(mod a(K)) and k = 0 (mod y(K)), and such that k 3 M. Put 
I = k(k - 1)//3(K). Then Z(f - 1) = 0 (mod k - 1) and rf(f - 1) = 0 
(mod k(k - 1)). By Lemma 9.7, there exists an integer d such that 
I(d -f) 3 0 (mod k(k - I)), d - 1 - 0 (mod k - I), and d(d - 1) = 0 
(mod k(k - 1)). Assuming the Existence Conjecture for B[k], d is a fiber 
of B[k] C B[K] and hence a fiber of B[K]. But d = f(mod /3(K)) so that f 
is a fiber of B[K] as required. 

9.10. THEOREM. The Extended Existence Conjecture is valid for a pair 
K, h whenever A > ([By(K)] - l)([&y(K)] - 2). (Here [x] denotes the 
greatest integer in x.) 

Proof. For h as above, we must show that every solution f of (11) is a 
*-fiber of B[K; X]. Fix such a solution f and by Lemma 9.7, choose an 
integer d such that 

d = f (mod $$f&, 1 , 

d - 1 = 0 (mod a(K)), d(d - 1) = 0 (mod ,8(K)). 
Now the set of *-fibers of B[K; h] is closed under the operation 

a(b - c) + c; for the *-fibers either coincide with the fibers or are their 
image under Z/@(B[K; X)) - Z/(@(B[K, Xl)) (recall Theorem 8.1). Let m 
be an integer such that m = 1 (mod a(K)) and m = 0 (mod y(K)), so that 
m is a *-fiber of B[K; h]. If d’ = 1 + m - d is a *-fiber of B[K; h], then 
so is d’(m - 1) + 1. But d’m = m (mod /3(K)), so d = d’(m - 1) + 1 
(mod p(K)). Thus, to show that f is a *-fiber of B[K; h], it will suffice to 
show that either d or a” is. 

Now d + a!’ = 0 (mod y(K)), so we may select an integer t, 0 < t < 
[&y(K)], such that t = d” (mod y(K)) where d” is either d or d’. If t = 0 or 
1, then, since 8’ E 1 (mod a(K)), we would have d” E 1 or m (mod p(K)). 
Then d” would be a fiber of B[K] and hence a *-fiber of B[K; h] as required. 

Otherwise, 1 < t ,< [*y(K)]. Then we can verify that d”(d” - 1) = 
t(d” - 1) = (d” - m)(t - 1) = 0 (mod y(K)). And, since d” = 1 = m 
(mod a(K)), we conclude t(d” - 1) = (8 - m)(t - 1) = 0 (mod p(K)). 
Equivalently, 

d” = 1 (mod (t’E&)) and d” = m ( 
B(K) 

mod (t _ 1, p(K)) 1 , > 

and we see that d” is a *-fiber of B[K, t] and also a *-fiber of B[K; t - 11. 
Now every integer I > (t - l)(t - 2) may be written as I = at + b(t - 1) 
for some a, b 3 0 (this is readily verified by induction on I, for t 3 2). In 
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particular, since X > ([$7(K)] - 1)(&(K)] - 2) >, (t - l)(t - 2), we 
have X = at + b(t - 1) for some a, b 3 0. Appealing to Lemma 9.4, 
d” is a *-fiber of B[K; h] and this completes the proof. 

COROLLARY. The Existence Conjecture is valid for a pair k, h whenever 
X > ([&k] - l)([&k] - 2). 

Theorem 9.10 does not exhaust the power of Lemma 9.4. By the Corolla- 
ries to 9.6 and 9.10, the Existence Conjecture has been verified for all 
pairs k, h with k < 11 with the exception of k = 6, h = 1 and k = 10, 
h = 1, 3, 7, 9, 11. We close by verifying it for k = 10, h = 7, 9, 11. The 
Existence Conjecture would assert that the *-fibers of B[lO; 71 and B[lO; 1 l] 
are 1, 10, 46, and 55 (mod 90); the *-fibers of B[lO; 91 are 0, 1, 5, and 6 
(mod 10). But, by Theorem 9.6, we know that the *-fibers of B[lO; 21 are 
1 and 10 (mod 45); the *-fibers of B[lO; 51 are 1, 10 (mod 18). The integers 
1, lo,45 and 55 are thus *-fibers of B[lO; 21 and B[lO; 51, and hence by 
Lemma 9.4 are *-fibers of B[lO; 71, B[lO; 91, and B[lO; 111. 
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