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Abstract

Let F be a local non-archimedean field and &tbe the group ofF-valued points of a con-
nected reductive algebraic group ouv€r In this paper we compute the Ext-groups of generalized
Steinberg representations in the category of smabtiepresentations with coefficients in a certain
self-injective ring.
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1. Introduction

The origin of the problem we treat here is the computation of the étale cohomology of
p-adic period domains with finite coefficients. In [O] the computation yields a filtration
of smooth representations ofpaadic Lie group on the cohomology groups, which is in-
duced by a certain spectral sequence. A natural problem which arises in this context is to
show that this filtration splits canonically. The graded pieces of the filtration are essentially
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generalized Steinberg representations. A natural task is therefore to study the extensions of
these representations.

Let F be a local non-archimedean field anddebe the group of'-valued points of a
fixed connected reductive algebraic group oFeiThe field F induces a natural topology
on G providing it with the structure of a locally profinite group. The aim of this paper
is to determine the Ext-groups of generalized Steinberg representations in the category of
smoothG-representations with coefficients in a self-injective riRgAn important exam-
ple of such aring is given by a field of characteristic zero. We refer to the next chapter for
the precise conditions we impose &nOne crucial assumption is that the pro-ordeGof
is invertible inR. In [V1] it is shown that this condition is sufficient for the existence of
a normalized Haar measure 6h Using this Haar measure and the self-injectivityrof
ensures all the well-known properties and technigues in representation- and cohomology
theory of ap-adic reductive group, e.g., Frobenius reciprocity, exactness of the fixed point
functor for a compact open subgroup Gf etc., as in the classical case whe&te= C.

In particular we have enough injective and projective objects in the category of smooth
G-representations.

The generalized Steinberg representations are parametrized by the subsets of a relative
F-root basisA of G. For any subset C A, let P; ¢ G be the corresponding standard-
parabolic subgroup of;. Let i,?l = C*°(P;\G, R) be the smootlG-representation con-
sisting of locally constant functions ay \ G with values inR. If J O I is another subset,
then there is a natural injectio’ﬁj — ig]. The generalized Steinberg representation with
respect tal C A is the quotient

G _ :G -G
vPl_lPl/ Z Lp;-

IcJcA
I#J

In the casel = ¥ we just get the ordinary Steinberg representation. In the RaseC it
is known that the representatiom%, for J D I, are precisely the irreducible subquotients

of iIG,[ . Our main result is formulated in the following theorem.

Theorem 1. Let G be semi-simple. Let 7, J C A. Then

G .G

l. R, i=[IUJ|—|INJ]
EXtG(vP]’ UPJ) =

0, otherwise.

Note that in the case whefe= A or J = A, i.e., v or vgJ is the trivial representation

andR is afield of characteristic zero, this computation was carried out by Casselman [Cal,
Ca2], respectively Borel and Wallach [BW]. If on the other extreine ¢ or J = @, the
Ext-groups were computed by Schneider and Stuhler [SS].

If G is not necessarily semi-simple, then we have, in addition, a contribution of the cen-
ter Z(G) of G in the formula above. By using a Hochschild—Serre argument, we conclude
from Theorem 1 the following.
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Corollary 2. Let G be reductive with center Z(G) of F-rank d. Let I, J C A. Then we
have

d
RG, i=yuJi—1InJ|+j, j=0,....d,

EXt;; (05, v8,) =
o 0, otherwise.
Our proof of Theorem 1 is quite natural. One uses certain resolutions of the representa-

tionSz)gl in terms of the induced representatiaiﬁ%, whereK D I. By a spectral sequence

argument, the proof reduces to the computation of the grﬁuq}s(if,l, i}G,J), forl,J C A.
This is done by Frobenius reciprocity and a description of the Jacquet modules for these
kind of representations. The latter has been considered in [Ca3] in th&cagg It holds
more generally in our situation.

A totally different proof of Theorem 1 has been given by J.-F. Dat [D]. Apart from the
fact that R needs not to be self-injective, his proof has the advantage of producing the
extensions of generalized Steinberg representations explicitly.

2. Notation

Let p be a prime number and |ét be a local non-archimedean field. We suppose that
the residue field of has ordely = p",r > 0. Letval : F — Z be the discrete valuation
taking a fixed uniformizerrr € F to 1€ Z. Denote by| - |r : F — R the corresponding
normalizedp-adic norm with values itR.

Let G be a connected reductive algebraic group aveFix a maximalF-split torusS
and a minimalF -parabolic subgroup in G containingS. LetM = Z(S) be the centralizer
of Sin G, which is a Levi subgroup d?. Denote byU the unipotent radical dP. Let

PODPT DO A={ay,...,a,)
be the corresponding subsets of relati«eoots, F-positive roots F-simple roots. To sim-
plify matters we call them just roots instead of relativeroots. For a subsdtc A, we let
P; C G be the standard parabolic subgroup defined @vasuch thatA \ I are precisely
the simple roots of the unipotent radidd} of P;. As extreme cases we have

P,=G and Py=P.

Moreover, there is for each subsett A a unique Levi subgrouM ; of P; which con-
tainsM. Let

@ Db D1
be its set of roots, positive roots, simple roots with respe&d¢oM; N P. We denote by

W=N(©/Z(S)
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the relative Weyl group o6. For any subset C A, let W; be the parabolic subgroup of
W which is generated by the reflections associatefl b coincides with the Weyl group
of M;. Thus, we have

Wa=W and Wy={1}.

Whereas we denote algebraic groups defined évby boldface letters, we use ordinary
letters for their groups

GZZG(F), P[ Z=P](F), M] Z=|V|1(F),...

of F-valued points. We supply these groups with the canonical topology givén Biiese
are locally profinite topological groups. For any linear algebraic gtdiugefined overr,
we denote byX*(H) ¢ its group of F-rational characters. L&l ¢ G be a Levi subgroup.
Put

M= (] kernlalg.
aeX*(M) g

This is a normal open subgroup generated by all compact subgrowpgaf [BW, Chap-
ter X 2.2]). Moreover, the quotien’ / °M is a finitely generated free abelian group of rank
equal to theF'-rank of Z(M). The valuatiorval on F gives rise to a natural homomorphism
of groups

Oum : X*(M)p — Hom(M/ M, Z) (1)

defined by®,(x) = val o x (F), wherex (F) : M — F* is the induced homomorphism
on the F-valued points. It is easily seen th@ty, is injective. Furthermore, the source and
the target of®,, are both fre€Z-modules of the same rank. Therefore, we may identify
X*(M) with a sublattice oHom(M /M, 7).

We fix a self-injective ringR, i.e., R is an injective object in the categoModg of
R-modules. Let : Z — R be the canonical homomorphism. Then we higargi) =d - Z,
for some integet! € N. We suppose thaR fulfills the following assumptions.

(1) The pro-ordeltG| of G is invertible inR, i.e., |G| is prime tod (see [V1, Chapter I,
1.5] for the definition of the pro-order). In particulatg) € R*.
(2) Let
p =detAdLigu)|Se X*(SF

be the character given by the determinant of the adjoint representatiarofie(U)
restricted tdS. Write p in the shape

P = Znaas

aeA
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with ny, € N, a € A. Then we impose o thatd is prime to

[ @-qa)

r<supny; acA}

(3) LetE/F be afinite Galois splitting field d&. Then we further suppose thais prime
to the order of the Galois groupal (E/F), i.e.,i(|Gal(E/F)|) € R*.

(4) Finally, we suppose that the injective mapg;, become isomorphisms after base
change taR forall I C A.

Remarks. 1. Important examples of such rings are given by fields of characteristic zero or
by R =7Z/nZ with n € N suitable chosen.

2. Inthe terminology of Vignéras, respectively Dat assumption (1) meang tisdianal
(cf. [D, 3.1.5, 3.1.6], respectively [V1]) fo6. A prime d which satisfies assumption (2)
is calledbon for G (cf. [D, 3.1.5]). A ring R which fulfills both assumptions (1) and (2) is
calledfortement banal (cf. loc. cit. 3.1.6).

Suppose for the moment tha&t is an arbitrary locally profinite group. We agree that
all G-representations (sometimes we use the télfmodule as well) in this paper are
defined oveR. Recall that a smootty-representation is a representatiomf G such that
eachv € V is fixed by a compact subgroupy C G. We denote the category of smooth
representations byodg. If V is a smoothG-module, then we leV be its smooth dual.
Any closed subgroupf of G gives rise to functors

ig, c-iIG{ :Mody — Modg

called the (unnormalized) induction, respectively induction with compact support. We re-
call their definitions. LeW be a smoottH -representation. Then we have
iS(W) = {f:G—>W; f(hg)=h- f(g) Yh€ H, g € G, 3 compact open subgroup
KyCGstf(gh)=f(g)VgeG, ke Ky},

respectively
c-i (W) := | f €ifj(W); the support off is compact moduldd }.

It is obvious that we have

iG=c-i§,

if H\G is compact. If furthermordv is admissible, i.e. WX is of finite type overR for all
compact open subgrougs C G, thenig(W) is admissible as well [V1, |, 5.6]). Finally,
we denote for anyG-moduleV by V¢, respectivelyVs, the invariants, respectively the
coinvariants ofV, with respect tas.
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Next, we want to recall the definition of the generalized Steinberg representations. Let
1 be the trivial representation of any locally profinite group. For any subset, let

ig =i (D) =c-if (1)=C(P\G.R)

be the smooth and admissible representation of locally constant functioAg\Ghwith
values inR. If A D> J D I is another subset, then there is an inject'iﬁjn% i which is
induced by the natural surjectia?y\G — P;\G. The generalized Steinberg representa-

tion of G with respect td C A is defined to be the quotient

G ._ G -G
Vp, '_ZPI/ Z Lp,-

IcicA
J#I

In the caseR = C it has been shown that the generalized Steinberg representations are
irreducible and not pairwise isomorphic for differdntc A (cf. [Ca2, Theorem 1.1]). This
result has been generalized by J.-F. Dat [D] to the case of an algebraically closed field
which isfortement banal for G.

We finish this section with introducing some more notations. We fix a normalized
left-invariant R-valued Haar measurg on G with respect to a maximal compact open
subgroup ofG. The existence of such a Haar measure is guaranteed by assumption (1)
on R (see [V1, |, 2.4]). Further, we denote by|: F — R the “norm” given by the com-
position of

F > ¢* x> q—val(x)

together with the natural homomorphisgtfil/q] — R. Finally, if H is any linear algebraic
group overF, then we put

X(H):=X*(H)r ®z R.

3. The computation
Let G be an arbitrary locally profinite group which satisfies assumption (1)Ron
The categoryMod; of smoothG-representations has then enough injectives and projec-

tives [V1]. This fact provides two different choices for the computation of the Ext-groups
Ext;, (V, W) for a given pair of smootid;-representation¥, W. Notice that

H'(G,V)=Ext;(1,V)
is theith right derived functor of

Modg — Modg, Vi VO,
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whereasH; (G, V) denotes theth left derived functor of the right exact functor
Modg — Modg, V= Vg.
SinceR is self-injective, it is easy to see that there is an isomorphism
Hi(G,V)” =Ext,(V,1)

for all smoothG-representationd and for alli > 0. Here the symbol indicates the
R-dual space.

For our proof of Theorem 1, we need some statements on the cohomology of smooth
representations of locally profinite groups with valueRinJp to Lemma 14 all the state-
ments are well known in the classical case, i.e., whiere C. In our situation their proofs
are essentially the same. But for being on the safe side, we are going to reproduce the argu-
ments shortly. Up to Lemma 7—apart from Lemma &-is an arbitrary locally profinite
group satisfying assumption (1) gh

Lemma 3. Let K € G be an open compact subgroup. Then ig(l) is an injective object
in Modg.

Proof. By [V1, I, 4.10] we know that the triviak -representatiod is an injective object.
Since the induction functor respects injectives (loc. cit. I, 5.9(b)), we obtain the claim.

Let Y be the Bruhat—Tits building d& over F. We denote byC?(Y), ¢ € N, the space
of g-cochains ort with values inR. As in the classical case we have the following fact.

Lemma 4. The natural chain complex
0O>R->CV)>Cly)— - > CI(Y)— -
is an injective resolution of the trivial G-representation 1 by smooth G-modules.

Proof. The proof coincides with the one of [BW, Chapter X, 1.11] which uses Lemma 3
and the contractibility of the Bruhat-Tits building O

Our next lemma deals with the Hochschild—Serre spectral sequencél teG be
a closed subgroup. As it has been pointed out by Casselman in [Ca2], the restriction
functor from the category of smoothi-modules to that oiV-modules does not preserve
injective objects. For this reason, the standard arguments for proving the existence of
the Hochschild—Serre spectral sequence—as in the cohomology theory of groups—breaks
down. Nevertheless, the restriction functor preserves projective objects giving a homolog-
ical variant of the Hochschild—Serre spectral sequence (see appendix of [CaZ2]).
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Lemmab. Let N C G be a closed normal subgroup of G. If V isa projective G-module,
then Vy is a projective G/N-module. Thus, we get for every pair of smooth G-modules
V, W, suchthat N actstrivially on W, a spectral sequence

EY T =Extg  (Hp(N, V), W) = EXZ(V, W).
If, furthermore, N, respectively G/N is compact, then we have
EXtg v (V. W) =EXtG(V, W) Vg eN,
respectively
Exty, v (Hp(N. V), W) =EXt.(V.W) V¥peN.

Proof. The proof is the same as in the classical case [Ca2, A.9]. It starts with the obser-
vation that the coinvariant functor is left adjoint to the exact functor viewing a smooth
G/N-module as a smootf-module. ThereforeVy is a projectiveG/N-module if V is
projective. By [V1, |, 5.10] we know that the restriction functor preserves projectives. Us-
ing the standard-arguments applied to the Grothendieck spectral sequence, we obtain the
first part of the claim. The reason for the second part is the exactness of the coinvariant,
respectively fixed-point functor for a compact subgroup [V1, |, 4.6}

Lemma 6. Let V and W be smooth representations of G. Suppose that W is admissible.
Then

Exti;(V, W) = Ext;; (W, V) foralli>0.

Proof. Let

0« V<Pl pl—..
be a projective resolution df . SinceRr is self-injective, we conclude as in [V1, |, 4.18]
that the functo — W from the category of smoot&-representations to itself is exact.
By [V1, I, 4.13(2)] we see that the moduld¥/, j > 0, are injective objects iModg.
Hence, we obtain an injective resolution

0->V—>pPlo Pl ..
of V. Moreover, we know by [V1, I, 4.13(1)] that

Homg (V, W) = Homg (W, V),

for any pair of smoothG-modulesV, W. SinceW is admissible, we hav®/ = W (see
[V1, 4.18(iii)]) and the claim follows. O

In the special cas# = 1 we obtain the following.
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Corollary 7. Let V be a smooth representation of G. Then
H'(G, V)= H/(G,V)¥ forali>0.

From now on, we suppose again tldais the set off'-valued points of some reductive
algebraic group defined ovét.

Lemma8. Let Q C G beaparabolic subgroup with Levi decompositionQ =M -N.LetV,
respectively W, be a smooth representation of G, respectively M. Extend W trivially to a
representation of Q. Then

Exty; (V. ig(W)) = Exty,(Vy, W) foralli>0.
Proof. By Frobenius reciprocity [V1, I, 5.10] we deduce that
Extg; (V.ig(W)) = Exth(V, W).

Since N is the union of its compact open subgroups, we deduce from [V1, |, 4.10] the
exactness of the functor

Mody — Modg, Vi Vy.
Thus, the statement follows from Lemma 50

After having established the main techniques for computing cohomology of represen-
tations, we are able to take the first step in order to prove Theorem 1. The following
proposition is also well known in the classical case. Here, assumption (®) enters
for the first time.

Proposition 9. We have
H*(G,1) = A*X(G),
where A*X (G) denotes the exterior algebra of X (G).

Proof. We copy the proof of the classical case [BW, Chapter X, Proposition 2.6].

1st caseG is semi-simple and simply connected. Then we apply Ghéixed point
functor to the resolution of the trivial representation in Lemma 4. The result is a constant
coefficient system on a base chamber inside the Bruhat-Tits building, which is contractible.
Thus, we obtair/*(G, 1) = H%(G, 1) = R.

2nd case.G is semi-simple. Then we consider its simply connected covesing
G’ — G. The induced homomorphisi&@’ — G has finite kernel, its image is a closed
cocompact normal subgroup. We apply Lemma 5 twic&; to o (G’) andG’ D ker (o).

3rd caseG is arbitrary reductive. LeDG be the derived group o and putG’ =
DG(F). Then we haveG > % > DG’, where DG’ denotes the derived group ¢f .
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Moreover, the quotierfiG /DG’ is compact. Therefore, we conclude by the previous case,
Lemma 5 and Corollary 7 that

H*(°G,1) = H*(DG',1) = H°(DG', 1) = R.
With the same arguments, we see that
H*(G,1)=H"(G/%,1).

Now it is known that the cohomology of a finite rank free commutative (discrete) gkoup
coincides with the cohomology of the corresponding torus:

H*(L,1) = A*(Hom(L,Z)) ®z R.
Applying this fact toG / %G, we get
H*(G,1) = A*(Hom(G/°G,Z)) ®z R.

By assumption (4) orR we haveHom(G /%, Z) ®z R = X (G) from which the result
follows. O

Corollary 10. Let I C A. Then we have
H*(G, i,(;’l) =H*(P;,)=H*(M;,1) = A*X(M)).

Proof. The statement follows from Lemma 8, Proposition 9 and by our assumption (4)
onR. O

In order to compute the cohomology of generalized Steinberg representations, we need
the following proposition. For two subsetsc I’ C A with |I'\ I| =1, we let

;G :G
plvl/ : lPIr - lP[

be the natural homomorphism induced by the surjecto®; — G/P;. For arbitrary
subsetd, I’ Cc A, with |I'| — |[I|=1andl’ = {81, ..., B}, we put

(=Viprr, I'=1U{B},
d1,1/: ,
0, Igr.

Proposition 11. Let I C A. The complex
0—>ig—> @ ifc,K—> @ igK—>~--—> @ igK—>i1§1—>vgl—>O,
ICKCA ICKCA ICKCA

|A\K |=1 |A\K |=2 IK\I|=1

with differentials induced by the dx k- aboveisacyclic.
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Proof. See [SS, 86, Proposition 13] for the case IoE {a1,a2,...,;}, i > 1, and
G =GL,. The proof there is only formulated for coefficients in the ring of intedérs
However, the proof holds for arbitrary rings, since it is of combinatorial nature.

A different approach consists of using [SS, §2, Proposition 6]. It say&idet.., G,
be a family of subgroups in some bigger abelian graipSuppose that the following
identities are satisfied for all subsetsB C {1, ..., m}:

(Ze)n(Qe)-2(en(ne))

JjEB i€eA JjEB
Then the natural (oriented) complex

m m m
G(—@Gi%@GiﬂGj% @GiﬂGjﬂGk<—~--
i=1 i j=1 i) k=1

i<j i<j<k

is an acyclic resolution o}, G; C G. We apply this proposition to thé—modulesigk,
wherel C K C A and|A \ K| = 1. The condition of the proposition is fulfilled. Indeed,
we have

ig Nig =ig and i N(ig +ig )= (g nig )+ (iF nig,).
for all subsetd, J, K C A. The first identity follows from the fact tha®;; is the par-
abolic subgroup generated b§; and P;. For the second one confer [BW, 4.5, 4.6],
respectively [L, 8.1, 8.1.4] (The statement there is formulated in the case \Rher€.
The result holds also in our general situation. The proof relies on the exactness of the
Jacquet-functor and a description of menodules(igl)y using the filtration in our proof
of Proposition 15.) O

Now, we can treat the cohomology of generalized Steinberg representations. The fol-
lowing theorem makes use of assumption (3)im the case whey is not split.

Theorem 12. Let G be semi-simpleand let I C A. Then we have

. R, i=[A\I],

H (G, v8) =
(G ’) 0, otherwise.

Proof. The proof is the same as in [BW, Chapter X, Proposition 4.7]. A not very differ-

ent approach works as follows. Apply the cohomology fundin G, —) to the acyclic

complex of Proposition 11. We obtain a complex

0— A*X(G) — @ A*X(Mg)— - — @ A*X(Mg) = A*X (M) — O.

ICKCA ICKCA
[A\K|=1 |K\T|=1
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Suppose thas is split. In this case itis well known (cf. [J, Chapter 11, 1.18]) tB&t(M ¢ )
may be identified with the submodule 8f(S)r defined by

{x e X*(9F; (x.@")=0Va e K},

where(-, -) : X*(S)r x X,.(S)r — Zis the natural pairing an@" denotes the correspond-

ing coroot. Using the Hochschild—Serre spectral sequence, we may assume without loss of
generality thats is simply connected. If we denote ljy, € X*(S)r; o € A} the funda-

mental weights os with respect td&5 C P, then we get

X(Mg) = @ R-wy, C X(S).
acA\K

Thus we see—again by using [SS, §2, Proposition 6]—that the complex above is acyclic
with respect taA” for

r<rk(ZMp)=|A\I|.

In the casek(Z(M)) = r all the entries of the complex vanish except f6rX (M) = R.
Using the standard spectral sequence associated to the complex above proves the claim in
the split case.

In the general case, It/ F be our fixed Galois splitting field o&. Then we deduce
with the same arguments that the corresponding complé&@tional characters has the
desired property. Applying th&al(E/ F)-fixed point functor to this complex yields the
claim. Note that the fixed point functor is exact by assumption (3Ron O

For attacking Theorem 1 we still need two lemmas.

Lemma 13. Let V be a smooth representation of G. Suppose that there exists an element
z€ Z(G) inthe center of G andan element ¢ € R, suchthatc —1e R*andz-v=c-v
for all v € V. Then we have

H*(G,V)=0.

Proof. See [BW, Chapter X, Proposition 4.2] for the classical case. We repeat shortly the
argument. By identifying Ext-groups with Yoneda-Ext-groups, we have to show that for
all n e N, all n-extensions ofl by V are trivial. More generally, we will show that if is

a R-module with trivial G-action, then there are no non-trivial extensiond/oby V. In

fact, let

E* ' 0-V—>E'SE2 ... S E" 5U—0

be an arbitrary:-extension. Since lies in the center of5, it defines an endomorphism
of E* and we get the identity® = c.E*®. Herec.E® denotes the scalar multiplication of
R on the moduleéExty; (U, V) (confer [M, Chapter I, Theorem 2.1]). Thus, we have-0
E® —c.E*=(1-c).E*. Since 1-c € R*, we conclude thakE® =0 ExXt;;(U, V). O
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Lemma 14. Let H C G bea closed subgroup and let W be a smooth representation of H.
Then we have

c-iG(W)=iG(Wsp),
where §y isthe modulus character of H.
Proof. This follows from [V1, I, 5.11] together with the fact th&tis unimodular. O
Proposition 15. Let G be semi-simpleand let 1, J C A. Then we have

A*X(M ), ifJcl,
B 16 1) = o |
0, otherwise.

Proof. By Lemma 8 we have for all > 0 isomorphisms
[ .G .G ~ [ .G
EthG(lPI’ lPJ) = EXt![VIJ((lP])UJ’ 1)’

where(i,?l)uj is the Jacquet-module ofl with respect taM;. In the caseR = C there is
constructed in [Ca3, 6.3]—a substitute for the Mackey formula—a decreBisfitgjation
JF* of smoothP;-submodules oﬂgl defined by

fiz{feig;supgf)c U P,\P,wP,}, i eN.
wEWI\W/WJ
l(w)>i

Here the length(w) of a double cosew € W;\W/W, is the length of its Kostant-
representative which is the one of minimal length within its double coset. In the following,
we will identify the double cosets with its Kostant-representatives. There are canonical
isomorphisms

i (:G\~ Py
gr}-' (lPI) - @ ¢ lPJﬂw—lle
weW \W/W;
I(w)=i

of smoothP;-modules for all: > 0. Furthermore, we have for everye W,;\W/W; an
isomorphism

c-it? c-iM (Yw)
Pynw=1Prw Uy - Minw=1Pw Yw

12

of smoothM;-modules, where,, is the modulus character @f; N w~1P;w acting on

Uy /Uy N w~LPyw. The first isomorphism is a corollary of Proposition 6.3.1 (loc. cit.)
(see also [V1, |, 1.7(iii)]), whereas the second one is the content of Proposition 6.3.3 (loc.
cit.). In the general case, i.e., for our specified rigthe same formulas hold. In fact,
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the proof can be taken over word by word. Sinde N w—1P;w is a parabolic subgroup
in M, we observe that

.M My

c-lM_/ﬂw’lPIw(yw) = leﬂw’lPIw(VW)'

The charactey,, is the norm of the rational character
detAdLie(UJ)/ detAdw’]'Lie(PﬂwﬂLiE(UJ) € X* (PJ N w_1P| w)

Its restriction toS is given by

Yw|s = ‘ 1_[ . (2)

acdt\@F
waeP\P,

Fix an elemeniv € W, \W/W,. We are going to show that

.M
EXt;ij (lMJan—lPIw(yw)a 1) = 07

unlessw = 1 andJ c I. Since the Jacquet-functor is exact, this will give by successive
application of the long exact cohomology sequence with respect to the filtratiche
statement of our proposition. By Lemmas 6 and 14 we conclude that

% _.MJ ~ % .MJ ~
EXtMJ (C lMJﬂwflP/w(yw)’ 1) - EXtMJ (1’ lMJﬁuﬁlP/w(yw(SMme_lplw))’

where 8y;,~,-1p,,, denotes the modulus character of the parabolic subgrdypn

w~1P;w of M; andy, is the smooth dual of,,. The Levi decomposition of the latter
group is given by

Mj;nN w_lPIw =M;n,-17 - (Mj N w_lUIw)

(see [C, Proposition 2.8.9]). So, the restrictiondgf,n,,-1p,, t0 S is the norm of the
rational character

[T «
+
aed;

+
waePt\@;

©)

SMJﬂw—lle‘S: ‘ l_[ o).
a€¢7

+
waedt\P;
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In the case wherd ¢ I or w # 1 we deduce from the following lemma the existence of
an element in the center of\/;,,-1, such that

?w(Z)SMan—lplw (z) —1le R*.

By Lemma 13 we conclude that

.M
EXt;;’lj (C-leﬁw_lPIw(qu)’ l) =0.
In the case/ C I we obtain therefore an isomorphism
Extg (if.if,) = Exty, (LD =A*X(M))
which is induced by the element=1. O
| want to stress that the following lemma uses assumption (&.on

Lemma 16. Let J ¢ I or w # 1. Then there exists an element z € Z(M ;,,-1;) such that
fw(z)‘sM]mw—lplw(Z) —1leR*.

Proof. 1stcase. Letv # 1. Then we have,, = 1. In fact,y,, = 1 would imply that
Lie(U,) C Lie(w™Pyw)
or equivalentlyl/; ¢ w=1P;w. But in general one has
Pjnp-1, = (PyNw tPiw) - Uy

(see [C, Proposition 2.8.4]). Thus, we deduce that the interseétjon w=1P;w is a
parabolic subgroup. This is only trueuf= 1.

We want to recall that for any subsEtC A the maximal split torus in the centg(M k)
of Mk coincides with the connected component of the identity Jp., kern(e) C S.
SinceZ(M ;) C Z(M;~,-1;), it is enough to construct an element Z(M ;) which has
the desired property. From the representation (2) we may easily conclude the existence of
an element € Z(M ;) with y,,(z) # 1. Our purpose is to show the existence of an element
z € Z(My) such thaty, (z) — 1 € R*. We may suppose th& is adjoint. Let

{wa € X4(S); a €A}

be the dual base (co-fundamental weightsjof.e., (wg, @) = 8« g, foralla, g € A. Since
Yw # 1, itis possible to find aroat € A\ J suchthatwa € @~ \ @, . Put

7= Wqy (wF_l).
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Then we have € Z(M ) and
Yw(2) _1=qr -1

for some 1< r < ny. By assumption (2) orR, the product]_[,<sup{n caea}(l—4q") is
invertible in R. Further we see from the expression (3) thgt,-1p,,(z) = 1. This
completes the proof in the first case.

2nd case. Letv =1 andJ ¢ I. Then we havey, = 1. SinceJ ¢ I, we see that the
restriction oféy,np, t0 Z(M;n;) is not trivial. Again, we can find similarly to the first
case an elemente Z(Mny) such thay,np,(z) —1€ R*. O

Proposition 17. Let G be semi-simpleand let I, J C A. Then we have

A*XMD[—=1ANI|]], A=1UJ,

Extt, (v i ) = DI=1ANT] _
s 0, otherwise.

Proof. We apply the acyclic complex of Proposition 11 to the representaﬁpnTaking

an injective resolution af,?l then gives rise in the usual way to a double complex such that

its associated spectral sequence convergExr@(vg, , i,?J). The E4 term of this spectral
sequence has the shape

O—>Ext* ’Pl,lpj @ Ext* 'PL,IPJ @ Ext* 'PL,lP])

IcLcA ICLCA
IL\I]|=1 |L\I|=2
* (i * (- -G
— @ Exty; PL,tPJ)—>EXt( P)—)O
ICLCA
|A\L|=1

By Proposition 15 we see that := I U J is the minimal subset ofA containing/ with
Ext; (ig, . i) # 0. Hence, thet; term reduces to

0— A*X(My) — @ A*X(M ) —> EB A*XMy) = - — @ A*X(M )
KcLcA KCcLcA KcLcA
|L\K|=1 |L\K|=2 |A\L|=1

— A*X(MJ)—> 0.

In the case ofK = A we are obviously done. In the cage# A we see that the coho-
mology of theE1 term vanishes, since it is a constant coefficient system on the standard
simplex corresponding to the skt O

Proof of Theorem 1. This time we apply Proposition 11 mﬁj. This yields by taking a
projective resolution of)G a double complex such that its associated spectral sequence
converges tdxt? (va UPJ) The E; term of this spectral sequence is just
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0— Exty (v . i @ Exty (v .i5 ) — @ Exty (v, .if ) —
JcLca JcLca
|A\L|=1 [A\L|=2
— @ Bd’g;(vg,,sz)eExt’(‘;(vg,,zgj)ao.
JcLca
[L\J]=1

By Proposition 17 we conclude that the minimal sub&etof A containingJ with
Ext* (vPI lPK) #0is

K=(A\DUJ=A\DHUUTNJ).

Therefore, thek; term reduces to

0— A*X(G)[-|A\I]] > @ A*XMp)[-1aNI] -
KcLcA
|A\L|=1

- P A*xMp[-[a\I]] > A*XMg)[-|A\I]] -0

KCLCA
|L\K|=1

This complex is precisely—up to shifts—the complex for the computation of the coho-
mology ofng for a semi-simple grou (cf. Theorem 12, respectively [BW, Chapter X,
Proposition 4.7])! Thus, we obtain an isomorphism

(G v )[=(11= K1) = 1A\ 1] Z B (v of, ).

It remains to compute the degréewhere the latter space does not vanish. The degree is
by Theorem 12 equal to

d=[A\K|+|A\I|+|J|—|K]|
=|A\(A\NTUUND)|[+ANT|+ I [A\NTUUTNT)|
=[InA\NIND|+ I —-InJ|=|INUND|+J[=[INJ]
= —|INJ|+J|—|INJ|={IUJ|—|INJ]|. o
Remark. An argument of J.-F. Dat shows that Theorem 1 even holds i§ not self-
injective. In fact, in his paper [D, Theorem 3.1.4] he first shows the statement for an

algebraically closed field which fertement banal for G. Then he uses this result to deduce
the general case by elementary commutative algebra.
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Proof of Corollary 2. Consider the projectio& — G/Z(G) onto the adjoint group of;.
The action ofZ(G) on vgl and vgj is trivial. By applying Lemma 5 to this situation, we
get a spectral sequence

EXtG 1) (Hp (2(G). v5,). v5,) = BXG™ (5, . 05 ).

By the proof of Proposition 9, we deduce that
H*(Z(G),1) = A*HoM(Z(G)/°Z(G), Z) ® R = A*R“.

Therefore, we get

d
H(Z(G).v§) = H*(2(G), 1) ® v =P (v
j=0

Now we apply Theorem 1 together with Corollary 7

In the remainder of this paper we give another corollary in the case of the general linear
group and whereR is an algebraically closed field. It computes the Ext-group of elliptic
representations (cf. [D] for the definition of these representations). This corollary has been
pointed out to me by C. Kaiser in the caBe= C. M.-F. Vignéras has communicated to me
that it also holds for algebraically closed fieltsof positive characteristic satisfying our
assumptions.

In the following, we use the Zelevinsky classification of smo6Gtepresentations in
order to describe the elliptic ones [Z]. This description holds for any algebraically closed
field which is banal forr (cf. also [V3] for a treatment of the Zelevinsky classification in
the modular case). L&¥ = GL, with n =r - k for some integers, r > 0. Let P, ; be the
upper block parabolic subgroup containing the Levi subgroup

GL, x --- x GL,.
[ —
k

We fix an irreducible cuspidal representationof GL,. For any integei > 0, we put
o(i) = o ® |det’, where det GL, — F* is the determinant. Consider the graph
consisting of the verticeéo, 0 (1),...,0(k — 1)} and the edge${oc (i),c( + 1)}; i =
0,...,k—2}. Thus we can illustraté& in the shape

c—oc(l)—---—ok—-1).

An orientation ofI" is given by choosing a direction on each edge. We denot@rigy’)
the set of all orientations onf'.
Let 7 be the set of irreducible subquonentsﬁf (0®c(H® - ®o(k—1)), where

lg denotes the normalized induction functor. Followmg [Z, 2.2], there is a bijection

w:0r(IN—J,
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which we briefly describe. Le§; be the symmetric group ofthe & . . ., k — 1}. Consider
the map

Sy — 0Or(I), wtr I'(w)
defined as follows. The edgfr (i),0( + 1)} is oriented fromo (i) to o (i + 1)—
symbolized a® (i) — o (i Jrql)—if and only if w(i) < w(i + 1). One easily verifies the

surjectivity of this map. Lef” be an orientation of . Choose an element € S; such that
I' = I'(w). Thenw(I") is defined to be the unique irreducible quotient of

i, (0(w©0)® - ®a(wk-1)).
In loc. cit. 2.7 it is shown that this representation does not depend on the chosen represen-
tativew.

Denote byA; = {ag, ..., ar—2} the set of simple roots oL, with respect to the
standard root system dbL,. Let P(A;) be its power set. For a subsétc A;, we
let ©(I) € Or(I") be the orientation of" defined byos (i) — o (i + 1) if and only if
a; €1,i=0,...,k— 2. Itis easily seen that we get in this way a bijection

O : P(Ay) = Or ().
For any subsei C Ag, we put finally
W) =w@W). O
Example 1. Consider the special case= 1 ando = | - |4~"/2, Then we haveP, ; = P,
ifo® - ®@cm—1)=if and vf(o)=1fF, foralllcA=An;.
Corollary 18. Let I, J C Ap. Seti:= I U J|—|I N J|. Then we get
Extf; (vf (o), v5 (0)) = R[—i1® R[—i — 11.

Proof. We make use of the theory of types of Bushnell and Kutzko [BK] (see also [V2,V3]
for the modular case). L&K, 1) be the type of the block containing(o). By definition

K is a certain compact open subgroup@®fandx is an irreducible representation &f,
such that the functor

V > Homg (c-i g (1), V)

from the block above to the category of rig’ﬂndg(ig(k))—modules is an equivalence of
categories. Furthermore, there exists an unramified extesjdn, such that the following
holds ([BK,V2,V3, IV.6.3]). SetG’ = GL,(F’) and let!’ C G’ be the standard Ilwahori
subgroup. Then there is an algebra isomorphism [BK, 7.6.19]

Endg (i (1)) — Endg(ig(L)).
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This isomorphism induces an equivalence between the block of unipGterpresen-
tations and the block afr-representations containimg(o-). Under this identification, the
representations? (o) and vﬁl correspond to each other. This can be seen from the fact
that the equivalence is compatible with normalized induction [BK, 7.6.21] and with twists
[BK, 7.5.12]. Thus, the statement follows from Corollary 22
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