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Abstract

Let F be a local non-archimedean field and letG be the group ofF -valued points of a con
nected reductive algebraic group overF . In this paper we compute the Ext-groups of generali
Steinberg representations in the category of smoothG-representations with coefficients in a certa
self-injective ring.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The origin of the problem we treat here is the computation of the étale cohomolo
p-adic period domains with finite coefficients. In [O] the computation yields a filtra
of smooth representations of ap-adic Lie group on the cohomology groups, which is
duced by a certain spectral sequence. A natural problem which arises in this conte
show that this filtration splits canonically. The graded pieces of the filtration are esse

E-mail address: orlik@math.uni-leipzig.de.
0021-8693/$ – see front matter 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2005.03.028

https://core.ac.uk/display/82591328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


612 S. Orlik / Journal of Algebra 293 (2005) 611–630

sions of

y
per
gory of

ter for
f
of

ology
point

ooth

relative
d-
-
t,
ith

nts

n
[Ca1,

cen-
clude
generalized Steinberg representations. A natural task is therefore to study the exten
these representations.

Let F be a local non-archimedean field and letG be the group ofF -valued points of a
fixed connected reductive algebraic group overF . The fieldF induces a natural topolog
on G providing it with the structure of a locally profinite group. The aim of this pa
is to determine the Ext-groups of generalized Steinberg representations in the cate
smoothG-representations with coefficients in a self-injective ringR. An important exam-
ple of such a ring is given by a field of characteristic zero. We refer to the next chap
the precise conditions we impose onR. One crucial assumption is that the pro-order oG

is invertible inR. In [V1] it is shown that this condition is sufficient for the existence
a normalized Haar measure onG. Using this Haar measure and the self-injectivity ofR

ensures all the well-known properties and techniques in representation- and cohom
theory of ap-adic reductive group, e.g., Frobenius reciprocity, exactness of the fixed
functor for a compact open subgroup ofG, etc., as in the classical case whereR = C.
In particular we have enough injective and projective objects in the category of sm
G-representations.

The generalized Steinberg representations are parametrized by the subsets of a
F -root basis∆ of G. For any subsetI ⊂ ∆, let PI ⊂ G be the corresponding standar
parabolic subgroup ofG. Let iGPI

= C∞(PI\G,R) be the smoothG-representation con
sisting of locally constant functions onPI\G with values inR. If J ⊃ I is another subse
then there is a natural injectioniGPJ

↪→ iGPI
. The generalized Steinberg representation w

respect toI ⊂ ∆ is the quotient

vG
PI

= iGPI

/ ∑
I⊂J⊂∆

I �=J

iGPJ
.

In the caseI = ∅ we just get the ordinary Steinberg representation. In the caseR = C it
is known that the representationsvG

PJ
, for J ⊃ I , are precisely the irreducible subquotie

of iGPI
. Our main result is formulated in the following theorem.

Theorem 1. Let G be semi-simple. Let I, J ⊂ ∆. Then

ExtiG
(
vG
PI

, vG
PJ

) =
{

R, i = |I ∪ J | − |I ∩ J |,
0, otherwise.

Note that in the case whereI = ∆ or J = ∆, i.e.,vG
PI

or vG
PJ

is the trivial representatio
andR is a field of characteristic zero, this computation was carried out by Casselman
Ca2], respectively Borel and Wallach [BW]. If on the other extremeI = ∅ or J = ∅, the
Ext-groups were computed by Schneider and Stuhler [SS].

If G is not necessarily semi-simple, then we have, in addition, a contribution of the
terZ(G) of G in the formula above. By using a Hochschild–Serre argument, we con
from Theorem 1 the following.
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Corollary 2. Let G be reductive with center Z(G) of F -rank d . Let I, J ⊂ ∆. Then we
have

ExtiG
(
vG
PI

, vG
PJ

) =
{

R(d
j), i = |I ∪ J | − |I ∩ J | + j, j = 0, . . . , d,

0, otherwise.

Our proof of Theorem 1 is quite natural. One uses certain resolutions of the repre
tionsvG

PI
in terms of the induced representationsiGPK

, whereK ⊃ I . By a spectral sequenc

argument, the proof reduces to the computation of the groupsExt∗G(iGPI
, iGPJ

), for I, J ⊂ ∆.
This is done by Frobenius reciprocity and a description of the Jacquet modules fo
kind of representations. The latter has been considered in [Ca3] in the caseR = C. It holds
more generally in our situation.

A totally different proof of Theorem 1 has been given by J.-F. Dat [D]. Apart from
fact thatR needs not to be self-injective, his proof has the advantage of producin
extensions of generalized Steinberg representations explicitly.

2. Notation

Let p be a prime number and letF be a local non-archimedean field. We suppose
the residue field ofF has orderq = pr, r > 0. Let val : F → Z be the discrete valuatio
taking a fixed uniformizer�F ∈ F to 1∈ Z. Denote by| · |R : F → R the corresponding
normalizedp-adic norm with values inR.

Let G be a connected reductive algebraic group overF . Fix a maximalF -split torusS
and a minimalF -parabolic subgroupP in G containingS. Let M = Z(S) be the centralize
of S in G, which is a Levi subgroup ofP. Denote byU the unipotent radical ofP. Let

Φ ⊃ Φ+ ⊃ ∆ = {α1, . . . , αn}

be the corresponding subsets of relativeF -roots,F -positive roots,F -simple roots. To sim
plify matters we call them just roots instead of relativeF -roots. For a subsetI ⊂ ∆, we let
PI ⊂ G be the standard parabolic subgroup defined overF such that∆ \ I are precisely
the simple roots of the unipotent radicalUI of PI . As extreme cases we have

P∆ = G and P∅ = P.

Moreover, there is for each subsetI ⊂ ∆ a unique Levi subgroupMI of PI which con-
tainsM. Let

ΦI ⊃ Φ+
I ⊃ I

be its set of roots, positive roots, simple roots with respect toS ⊂ MI ∩ P. We denote by

W = N(S)/Z(S)
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the relative Weyl group ofG. For any subsetI ⊂ ∆, let WI be the parabolic subgroup o
W which is generated by the reflections associated toI . It coincides with the Weyl group
of MI . Thus, we have

W∆ = W and W∅ = {1}.

Whereas we denote algebraic groups defined overF by boldface letters, we use ordina
letters for their groups

G := G(F ), PI := PI (F ), MI := MI (F ), . . .

of F -valued points. We supply these groups with the canonical topology given byF . These
are locally profinite topological groups. For any linear algebraic groupH defined overF ,
we denote byX∗(H)F its group ofF -rational characters. LetM ⊂ G be a Levi subgroup
Put

0M =
⋂

α∈X∗(M)F

kern|α|R.

This is a normal open subgroup generated by all compact subgroups ofM (cf. [BW, Chap-
ter X 2.2]). Moreover, the quotientM/ 0M is a finitely generated free abelian group of ra
equal to theF -rank ofZ(M). The valuationval onF gives rise to a natural homomorphis
of groups

ΘM : X∗(M)F → Hom
(
M/ 0M,Z

)
(1)

defined byΘM(χ) = val ◦ χ(F ), whereχ(F ) : M → F× is the induced homomorphism
on theF -valued points. It is easily seen thatΘM is injective. Furthermore, the source a
the target ofΘM are both freeZ-modules of the same rank. Therefore, we may iden
X∗(M)F with a sublattice ofHom(M/ 0M,Z).

We fix a self-injective ringR, i.e., R is an injective object in the categoryModR of
R-modules. Leti : Z → R be the canonical homomorphism. Then we haveker(i) = d · Z,

for some integerd ∈ N. We suppose thatR fulfills the following assumptions.

(1) The pro-order|G| of G is invertible inR, i.e., |G| is prime tod (see [V1, Chapter I
1.5] for the definition of the pro-order). In particular,i(q) ∈ R×.

(2) Let

ρ = detAdLie(U)|S ∈ X∗(S)F

be the character given by the determinant of the adjoint representation ofP on Lie(U)

restricted toS. Write ρ in the shape

ρ =
∑

nαα,
α∈∆
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with nα ∈ N, α ∈ ∆. Then we impose onR thatd is prime to∏
r�sup{nα; α∈∆}

(
1− qr

)
.

(3) LetE/F be a finite Galois splitting field ofG. Then we further suppose thatd is prime
to the order of the Galois groupGal(E/F), i.e.,i(|Gal(E/F)|) ∈ R×.

(4) Finally, we suppose that the injective mapsΘMI
become isomorphisms after ba

change toR for all I ⊂ ∆.

Remarks. 1. Important examples of such rings are given by fields of characteristic ze
by R = Z/nZ with n ∈ N suitable chosen.

2. In the terminology of Vignéras, respectively Dat assumption (1) means thatR is banal
(cf. [D, 3.1.5, 3.1.6], respectively [V1]) forG. A prime d which satisfies assumption (
is calledbon for G (cf. [D, 3.1.5]). A ringR which fulfills both assumptions (1) and (2)
calledfortement banal (cf. loc. cit. 3.1.6).

Suppose for the moment thatG is an arbitrary locally profinite group. We agree th
all G-representations (sometimes we use the termG-module as well) in this paper a
defined overR. Recall that a smoothG-representation is a representationV of G such that
eachv ∈ V is fixed by a compact subgroupK ⊂ G. We denote the category of smoo
representations byModG. If V is a smoothG-module, then we let̃V be its smooth dual
Any closed subgroupH of G gives rise to functors

iGH , c-iGH : ModH → ModG

called the (unnormalized) induction, respectively induction with compact support. W
call their definitions. LetW be a smoothH -representation. Then we have

iGH (W) := {
f : G → W ; f (hg) = h · f (g) ∀h ∈ H, g ∈ G, ∃ compact open subgroup

Kf ⊂ G s.t.f (gk) = f (g) ∀g ∈ G, k ∈ Kf

}
,

respectively

c-iGH (W) := {
f ∈ iGH (W); the support off is compact moduloH

}
.

It is obvious that we have

iGH = c-iGH ,

if H\G is compact. If furthermoreW is admissible, i.e.,WK is of finite type overR for all
compact open subgroupsK ⊂ G, theniGH (W) is admissible as well [V1, I, 5.6]). Finally
we denote for anyG-moduleV by V G, respectivelyVG, the invariants, respectively th
coinvariants ofV , with respect toG.
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Next, we want to recall the definition of the generalized Steinberg representation
1 be the trivial representation of any locally profinite group. For any subsetI ⊂ ∆, let

iGPI
:= iGPI

(1) = c-iGPI
(1) = C∞(PI\G,R)

be the smooth and admissible representation of locally constant functions onPI\G with
values inR. If ∆ ⊃ J ⊃ I is another subset, then there is an injectioniGPJ

↪→ iGPI
which is

induced by the natural surjectionPI\G → PJ \G. The generalized Steinberg represen
tion of G with respect toI ⊂ ∆ is defined to be the quotient

vG
PI

:= iGPI

/ ∑
I⊂J⊂∆

J �=I

iGPJ
.

In the caseR = C it has been shown that the generalized Steinberg representatio
irreducible and not pairwise isomorphic for differentI ⊂ ∆ (cf. [Ca2, Theorem 1.1]). Thi
result has been generalized by J.-F. Dat [D] to the case of an algebraically close
which isfortement banal for G.

We finish this section with introducing some more notations. We fix a norma
left-invariantR-valued Haar measureµ on G with respect to a maximal compact op
subgroup ofG. The existence of such a Haar measure is guaranteed by assumpt
on R (see [V1, I, 2.4]). Further, we denote by| · | : F → R the “norm” given by the com
position of

F → qZ, x �→ q−val(x)

together with the natural homomorphismZ[1/q] → R. Finally, if H is any linear algebraic
group overF , then we put

X(H) := X∗(H)F ⊗Z R.

3. The computation

Let G be an arbitrary locally profinite group which satisfies assumption (1) oR.
The categoryModG of smoothG-representations has then enough injectives and pro
tives [V1]. This fact provides two different choices for the computation of the Ext-gro
Ext∗G(V,W) for a given pair of smoothG-representationsV,W . Notice that

Hi(G,V ) = ExtiG(1,V )

is theith right derived functor of

ModG → ModR, V �→ V G,
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ModG → ModR, V �→ VG.

SinceR is self-injective, it is easy to see that there is an isomorphism

Hi(G,V )∨ = ExtiG(V,1)

for all smoothG-representationsV and for all i � 0. Here the symbol∨ indicates the
R-dual space.

For our proof of Theorem 1, we need some statements on the cohomology of s
representations of locally profinite groups with values inR. Up to Lemma 14 all the state
ments are well known in the classical case, i.e., whereR = C. In our situation their proofs
are essentially the same. But for being on the safe side, we are going to reproduce th
ments shortly. Up to Lemma 7—apart from Lemma 4—G is an arbitrary locally profinite
group satisfying assumption (1) onR.

Lemma 3. Let K ⊂ G be an open compact subgroup. Then iGK(1) is an injective object
in ModG.

Proof. By [V1, I, 4.10] we know that the trivialK-representation1 is an injective object
Since the induction functor respects injectives (loc. cit. I, 5.9(b)), we obtain the claim�

Let Y be the Bruhat–Tits building ofG overF . We denote byCq(Y ), q ∈ N, the space
of q-cochains onY with values inR. As in the classical case we have the following fac

Lemma 4. The natural chain complex

0→ R → C0(Y ) → C1(Y ) → ·· · → Cq(Y ) → ·· ·

is an injective resolution of the trivial G-representation 1 by smooth G-modules.

Proof. The proof coincides with the one of [BW, Chapter X, 1.11] which uses Lemm
and the contractibility of the Bruhat–Tits buildingY . �

Our next lemma deals with the Hochschild–Serre spectral sequence. LetN ⊂ G be
a closed subgroup. As it has been pointed out by Casselman in [Ca2], the res
functor from the category of smoothG-modules to that ofN -modules does not preser
injective objects. For this reason, the standard arguments for proving the existe
the Hochschild–Serre spectral sequence—as in the cohomology theory of groups—
down. Nevertheless, the restriction functor preserves projective objects giving a hom
ical variant of the Hochschild–Serre spectral sequence (see appendix of [Ca2]).
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Lemma 5. Let N ⊂ G be a closed normal subgroup of G. If V is a projective G-module,
then VN is a projective G/N -module. Thus, we get for every pair of smooth G-modules
V,W , such that N acts trivially on W , a spectral sequence

E
p,q

2 = ExtqG/N

(
Hp(N,V ),W

) ⇒ Extp+q
G (V,W).

If, furthermore, N , respectively G/N is compact, then we have

ExtqG/N(VN,W) = ExtqG(V,W) ∀q ∈ N,

respectively

Ext0G/N

(
Hp(N,V ),W

) = ExtpG(V,W) ∀p ∈ N.

Proof. The proof is the same as in the classical case [Ca2, A.9]. It starts with the o
vation that the coinvariant functor is left adjoint to the exact functor viewing a sm
G/N -module as a smoothG-module. Therefore,VN is a projectiveG/N -module ifV is
projective. By [V1, I, 5.10] we know that the restriction functor preserves projectives
ing the standard-arguments applied to the Grothendieck spectral sequence, we ob
first part of the claim. The reason for the second part is the exactness of the coinv
respectively fixed-point functor for a compact subgroup [V1, I, 4.6].�
Lemma 6. Let V and W be smooth representations of G. Suppose that W is admissible.
Then

ExtiG(V,W) ∼= ExtiG
(
W̃ , Ṽ

)
for all i � 0.

Proof. Let

0← V ← P 0 ← P 1 ← ·· ·
be a projective resolution ofV . SinceR is self-injective, we conclude as in [V1, I, 4.1
that the functorW �→ W̃ from the category of smoothG-representations to itself is exac
By [V1, I, 4.13(2)] we see that the modules̃P j , j � 0, are injective objects inModG.
Hence, we obtain an injective resolution

0→ Ṽ → P̃ 0 → P̃ 1 → ·· ·
of Ṽ . Moreover, we know by [V1, I, 4.13(1)] that

HomG

(
V, W̃

) = HomG

(
W, Ṽ

)
,

for any pair of smoothG-modulesV,W . SinceW is admissible, we haveW = ˜̃W (see
[V1, 4.18(iii)]) and the claim follows. �

In the special caseW = 1 we obtain the following.
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Corollary 7. Let V be a smooth representation of G. Then

Hi
(
G, Ṽ

) ∼= Hi(G,V )∨ for all i � 0.

From now on, we suppose again thatG is the set ofF -valued points of some reductiv
algebraic group defined overF .

Lemma 8. Let Q ⊂ G be a parabolic subgroup with Levi decomposition Q = M ·N . Let V ,
respectively W , be a smooth representation of G, respectively M . Extend W trivially to a
representation of Q. Then

ExtiG
(
V, iGQ(W)

) ∼= ExtiM(VN,W) for all i � 0.

Proof. By Frobenius reciprocity [V1, I, 5.10] we deduce that

Ext∗G
(
V, iGQ(W)

) = Ext∗Q(V,W).

SinceN is the union of its compact open subgroups, we deduce from [V1, I, 4.10
exactness of the functor

ModN → ModR, V �→ VN.

Thus, the statement follows from Lemma 5.�
After having established the main techniques for computing cohomology of repr

tations, we are able to take the first step in order to prove Theorem 1. The follo
proposition is also well known in the classical case. Here, assumption (4) onR enters
for the first time.

Proposition 9. We have

H ∗(G,1) = Λ∗X(G),

where Λ∗X(G) denotes the exterior algebra of X(G).

Proof. We copy the proof of the classical case [BW, Chapter X, Proposition 2.6].
1st case.G is semi-simple and simply connected. Then we apply theG-fixed point

functor to the resolution of the trivial representation in Lemma 4. The result is a con
coefficient system on a base chamber inside the Bruhat–Tits building, which is contra
Thus, we obtainH ∗(G,1) = H 0(G,1) = R.

2nd case.G is semi-simple. Then we consider its simply connected coveringσ :
G′ → G. The induced homomorphismG′ → G has finite kernel, its image is a clos
cocompact normal subgroup. We apply Lemma 5 twice, toG ⊃ σ(G′) andG′ ⊃ ker(σ ).

3rd case.G is arbitrary reductive. LetDG be the derived group ofG and putG′ =
DG(F ). Then we haveG ⊃ 0G ⊃ DG′, whereDG′ denotes the derived group ofG′.
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Moreover, the quotient0G/DG′ is compact. Therefore, we conclude by the previous c
Lemma 5 and Corollary 7 that

H ∗(0G,1
) = H ∗(DG′,1

) = H 0(DG′,1
) = R.

With the same arguments, we see that

H ∗(G,1) = H ∗(G/ 0G,1
)
.

Now it is known that the cohomology of a finite rank free commutative (discrete) groL

coincides with the cohomology of the corresponding torus:

H ∗(L,1) = Λ∗(Hom(L,Z)
) ⊗Z R.

Applying this fact toG/ 0G, we get

H ∗(G,1) = Λ∗(Hom
(
G/ 0G,Z

)) ⊗Z R.

By assumption (4) onR we haveHom(G/ 0G,Z) ⊗Z R ∼= X(G) from which the result
follows. �
Corollary 10. Let I ⊂ ∆. Then we have

H ∗(G, iGPI

) = H ∗(PI ,1) = H ∗(MI ,1) = Λ∗X(MI ).

Proof. The statement follows from Lemma 8, Proposition 9 and by our assumptio
onR. �

In order to compute the cohomology of generalized Steinberg representations, w
the following proposition. For two subsetsI ⊂ I ′ ⊂ ∆ with |I ′ \ I | = 1, we let

pI,I ′ : iGPI ′ → iGPI

be the natural homomorphism induced by the surjectionG/PI → G/PI ′ . For arbitrary
subsetsI, I ′ ⊂ ∆, with |I ′| − |I | = 1 andI ′ = {β1, . . . , βr}, we put

dI,I ′ =
{

(−1)ipI,I ′ , I ′ = I ∪ {βi},
0, I �⊂ I ′.

Proposition 11. Let I ⊂ ∆. The complex

0→ iGG →
⊕

I⊂K⊂∆

|∆\K|=1

iGPK
→

⊕
I⊂K⊂∆

|∆\K|=2

iGPK
→ ·· · →

⊕
I⊂K⊂∆

|K\I |=1

iGPK
→ iGPI

→ vG
PI

→ 0,

with differentials induced by the dK,K ′ above is acyclic.
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Proof. See [SS, §6, Proposition 13] for the case ofI = {α1, α2, . . . , αi}, i � 1, and
G = GLn. The proof there is only formulated for coefficients in the ring of integersZ.
However, the proof holds for arbitrary rings, since it is of combinatorial nature.

A different approach consists of using [SS, §2, Proposition 6]. It says: letG1, . . . ,Gm

be a family of subgroups in some bigger abelian groupG. Suppose that the followin
identities are satisfied for all subsetsA,B ⊂ {1, . . . ,m}:(∑

i∈A

Gi

)
∩

( ⋂
j∈B

Gj

)
=

∑
i∈A

(
Gi ∩

( ⋂
j∈B

Gj

))
.

Then the natural (oriented) complex

G ←
m⊕

i=1

Gi ←
m⊕

i,j=1
i<j

Gi ∩ Gj ←
m⊕

i,j,k=1
i<j<k

Gi ∩ Gj ∩ Gk ← ·· ·

is an acyclic resolution of
∑

i Gi ⊂ G. We apply this proposition to theG-modulesiGPK
,

whereI ⊂ K ⊂ ∆ and|∆ \ K| = 1. The condition of the proposition is fulfilled. Indee
we have

iGPI
∩ iGPJ

= iGPI∪J
and iGPI

∩ (
iGPJ

+ iGPK

) = (
iGPI

∩ iGPJ

) + (
iGPI

∩ iGPK

)
,

for all subsetsI, J,K ⊂ ∆. The first identity follows from the fact thatPI∪J is the par-
abolic subgroup generated byPI and PJ . For the second one confer [BW, 4.5, 4.
respectively [L, 8.1, 8.1.4] (The statement there is formulated in the case whereR = C.
The result holds also in our general situation. The proof relies on the exactness
Jacquet-functor and a description of theS-modules(iGPI

)U using the filtration in our proo
of Proposition 15.) �

Now, we can treat the cohomology of generalized Steinberg representations. T
lowing theorem makes use of assumption (3) onR in the case whenG is not split.

Theorem 12. Let G be semi-simple and let I ⊂ ∆. Then we have

Hi
(
G,vG

PI

) =
{

R, i = |∆ \ I |,
0, otherwise.

Proof. The proof is the same as in [BW, Chapter X, Proposition 4.7]. A not very di
ent approach works as follows. Apply the cohomology functorH ∗(G,−) to the acyclic
complex of Proposition 11. We obtain a complex

0→ Λ∗X(G) →
⊕

I⊂K⊂∆

Λ∗X(MK) → ·· · →
⊕

I⊂K⊂∆

Λ∗X(MK) → Λ∗X(MI ) → 0.
|∆\K|=1 |K\I |=1
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Suppose thatG is split. In this case it is well known (cf. [J, Chapter II, 1.18]) thatX∗(MK)F
may be identified with the submodule ofX∗(S)F defined by{

χ ∈ X∗(S)F ; 〈
χ,α∨〉 = 0 ∀α ∈ K

}
,

where〈· , ·〉 : X∗(S)F ×X∗(S)F → Z is the natural pairing andα∨ denotes the correspon
ing coroot. Using the Hochschild–Serre spectral sequence, we may assume without
generality thatG is simply connected. If we denote by{ωα ∈ X∗(S)F ; α ∈ ∆} the funda-
mental weights ofG with respect toS ⊂ P, then we get

X(MK) ∼=
⊕

α∈∆\K
R · ωα ⊂ X(S).

Thus we see—again by using [SS, §2, Proposition 6]—that the complex above is a
with respect toΛr for

r < rk
(
Z(MI )

) = |∆ \ I |.
In the caserk(Z(MI )) = r all the entries of the complex vanish except forΛrX(MI ) = R.
Using the standard spectral sequence associated to the complex above proves the
the split case.

In the general case, letE/F be our fixed Galois splitting field ofG. Then we deduce
with the same arguments that the corresponding complex ofE-rational characters has th
desired property. Applying theGal(E/F)-fixed point functor to this complex yields th
claim. Note that the fixed point functor is exact by assumption (3) onR. �

For attacking Theorem 1 we still need two lemmas.

Lemma 13. Let V be a smooth representation of G. Suppose that there exists an element
z ∈ Z(G) in the center of G and an element c ∈ R, such that c − 1 ∈ R× and z · v = c · v
for all v ∈ V . Then we have

H ∗(G,V ) = 0.

Proof. See [BW, Chapter X, Proposition 4.2] for the classical case. We repeat shor
argument. By identifying Ext-groups with Yoneda-Ext-groups, we have to show tha
all n ∈ N, all n-extensions of1 by V are trivial. More generally, we will show that ifU is
a R-module with trivialG-action, then there are no non-trivial extensions ofU by V . In
fact, let

E• : 0→ V → E1 → E2 → ·· · → En → U → 0

be an arbitraryn-extension. Sincez lies in the center ofG, it defines an endomorphis
of E• and we get the identityE• = c.E•. Herec.E• denotes the scalar multiplication
R on the moduleExtnG(U,V ) (confer [M, Chapter III, Theorem 2.1]). Thus, we have 0=
E• − c.E• = (1− c).E•. Since 1− c ∈ R×, we conclude thatE• = 0∈ ExtnG(U,V ). �
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Lemma 14. Let H ⊂ G be a closed subgroup and let W be a smooth representation of H .
Then we have

˜c-iGH (W) ∼= iGH
(
W̃δH

)
,

where δH is the modulus character of H .

Proof. This follows from [V1, I, 5.11] together with the fact thatG is unimodular. �
Proposition 15. Let G be semi-simple and let I, J ⊂ ∆. Then we have

Ext∗G
(
iGPI

, iGPJ

) =
{

Λ∗X(MJ ), if J ⊂ I,

0, otherwise.

Proof. By Lemma 8 we have for alli � 0 isomorphisms

ExtiG
(
iGPI

, iGPJ

) ∼= ExtiMJ

((
iGPI

)
UJ

,1
)
,

where(iGPI
)UJ

is the Jacquet-module ofiGPI
with respect toMJ . In the caseR = C there is

constructed in [Ca3, 6.3]—a substitute for the Mackey formula—a decreasingN-filtration
F• of smoothPJ -submodules oniGPI

defined by

F i =
{
f ∈ iGPI

; supp(f ) ⊂
⋃

w∈WI \W/WJ

l(w)�i

PI\PIwPJ

}
, i ∈ N.

Here the lengthl(w) of a double cosetw ∈ WI\W/WJ is the length of its Kostant
representative which is the one of minimal length within its double coset. In the follow
we will identify the double cosets with its Kostant-representatives. There are can
isomorphisms

gri
F•

(
iGPI

) ∼=
⊕

w∈WI \W/WJ

l(w)=i

c-iPJ

PJ ∩w−1PI w

of smoothPJ -modules for alli � 0. Furthermore, we have for everyw ∈ WI\W/WJ an
isomorphism (

c-iPJ

PJ ∩w−1PI w

)
UJ

∼= c-iMJ

MJ ∩w−1PI w
(γw)

of smoothMJ -modules, whereγw is the modulus character ofPJ ∩ w−1PIw acting on
UJ /UJ ∩ w−1PIw. The first isomorphism is a corollary of Proposition 6.3.1 (loc. c
(see also [V1, I, 1.7(iii)]), whereas the second one is the content of Proposition 6.3.
cit.). In the general case, i.e., for our specified ringR, the same formulas hold. In fac



624 S. Orlik / Journal of Algebra 293 (2005) 611–630

p

sive

r

the proof can be taken over word by word. SinceMJ ∩ w−1PIw is a parabolic subgrou
in MJ , we observe that

c-iMJ

MJ ∩w−1PI w
(γw) = i

MJ

MJ ∩w−1PI w
(γw).

The characterγw is the norm of the rational character

detAdLie(UJ)/detAdw−1Lie(PI)w∩Lie(UJ)
∈ X∗(PJ ∩ w−1PIw

)
.

Its restriction toS is given by

γw |S =
∣∣∣∣ ∏

α∈Φ+\Φ+
J

wα∈Φ−\Φ−
I

α

∣∣∣∣. (2)

Fix an elementw ∈ WI\W/WJ . We are going to show that

Ext∗MJ

(
i
MJ

MJ ∩w−1PI w
(γw),1

)
= 0,

unlessw = 1 andJ ⊂ I . Since the Jacquet-functor is exact, this will give by succes
application of the long exact cohomology sequence with respect to the filtrationF• the
statement of our proposition. By Lemmas 6 and 14 we conclude that

Ext∗MJ

(
c-iMJ

MJ ∩w−1PI w
(γw),1

) ∼= Ext∗MJ

(
1, i

MJ

MJ ∩w−1PI w
(γ̃wδMJ ∩w−1PI w)

)
,

where δMJ ∩w−1PI w denotes the modulus character of the parabolic subgroupMJ ∩
w−1PIw of MJ and γ̃w is the smooth dual ofγw. The Levi decomposition of the latte
group is given by

MJ ∩ w−1PIw = MJ∩w−1I · (MJ ∩ w−1UIw
)

(see [C, Proposition 2.8.9]). So, the restriction ofδMJ ∩w−1PI w to S is the norm of the
rational character ∏

α∈Φ+
J

wα∈Φ+\Φ+
I

α,

i.e.,

δMJ ∩w−1PI w |S =
∣∣∣∣ ∏

α∈Φ+
J

wα∈Φ+\Φ+

α

∣∣∣∣. (3)
I
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In the case whereJ �⊂ I or w �= 1 we deduce from the following lemma the existence
an elementz in the center ofMJ∩w−1I such that

γ̃w(z)δMJ ∩w−1PI w(z) − 1∈ R×.

By Lemma 13 we conclude that

Ext∗MJ

(
c-iMJ

MJ ∩w−1PI w
(γw),1

)
= 0.

In the caseJ ⊂ I we obtain therefore an isomorphism

Ext∗G
(
iGPI

, iGPJ

) ∼= Ext∗MJ
(1,1) = Λ∗X(MJ )

which is induced by the elementw = 1. �
I want to stress that the following lemma uses assumption (2) onR.

Lemma 16. Let J �⊂ I or w �= 1. Then there exists an element z ∈ Z(MJ∩w−1I ) such that
γ̃w(z)δMJ ∩w−1PI w(z) − 1∈ R×.

Proof. 1st case. Letw �= 1. Then we haveγw �= 1. In fact,γw = 1 would imply that

Lie(UJ ) ⊂ Lie
(
w−1PIw

)
or equivalentlyUJ ⊂ w−1PIw. But in general one has

PJ∩w−1I = (
PJ ∩ w−1PIw

) · UJ

(see [C, Proposition 2.8.4]). Thus, we deduce that the intersectionPJ ∩ w−1PIw is a
parabolic subgroup. This is only true ifw = 1.

We want to recall that for any subsetK ⊂ ∆ the maximal split torus in the centerZ(MK)

of MK coincides with the connected component of the identity in
⋂

α∈K kern(α) ⊂ S.
SinceZ(MJ ) ⊂ Z(MJ∩w−1I ), it is enough to construct an elementz ∈ Z(MJ ) which has
the desired property. From the representation (2) we may easily conclude the exist
an elementz ∈ Z(MJ ) with γ̃w(z) �= 1. Our purpose is to show the existence of an elem
z ∈ Z(MJ ) such thatγ̃w(z) − 1∈ R×. We may suppose thatG is adjoint. Let{

ωα ∈ X∗(S); α ∈ ∆
}

be the dual base (co-fundamental weights) of∆, i.e.,〈ωβ,α〉 = δα,β , for all α,β ∈ ∆. Since
γw �= 1, it is possible to find a rootα ∈ ∆ \ J such thatwα ∈ Φ− \ Φ−

I . Put

z := ωα

(
�−1).
F
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Then we havez ∈ Z(MJ ) and

γ̃w(z) − 1= qr − 1

for some 1� r � nα . By assumption (2) onR, the product
∏

r�sup{nα; α∈∆}(1 − qr) is
invertible in R. Further, we see from the expression (3) thatδMJ ∩w−1PI w(z) = 1. This
completes the proof in the first case.

2nd case. Letw = 1 andJ �⊂ I . Then we haveγw = 1. SinceJ �⊂ I , we see that the
restriction ofδMJ ∩PI

to Z(MJ∩I ) is not trivial. Again, we can find similarly to the firs
case an elementz ∈ Z(MJ∩I ) such thatδMJ ∩PI

(z) − 1∈ R×. �
Proposition 17. Let G be semi-simple and let I, J ⊂ ∆. Then we have

Ext∗G
(
vG
PI

, iGPJ

) =
{

Λ∗X(MJ )[−|∆ \ I |], ∆ = I ∪ J,

0, otherwise.

Proof. We apply the acyclic complex of Proposition 11 to the representationvG
PI

. Taking

an injective resolution ofiGPJ
then gives rise in the usual way to a double complex such

its associated spectral sequence converges toExt∗G(vG
PI

, iGPJ
). TheE1 term of this spectra

sequence has the shape

0→ Ext∗G
(
iGPI

, iGPJ

) →
⊕

I⊂L⊂∆

|L\I |=1

Ext∗G
(
iGPL

, iGPJ

) →
⊕

I⊂L⊂∆

|L\I |=2

Ext∗G
(
iGPL

, iGPJ

) → ·· ·

→
⊕

I⊂L⊂∆

|∆\L|=1

Ext∗G
(
iGPL

, iGPJ

) → Ext∗G
(
iGG, iGPJ

) → 0.

By Proposition 15 we see thatK := I ∪ J is the minimal subset of∆ containingI with
Ext∗G(iGPK

, iGPJ
) �= 0. Hence, theE1 term reduces to

0→ Λ∗X(MJ ) →
⊕

K⊂L⊂∆

|L\K|=1

Λ∗X(MJ ) →
⊕

K⊂L⊂∆

|L\K|=2

Λ∗X(MJ ) → ·· · →
⊕

K⊂L⊂∆

|∆\L|=1

Λ∗X(MJ )

→ Λ∗X(MJ ) → 0.

In the case ofK = ∆ we are obviously done. In the caseK �= ∆ we see that the coho
mology of theE1 term vanishes, since it is a constant coefficient system on the sta
simplex corresponding to the setK . �
Proof of Theorem 1. This time we apply Proposition 11 tovG

PJ
. This yields by taking a

projective resolution ofvG
PI

a double complex such that its associated spectral sequ

converges toExt∗ (vG , vG ). TheE1 term of this spectral sequence is just
G PI PJ
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0→ Ext∗G
(
vG
PI

, iGG
) →

⊕
J⊂L⊂∆

|∆\L|=1

Ext∗G
(
vG
PI

, iGPL

) →
⊕

J⊂L⊂∆

|∆\L|=2

Ext∗G
(
vG
PI

, iGPL

) → ·· ·

→
⊕

J⊂L⊂∆

|L\J |=1

Ext∗G
(
vG
PI

, iGPL

) → Ext∗G
(
vG
PI

, iGPJ

) → 0.

By Proposition 17 we conclude that the minimal subsetK of ∆ containingJ with
Ext∗G(vG

PI
, iGPK

) �= 0 is

K = (∆ \ I ) ∪ J = (∆ \ I ) ∪̇ (I ∩ J ).

Therefore, theE1 term reduces to

0→ Λ∗X(G)
[−|∆ \ I |] →

⊕
K⊂L⊂∆

|∆\L|=1

Λ∗X(ML)
[−|∆ \ I |] → ·· ·

→
⊕

K⊂L⊂∆

|L\K|=1

Λ∗X(ML)
[−|∆ \ I |] → Λ∗X(MK)

[−|∆ \ I |] → 0.

This complex is precisely—up to shifts—the complex for the computation of the c
mology ofvG

PK
for a semi-simple groupG (cf. Theorem 12, respectively [BW, Chapter

Proposition 4.7])! Thus, we obtain an isomorphism

H ∗(G,vG
PK

)[−(|J | − |K|) − |∆ \ I |] ∼= Ext∗G
(
vG
PI

, vG
PJ

)
.

It remains to compute the degreed , where the latter space does not vanish. The degr
by Theorem 12 equal to

d = |∆ \ K| + |∆ \ I | + |J | − |K|
= ∣∣∆ \ (

∆ \ I ∪̇ (I ∩ J )
)∣∣ + |∆ \ I | + |J | − ∣∣∆ \ I ∪̇ (I ∩ J )

∣∣
= ∣∣I ∩ ∆ \ (I ∩ J )

∣∣ + |J | − |I ∩ J | = ∣∣I \ (I ∩ J )
∣∣ + |J | − |I ∩ J |

= |I | − |I ∩ J | + |J | − |I ∩ J | = |I ∪ J | − |I ∩ J |. �
Remark. An argument of J.-F. Dat shows that Theorem 1 even holds ifR is not self-
injective. In fact, in his paper [D, Theorem 3.1.4] he first shows the statement f
algebraically closed field which isfortement banal for G. Then he uses this result to dedu
the general case by elementary commutative algebra.
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Proof of Corollary 2. Consider the projectionG → G/Z(G) onto the adjoint group ofG.
The action ofZ(G) on vG

PI
andvG

PJ
is trivial. By applying Lemma 5 to this situation, w

get a spectral sequence

ExtqG/Z(G)

(
Hp

(
Z(G), vG

PI

)
, vG

PJ

) ⇒ Extp+q
G

(
vG
PI

, vG
PJ

)
.

By the proof of Proposition 9, we deduce that

H ∗(Z(G),1
) = Λ∗Hom

(
Z(G)/ 0Z(G),Z

) ⊗ R ∼= Λ∗Rd.

Therefore, we get

H∗
(
Z(G), vG

PI

) = H ∗(Z(G),1
)∨ ⊗ vG

PI

∼=
d⊕

j=0

(
vG
PI

)(d
j).

Now we apply Theorem 1 together with Corollary 7.�
In the remainder of this paper we give another corollary in the case of the general

group and whereR is an algebraically closed field. It computes the Ext-group of elli
representations (cf. [D] for the definition of these representations). This corollary has
pointed out to me by C. Kaiser in the caseR = C. M.-F. Vignéras has communicated to m
that it also holds for algebraically closed fieldsR of positive characteristic satisfying ou
assumptions.

In the following, we use the Zelevinsky classification of smoothG-representations in
order to describe the elliptic ones [Z]. This description holds for any algebraically c
field which is banal forR (cf. also [V3] for a treatment of the Zelevinsky classification
the modular case). LetG = GLn with n = r · k for some integersk, r > 0. LetPr,k be the
upper block parabolic subgroup containing the Levi subgroup

GLr × · · · × GLr︸ ︷︷ ︸
k

.

We fix an irreducible cuspidal representationσ of GLr . For any integeri � 0, we put
σ(i) = σ ⊗ |det|i , where det: GLr → F× is the determinant. Consider the graphΓ

consisting of the vertices{σ,σ (1), . . . , σ (k − 1)} and the edges{{σ(i), σ (i + 1)}; i =
0, . . . , k − 2}. Thus we can illustrateΓ in the shape

σ − σ(1) − · · · − σ(k − 1).

An orientation ofΓ is given by choosing a direction on each edge. We denote byOr(Γ )

the set of all orientations onΓ .
LetJ be the set of irreducible subquotients ofĩGPr,k

(σ ⊗ σ(1)⊗ · · · ⊗ σ(k − 1)), where
ĩGPr,k

denotes the normalized induction functor. Following [Z, 2.2], there is a bijection

ω : Or(Γ ) → J ,
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which we briefly describe. LetSk be the symmetric group of the set{0, . . . , k−1}. Consider
the map

Sk → Or(Γ ), w �→ Γ (w)

defined as follows. The edge{σ(i), σ (i + 1)} is oriented fromσ(i) to σ(i + 1)—
symbolized asσ(i) → σ(i + 1)—if and only if w(i) < w(i + 1). One easily verifies th
surjectivity of this map. Let�Γ be an orientation ofΓ . Choose an elementw ∈ Sk such that
�Γ = Γ (w). Thenω( �Γ ) is defined to be the unique irreducible quotient of

ĩGPr,k

(
σ
(
w(0)

) ⊗ · · · ⊗ σ
(
w(k − 1)

))
.

In loc. cit. 2.7 it is shown that this representation does not depend on the chosen re
tativew.

Denote by∆k = {α0, . . . , αk−2} the set of simple roots ofGLk with respect to the
standard root system ofGLk . Let P(∆k) be its power set. For a subsetI ⊂ ∆k , we
let Θ(I) ∈ Or(Γ ) be the orientation ofΓ defined byσ(i) → σ(i + 1) if and only if
αi ∈ I, i = 0, . . . , k − 2. It is easily seen that we get in this way a bijection

Θ : P(∆k) → Or(Γ ).

For any subsetI ⊂ ∆k , we put finally

vG
I (σ ) := ω

(
Θ(I)

)
. �

Example 1. Consider the special caser = 1 andσ = | · |(1−n)/2. Then we havePr,k = P ,

ĩGP
(
σ ⊗ · · · ⊗ σ(n − 1)

) = iGP and vG
I (σ ) = vG

PI
, for all I ⊂ ∆ = ∆k.

Corollary 18. Let I, J ⊂ ∆k . Set i := |I ∪ J | − |I ∩ J |. Then we get

Ext∗G
(
vG
I (σ ), vG

J (σ )
) = R[−i] ⊕ R[−i − 1].

Proof. We make use of the theory of types of Bushnell and Kutzko [BK] (see also [V2
for the modular case). Let(K,λ) be the type of the block containingvG

∅ (σ ). By definition
K is a certain compact open subgroup ofG andλ is an irreducible representation ofK ,
such that the functor

V �→ HomG

(
c-iGK(λ),V

)
from the block above to the category of rightEndG(iGK(λ))-modules is an equivalence
categories. Furthermore, there exists an unramified extensionF ′/F , such that the following
holds ([BK,V2,V3, IV.6.3]). SetG′ = GLk(F

′) and letI ′ ⊂ G′ be the standard Iwaho
subgroup. Then there is an algebra isomorphism [BK, 7.6.19]

EndG′
(
iG′ (1)

) → EndG

(
iG(λ)

)
.
I K
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2.

:

p.
This isomorphism induces an equivalence between the block of unipotentG′-represen-
tations and the block ofG-representations containingvG

∅ (σ ). Under this identification, the
representationsvG

I (σ ) andvG
PI

correspond to each other. This can be seen from the
that the equivalence is compatible with normalized induction [BK, 7.6.21] and with tw
[BK, 7.5.12]. Thus, the statement follows from Corollary 2.�
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