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Let R, , . . . . iTC be p-adic closures of a field K. In this paper we investigate 
the behavior of the ‘field K, = KP’ n n K: n K(c,+ 1, . . . . cr<+,,,). where 
Clr --.> ~,+,?I are automorphisms in the absolute Galois group G(K) of K 
which are chosen at random and where J?( CT~ + I ) . . . . ge + ,,,) is the fixed field 
of C e+ 17 ...9 gc+/n in the algebraic closure k of K. More precisely, the com- 
pact group G(K)‘+,’ is equipped with a unique normalized Haar measure 
(with respect to the Krull topology on G(K)). We prove : 

INTERSECTION THEOREM. Let K be a countable Hilbertian field. Then the 
fZloning statements hold for almost all (0,) . . . . cet,,,) E G(K),*“‘: 

(a) The field K, is pseudo p-adically closed (abbreviation : PpC), that 
is, each absolutelJ7 irreducible variety defined over K, has a Ku-rational point, 
provided it has a simple rational point in each p-adic closure of K,; 

(b) -G(K,) 2 D,,,, where D, ,,,* is the free product G(Qe,) * ... * 
G(Q,) * F,,, of e copies of G(Q,) and a free profinite grot4p &‘,,, of rank m, 
in the category of profinite grol4p.s ; 

(c) The field K, admits exactly e non-equivalent p-adic valuations, 
indt4ced by the p-adic closures &I, . . . . K: of K; 
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* The contents of this paper constitutes a part of the first author’s PhD thesis done in Tel 
Aviv University under the supervision of the second author. 
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(d ) The value group of each p-adic valuation on K, is a Z-grou,n ; and 

(z) Distinct p-adic valuations on K, are kdepende’ent. 

These results extend Theorems 16.13 and Ih.28 of [FJ]. which 
correspond to the case where e = 0. Also, the special case K = Q is proved 
in [HI, Prop. 12.91. The observation that the p-adic closures of Q arc 
exactly its Henselizations plays there an important role. Over arbitrary 
fields, however, this might not hold. Moreover, two p-adic closuses of K 
may induce the same p-adic valuation on K without being K-isomorphic In 
order to obtain information about the K-isomorphism classes of p-adic 
closures of K we use here extensively the theory of sites, developed in [II.!]” 
In particular, we have to study the family of PpC fields having exactly e 
O-sites. 

The basic notions and results regarding sites are reviewed bri in Se:- 
lion I. In Section 2 we prove a “strong amalgamation property” @-Sites 

(Proposition 2.4). It is then used to give an alternative condition on K, LC 
a PpC field with e O-sites (Theorem 3.1 I 1~ We apply this condition ;.n 
measure theoretic arguments that lead to the proof of the intersection 

In a forthcoming paper, the first author reformulates this con 
first order sentence on fields with e valuations, Then h.e applies the inter- 
section theorem to study the elementary theory of free PpC fields wit:7 e 
r~aiuations. 

The second author applies the intersection theorem in another forth- 
coming paper for a realization of p-adically projective groups of countable 
rank as absolute Galois groups of PpC fields which are aigebraic o~+er Q. 

1. PRELIMINARIES 

We first make the following conventions: 
The letter p stands for a fixed prime and the letter r for a fixed natural 

number. By a variety we always mean an afine absolutely irreducible 
variety. We do not distinguish between equivalent valuations. Ail fields 
(with the exception of residue fields of valuations or onless explicitly stated 
otherwise) are assumed to have characteristic 0. 

We say that a valuation L’ on a field K is p-a& if the corresponding 
residue field is the field with p elements F, and r(p) is the smallest positive 
element of the value group v(K” ). By [HJ, Lemma 6.71 there is a canoni- 
cai bijection I’+-+ TT, between p-adic valuations on a field K and places 
rc:K-+Q,c~{m ). Moreover, a p-adic field (K,, U~) extends another p-adic 
valued field (K,, L’~) if and only if (K,, z,,) extends jKz: ns,,j. We r&r LD 
stich places as QD-places on K. 
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Denote @ = bQ;/(Q; )“. The canonical map Q; + @ is injective [HJ, 
Lemma 6.8(a)], so we may identify QF with its image under this map. 
A O-site on a field K is a pair 3 = (z, cp), where rt is a Q,-place on K and 
cp: K” --+ @ is a homomorphism, such that v(x) = n(x) whenever XE K” 
and X(X) # 0, x8. For each Qp-place z there exists a (usually non-unique) 
homomorphism cp as above such that (z, cp) is a O-site [HJ, Cor. 8.101. 

Let K’ be an extension of K and let 3’ = (x’, cp’) be a O-site on K’. We 
say that 9’ extends 3 (and write Res, 3’ = 3), if 71’ extends n and cp’ extends 
q. We say that (K, 3) is O-closed if 3 does not extend to any proper 
algebraic extension of K. If in addition K/K, is an algebraic extension, then 
we say that (K, 3) is a O-closure of (K,, Res,, 3). By [HJ, Lemma 8.61, 
(K, 3) is O-closed if and only if (K, a) is p-adically closed, where v is the 
p-adic valuation which corresponds to 7~. 

The sets 0: and @ are naturally embedded in 8 = (0; x @)/ 
{(a-‘, a) 1 UE 0; >. Now, a kite on a field K is a pair (x, q), where 
7c : K -+ a, u {co > is a place and cp : K x + 3 is a homomorphism, such that 
q(x) = K(X) whenever XE K” and X(X) # 0, co. In particular, a O-site is 
also a G-site. 

For a Galois extension L/K we denote the set of all G-sites 3 on L such 
that Res, 3 is a O-site by X( L/K). Thus X(K) = X(K/Kj is the set of all 
O-sites on K. The Galois group %(L/K) acts on X(L/K) as follows: for 
each g E ??(L/K) and 3 = (71, cp) E X(L/K), 3” = 3 : g = (x 0 g, cp 0 0). Also, if 
LO/K is another Galois extension, where L, s L, and if 3~ X(L/K), then 
Res,, 3 E X(L,/K). Obviously, for all c E B(LjK), Res,,(30 a) = (Res., 3) 0 
UW,, 4. 

We use the following facts about O-sites [HJ, Prop. 9.31: If 3,, is a O-site 
on a field K and if L/K is a Galois extension, then 3, extends to a G-site 
3 on L. Also, if 3’ is another &-site on L that extends 3,, then there exists 
a unique 0 E Y(L/K) such that 3 = 3’0 0. Finally, for a Galois extension 
L/K and a a-site 3 E X(L/K) there exists a unique maximal field L,, called 
the decomposition field of 3, such that KG L, c L and such that Res,, 3 is 
a O-site [HJ, Lemma 95(b)]. 

2. THE STRONG AMALGAMATION PROPERTY OF O-SITES 

In this section we prove that two O-sites on linearly disjoint extensions 
K,, K2 of a field K which coincide on K extend to a O-site on the com- 
positum K, K,. This is a y-adic analog of [D, p. 751. In this paper we use 
only a special case of this result, in which the extension K,/K is algebraic 
and K,/K is regular. Nevertheless, we prove the result in its most general 
form. 
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Natatim. We denote the first order language of fields augmented by 
one unary relation symbol Ifi (denoting a p-adic valuation ring) and new 
constant symbols for the elements of a set .4 by ,‘1c;(A). 

PlOOJ There exists a set FpF of YI-sentences whose models are exactly 

the formally p-adic fields [PR, p. 831. Denote the diagram of (Ei, Si) in 
4?,(E,) by Diag(Ei, 0,) i= 1,2, and define an YI(E1 u IS’,)-theory I” as 
follows : 

r=FpFiiDiag(E,, 0,)uDiag(E2, 0,) 

u~~~ajb,=O~a~~....a~~tE~ and I 
\, !Z.ij 

J ’ 
b, , . . . . b,, E E2 linearly independent over KJ 

Let f, be a finite subset of f. We show that lJO has a model, Indeed, let 
a i, . . . . a, (resp., b,, .L.. b,) be all the elements of E; (resp., E,) which appear 
in sentences of I-, and set a, = 0. Also, let ~,(a~, ...I aI), .~=? q&al, ~..: a,,) Se 
,the YI(E, CL E,)-sentences of Diag(E,, 0,) which appear in r,. Furrher- 
more, let Cfzl a,,,,,,b,ZO, j= 1, . . . . I, be a list of’all the sentences in -S, 
which belong to the last set in (2.1 j. Were. 0 < k(i, j) 6 s and for each 
I d J d I there is at least one 1 < i < t for which k( 1, j) + 0. 

Since the existential sentence 

holds in (El, 0,), there exist a;, . . . . ahe K such that 

(4 0,) I= ;I ~,(a’) A ,;1 ai #O. 
k=l i= 1 

For each 1 <j 6 !, the b,‘s for which k( i, j) # 0 are linearly independest 
over K. Hence, with a; = 0, XI= 1 a;,,. ,,bj f 0, j = 2. . . . . i. Therefore the 
structure (E2, 0,) is a model of I-,, with a,, . ..~ as and bl, . . . . b, interpreted 
as al I . . . . a: and b,, . . . . b,, respectively, and the relation symbol C inkr- 
preted as the p-adic valuation ring 0, of E,. 

The compactness theorem now yields a model (F, (2) of 17 Thus, (& 0) 
is a formally p-adic field which contains copies of (E,, 0, j and of (E,9 O3 ). 
The definition of f guarantees that these copies are linearly disjoint over 
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K. Therefore, the restriction of 0 to their compositum gives a p-adic valua- 
tion ring as asserted. 1 

COROLLARY 2.2. Let (E,, n,) and (E2, 7~~) be .formally p-adic linearI?> 
disjoint extensions of a p-adicallJ* closed field (K, 7~~) and suppose that 
Res, n, = Res, nz = q,. Then there exists a Q,-place z on E, E2 such that 
Res,;z=ri, i= 1, 2. 

ProoJ It follows from the model-completeness of the theory of p-adi- 
tally closed fields [PR, Th. 5.11 that (K, rcO) is existentially closed in both 
(E,, rci) and (E,, q). The assertion now follows from Lemma 2.1. 1 

Remark. An alternative proof for Corollary 2.2 in the case where E, 
and E, are p-adically closed is given by Pop [P, L,emma 5.61. 

The following general lemma can be verified using the tower property of 
linearly disjoint extensions [L, p. 50; p. 58, Cor. 61: 

LEMMA 2.3. L.et E, , E, be linearly disjoint extensions of a field K and let 
R, E;, El be algebraic extensions of K, E,, EZ, respectively, such that E; jK 
is a regular extension. Then 

(a) The fields E, K’ and E, K’ are linearly disjoint over K’ ; 
(b) The fields E; and Ei are linearly disjoint over K; 
(c) The fields EL Ez and E, E; are linearly disjoint over E, E,. 

PROPOSITION 2.4. Let E, and Ez be linearly disjoint extensions of a field 
K and let 3i E A-(Ei), i = 1, 2. Assume that Res, 3, = Res, 3,. Then there 
exists 3 E X(E, E2) such that Res, 3 = 3i, i= 1, 2. 

ProoJ: Case 1. E,, E,/K algebraic. In this case we even prove that 0 
is unique. - - 

Indeed, let [ be a O-site of K, let (K, [) be a O-closure of (K, 5) and let 
r be an extension of { to a G-site of p Then, for each algebraic extension 
E of K the map 0 H i, = (Res,, [) 0 cr canonically maps the set of K-embed- 
dings of E into K bijectively onto the set of all O-sites of E that extend i. 

Indeed, suppose that 0 and rs’ are K-embeddings of E into K such that 
[, = i,,. Extend them to elements c? and 6’, respectively, of G(K). Then 

Hence, there exists E E G(E) such that ca C? c E = [o d’. Hence, G 0 E = a’l and 
therefore 0 = 0’. 

If K is a O-site on E that extends [ and (6 K) is a O-closure of (E, K) 
then there exists a K-isomorphism c?: E --$ K such that K = co 5 [HJ, 
Prop. 8.71. Then, with c = Res,cY, we obtain that K = (I,. 
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Having proved our statement about E, he existence and unicjueness 
of 3 extending 3, and 3, follow now from the following fact: Each pair of 
K-embeddings pi, o2 of E,, El, respectively, into rf uniquely extends to a 
K-embedding G : E, E, + K. 

Case 11. E,/K algebraic and E,iK regular. Extend Si to a &%te 
5, E X(E,,!E,), i= 1, 2, and let $=Res&. Bv assumpticn, 
Resx 9, = Res, 3. Hence, there exists G E G(R) such that*s, = 8 : r;. Since 
E,:X is regular, 5 extends to some t E G(E,). Then 

Res.,( 8,~ s) = ResE,(3^: 5) = Res., g, = 3,) es.,!~2C?)=Wes,,3,=92. 
I’ T ‘) jL&) 

Denote 3 = ResEIEz (8,o r). Thus Res, 3 = 3;, i = h,2. 
We still have to show that 3 is a O-site on E, E,. Indeed, by (2.2) 9, ‘T r 

is a a-site in X(E2/E2) whose decomposition field contains E,. Hence it 
contains E, E,. 

Case III. K, E,, E2 p-adicaQ closed. Ler ri be the Q,-place induced 
on Ei by 3,, i= I, 2. Corollary 2.2 yields a Q,-piace 55 on E,E, which 
extends 7ci and x7. We complete rc into a O-site 3 = (rc, q) E X(E, E,) [HJ, 
Cor. S.?O] to obtain from [HJ. Prop 8.9(a)] that Res,; 3 = 3,. i= E. 2. 

Case IV. E,/K reguiar. Let (E,, 3,) be a O-closure of (E?, 32). T 
- w Rn E, and 3= ResR 32, the pair (K, 3) is a G-closure of(K, Res, 3J) 

i h. 3.41. By Case II, 3, and 3 have a common extension to a @-site 
on E,R hence to a O-site 3, on a O-closure E, of E,. 
EIR and E?E are linearly disjoint over E. As El/&k is regular, Lem- 
ma 2.Stb) implies that E, and E, are linearly disjoint over K. From - - 
Case III we obtain a O-site on E, E2 which extends 3, and i?;?. Its resrric- 
tion 3 to E, E, is as desired. 

Case a/‘. The general case. Ler IS = (E, n K) . (E, n *@). Case 1 gives a 
O-site 3’ of K’ which extends both Res,, ,_ z 3, and ResEz,- 17 32. Case IV 
allows us to extend 3, and 3’ to a common @-site 3; of El K’. Conclude, 

Case IV, that El E2 has a O-site 3 that extends 3, and 3; 1 hencqe 

3. P&e FIELDS AND THEIR AXIOMATIZATION 

In this section we study the class of PpG fields with e O-sites. This is a 
subclass of regularly closed fields with respect to a finite set of localizers. 
as defined in [HP]. We obtain a characterization theorem for these fields 
(Theorem 3.11) which resembles the well known characterization of ~-a%- 
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tally closed fields in which the Hensel-Rychlik Lemma holds and whose 
values group is a Z-group [PR, Th. 3.11. 

LEMMA 3.1. Let 9 be a O-site on a field K and let V be a variety defined 
over K with function field F. Then the following are equivalent: 

(a) V has a simple K-rational point for each @-closure (K, 9) of 

W, $1; 

(b) V has 17 simple K-rational point -for one O-closure (1% 9) of (K. 9). 

(c) 9 extends to a O-site on F. 

Proof Assume (b), and let (K, 9) be a O-closure of (K, 9) [HJ, 
Prop. 8.71. By [PR, Th. 7.8; HJ, Cor. 8.101 there exists a O-site < on KF. 
Since K admits a unique O-site [HJ, Prop. 8.91, Res, < = 9. Therefore 
Res, < = 3, whence Res, [ is a O-site on F which extends 9. 

Conversely, assume (c) and let (K, 9) be an arbitrary O-closure of (K, 9). 
Since F/K is regular [L, p. 711, Proposition 2.4 yields a O-site on KF which 
extends ,!!I. As KF is the function field of V over $ [PR, Th. 7.81 implies 
that V has a simple K-rational point. 1 

COROLLARY 3.2. The following conditions on a field K with O-sites 
9,) . . . . 9, are equivalent : 

(a) Every variety V defined over K which has a simple rational point 
in each O-closure qf (K, 3,), i = 1, . . . . e, has a K-rational point; 

(b) Every non-empty variety V defined over K for which 8,) . . . . 9, 
extend to O-sites on the function field of V over K, has a K-rational point. 

DEFINITION. Let Qi, . . . . 9, be e O-sites on a field K. We call 
(4 $1, . . . . 9,) a pseudo p-adicallJ9 closed field with e O-sites (PpCe) if the 
following hold : 

(a) Kis PpC; 
(b) X(K)= (9i, .,., 9,}; and 
(c) $i, . . . . 9, are distinct. 

Notation. For a field K with e O-sites a,, . . . . 9, we denote the p-adic 
valuations and the p-adic valuation rings on K which correspond to 
9,) . . . . 9, by t’i, . . . . v, and 0,) . . . . O,, respectively. We also let 0 = 
0,n ... no,. 

Remark 3.3. If (K, 9,, . . 9,) is a PpCe field, then by [HJ, Cor. 8.101, 
v,, . . . . v, are the only p-adic valuations on K. 

PROPOSITION 3.4. (I) Let K be a field with X(K) = (,9i}iet, 111 <X0, 
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arid let 1:; be the p-adic tlaluation which corresponds to 3,, i E I. Thei? -for ea& 
i, o,(K” j is a Z-group. 

iI11 y= {3;),d are distinct O-sites 0~ K and ifjor each i E I, L’,(K’ 1 r? 
a Z-group, then the .folIowing hold: 

(b) For each i E I, 3, is the oni)> G-site ii: X(-K) u&c/i Bzhws Y! 
011 K; 

I c ) The valuations lag, i E I, are distinct: 

(d) For each iE i, 3, extends to a @-site or: aq fomai$ p-a&c 
extension qf (K7 vi). 

1~ particzdar. a PpCe field has all the properties nznticnea’ abore. 

Proql: (1) If vi(KX ) were not a Z-group, it would follow from a resul: 
rested and Roquette [PR, Remark 3.31 that K has uncountably mariy 

non-isomorphic O-closures. By [HJ, Prop. 8.71 this would imply rha: 
X(K) > N,, contrary to the assumption. 

(II)(a) This follows from [PR, Th. 3.2]. 
(b) Let 9 be another O-site on K which induces :‘i on K. Let 

($, 9;) (resp., ($ 9)) be a O-closure of (K, Sj) (resp., (K, 3)). Also denote 
the p-adic valuation which Si (.resp., 9) induces on R, (resp., R; by Fj (resp., 
C). By [HJ, Lemma 8.61, (R;, 6,) and (I?, L’) are p-adic closures of {.K. ~,j. 
According to (a), there exists a K-isomorphism G such tha: FE= R,. By the 
uniqueness of O-sites on O-closed fields [HJ, Prop. 8.9], 3; 3 Q = ,!J. Hence, 
3j = 3. 

(c) This follows from (b). 
(d) Let (F, W) be a formally p-adic extension of (K, ;;;) ard com- 

plete the Q,-place which corresponds to :i’ into a @-site <. By (2;). 
Res&‘= 3,. 

COROLLARY 3.5. There is a canonica! bijectiorz bet:reen PpCe jieids ::trd 
structures of the form (K, c’ 1, . . . . L’,), n,here ~~~~ . ..’ ~1, are the disttnrt p-a&c 
valuations oil the PpC field K and ui(K” ) is a Z-group, i= I, .~.~ e, 

LEMMA 3.6. Let (K, 3,, . . . . 3,) be a PpCe$e/d and /et ( 
p-adic dosure of(K, u,), i= 1, i.., e. Also let VC A ” Se a variei~~ definea’ ocrr 
K, and for each 1 < i < e let ai be a simple E?yational pokt 63f V. Fina+~ :;^B 
U I, . . . . LJ, be neighborhoods of a,, . . . . a, in the topobgies indeed .6!1 
0 17 1, . . . . .‘?P respectkely. Then Vn UI n . n 6;, contains a K-ratiotd poh:. 
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ProoJ By Remark 3.3 and Proposition 3.4(11)(a), K is regularly closed 
with respect to v I, . . . . u, in the sense of [HP]. Since a p-adically closed 
field admits a unique p-adic valuation [PR, Th. 6.151, no p-adic closure 
of K with respect to vi can be K-embedded (as a field) into any p-adic 
closure of K with respect to vj, i#j. Therefore [HP, Th. 1.91 gives 
aEV(K)nU,n . ..nU.. 1 

COROLLARY 3.7. Let (K, 9,, . . . . 9,) be a PpCe field, let 
f E O[IT,, . . . . T,., X] be an absolutely irreducible polJ?nomial and let 
0 # g E KCT,, . . . . T,]. For each 1 < id e let ail, . . . . a,, bje Oi satisjjs 
v;(f(ai, bi)) > 2v,((df/SX)(a,, bi)). Moreover, let Uiz K’ be a ui- 
neighborhood of ai, i= 1, . . . . e. Then there exist a,, . ..) a,, b E 0 such that 
f(a, b) = 0, g(a) # 0, a E Ui and vi(b - bi) > ui((dfldX)(ai, bi)) > 0, 
i = 1, . . . . e. 

ProoJ: For each 1 d id e let (K;, Vi) be a p-adic closure of (K, a,), with 
0; its valuation ring:By changing ai slightly we may assume that g(a,) # 0, 
i = 1, . . . . e. Thus we can find for each 16 i < e a fii-neighborhood U,! < 0; of 
ai on which g does not vanish such that K’n U; G Ui. By the Hensel- 
Rychlik Lemma [D, p. 1441 and the assumptions, there exists eie 8, 
such that f(ai, ci) = 0 and mi = u,((i?flaX)(a,, bj)) < ci(ci- bi). In particular 
(df/ilY)(aj, ci) #O, and therefore (a,, ci) is a simple Kj-rational point of 
the variety V(f). Now Lemma 3.6, applied to the neighborhoods 
U,! x (hi + pnzi+ I oj) of (ai, c,), yields a point (a, b) as desired. 1 

LEMMA 3.8. Let (K, G1, . . . . 9,) be a PpCe field. If VG A” is a vatYet? 
defined over K &ich has a simple E-rational point in each p-adic closure K 
of K, then V(K) is Zariski-dense in V. 

ProoJ Use Rabinovitz’ trick as, e.g., in [FJ, Prop. 10.11, and 
Lemma 3.1. 1 

LEMMA 3.9. Let M’~, . . . . W, be p-adic valuatiom on a field L and for each 
1 < i< e let CAKE w~(L x ). Then there exists a EL x. so that wi(a) 3 ai, 
i= 1 , . . . . e. 

ProoJ First note that if u is a p-adic valuation on L, then for all x E L x, 
v(x/(px2 - 1)) >max(u(x), O}. For each i choose aiE L” for which 
uli(ai) = CY~. Then, with a = nr= L a,/( pa: - 1) we have l%‘i(a) 2 #,i(aj) = mi, 
i = 1, . . . . e. 1 

LEMMA 3.10. Let F/K be a finitely generated extension and let ~t?~, . . . . 157, 
be p-adic valuations on F. Then there exist tl, . . . . t,, x E F such that t,, . . . . t, 
are algebraically indeperldent over K, x is algebraic over K(t,, . . . . t,), 
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F= fqt,, . ..) f,., x) and mch that wj(x), ~r~(r.~j > 0 $w aii 1 < 1 de, L <.I < i 
6’ c,!K is a!so regular then there exists an absoiute!j’ irreducible po!~mnzia! 
,f E 0 [T, X] fb! nAich .f(t, x) = 0 (whzre 0 = {x E K” 1 ii’,(X) 2 0, 
i = 1, . . . . e) ). 

Pro~$ Let ~1~) ...I u,. be a transcendence base for &KY so that F is a finris 
extension of K(u). Also. set ti = py( u.,), j= I, .,., V. where 7 is Kochen’s 
operator 

For each i, j, ittL( ti) > 0 [PR, Th. 6.141. Since E,; is algebraic over K( ii): 
j = 1, . ..) i’. the elements i,, . . . . t, also constitute a transcendence base for 
F/K. Choose a primitive element .v,#O for the ‘extension P;,‘.K(tj and Zet 
irr(s,,~(t))=X”+alX’*-‘+ ... +a, with a,,...,a,,~K(t). Lemma3.9 
yields a E K(t) x such that for each 16 id e, I <jbn; !r,((a)> 
max ( I - wi(aj), 11. Then ,y = ax0 is a primitive element for F/K(t) afld 
u’~(,Y~ >, ! for all 1 6 id e. 

Now multiply irr(x, K(T)) by a suitable element of K( 
polynomial ,i‘~ K[T, X] which is primitive over K[T]. L 
b E M” such that bf~ 0[T, X], so we may assume: that ,JE 0[T. X]. Ef &‘K 
is regular, then K(t) and F= Kjt, x) are linearly disjoint over K(t). There- 
fore f(t, X) is irreducible over k(t). By Gauss’ Lemma, J’ is absolutely 
irreducible, 

THEOREM 3.11. Let 3,. . ..) 3, be O-sites on G ,fieid K. Then (K> 3 i 1 . ..) 3, ; 
is PpCe if and only if the following conditions hold: 

(a) Let f e O[ T,, . . . . T,.? X] be an absoiiltef~~ irredxible po!~~~r~on;iai 
and Zr,r each i betbtleerl 1 and e !et a,,. . . . . a,,., b;~ 0, .sarqfi. 
~‘,(f(a~, b,)) > 2r,((2flSX)(ai. b,)). Moreotler, !e: LT, L X’ be a c,+eighbor- 
hood of ai, t= I, . ..~ 2. Therl there exist aI, ...7 a,? b E 0 such that f(a, ~5) = 0; 
a E CTj and ri(b - bi) > 0, i = 1, . . . . e; 

(b ! For each i bet)%,een 1 and 2, L’ ;( K x ) is a Z-grozq ; 

iC, ~1 1 ) . ..~ 11, are distinct. 

Pw@I The necessity of (a-c) follows from Corollary 3.7 and Propcsi- 
tion 3.4. The proof of their sufficiency breaks into four parts. 

Pm-t A. K is Cl-dense itI each p-adic closure (Em,, Ci) of (K. v:!. 
i= 1, ~..) 2. By (b) and Proposition 3.411(a): (gi, z’;) is a hensehzation of 
($6 r!,j. Thus, according to [D7 p. log], it suffices to prove that for each 
polynomial gEO,[X] and each ~EQ~ such that o:(g(b))>3 anti 
c,(g’(b)j=O, the set ci( g(b+pO,)) has no upper bound in c,(K” 3. 
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Indeed, let g(X) =C;=O C$‘E O,[X] and b E Oi be as above. Denote 
AT,,, . ..> T,, X) = C;=, T,X’. Thus f(c, X) = g(X). Let ai = c, bj = b and for 
each j#i, ldjde, let ajo= -1, ail=l, a,?= . . . =ajr=O, bj=l. Then 
uj(f(aj, b,))>2o,((@j/dX)(a,, b,))=O, j= 1, . . . . e. For each d~0: we 
obtain from (a), applied to the (~+2)-tuples (a,, b,), . . . . (ae, b,), elements 
a,, . . . . a,, b’e K such that f(a, b’)=O, ~,(a,-c,) > ai( I= 1, . ..? r and 
6’ E b + pOi. Therefore, u;(g(b’)) = ui(f(c, b’)) > v,(d). 

Part R. Condition (b) oj Corollary 3.2 holds. Let I’ be a variety 
defined over K such that each 3; extends to a O-site 5; on the function field 
F of I’ over K. Let y = (~9~) . . . . y,,) be a K-generic point of I’; with F= K(y). 
Let (Kj, Si) be a O-closure of (K, Si) [HJ, Prop. 8.71. By Proposition 2.4, 
$i; and ci extend to a O-site on KiF and hence to a O-site cj on a O-closure 
Fj of xiF. Denote the p-adic valuations on Ki, Fi which correspond to gi, 
[i by fii, Ei, respectively. Also, let t r, . . . . t,, X, and f be as in Lemma 3.10. 

We take a K-birational map 11: I’(f) -+ I’ and a non-empty Zariski 
K-open set UG A’ such that whenever f(a, b) = 0 and a E UT the point 
(a, b) belongs to the domain of definition of /i. Thus, in Fi, 

t E u, f(t, x) = 0, Ix (t, x) # 0, W&), Wi(X) > 0, j=l ) . ..) r. 

According to [HJ, Lemma 8.61, (Ki, Vi) and (F,, Ci) are p-adically closed 
and therefore, (Fj, Gi) is an elementary extension of (Ki, Vi) [PR, Th. 5.11. 
Therefore, for each 1 6 i < e there exist ci,, . . . . cjr, di in Ri such that 

Ci’ ‘3 f(Ci, l’i) = 0, $$ (Ci, di) f 0, Vi(cv), 6i(d;) > 0, j=l , . . . . Y, 

Since K is Gi-dense in Xi and since lJ(Kj) is vi-open, we can find ail, . . . . a,, 
bi E K arbitrarily Gj-close to cil, . . . . cir, di, respectively, such that 

j= 1, . . . . r. 

Since U is vi-open for each i between 1 and e, (a) yields a K-rational point 
(a, b) in V(f) with ae U. Then, A(a, b)e V(K). 

Par? C. y(K)+y(K)+y(Kj=O. By [PR, Th. 6.141, y(K)+y(K)+ 
y(K) z 0. Suppose that a E 0. For each 1 < i< e let (Ki, Vi) be a p-adic 
closure of (K, tlj) and let Oi be the corresponding valuation ring. By 
Hensel’s Lemma [ PR, p. 20-J. the polynomial pa[ (X” - X)’ - I] - Xp + X 
has a zero si in oi. The point (si, 0,O) is thus a Ki-rational point of 
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qx, ~;Z)=(x~-~)[(X~-Y)z-l]~iZp-Zj~-~~ 

+ [(F-x+ l](YP- Yj[(ZL’-Zj2- l] 

+ [(xp-q- l][(Y’- I’)‘-IliZ’-zi 

-pa[(XP-X)‘- l][(Y”- Y127- 1][(‘Z-.kq2- 11, 

Which is the numerator of y(X) + y( Y) + y(Z) -a. 5’ a :lxm-em 0s 
Schinzel [S] and Fried [F]. G is absolutely irreducible. .Mss, 
(dG/2X)(x,, 0, 0)s -1 (mod ~0~). Hence, (.-I:~, 0, Oj is a simple K:rrational 
point of the variety I/( 6). By Part B and by Corollary 3.2, we sonclude 

at V(G) has a K-rational point (.Y, ~5~ 2). Since the denominator of 
ocher’s operator does not vanish on a formally p-adic field, we ha,;e 

;‘(.u)+~(;~j+i~(z)=o. Hence, a~;‘(K)+i’(K)i:jK). 

X(K) = (3,. . ..) Se>. By [E, p. 781. QnAoOi. . . . . On@, are 
the distinct maximal ideals of 0. Conclude from [PR, Th. 6.141 and Par: C 
that 0 is the Kochen ring of K and that vi ~ “..l I’? are iSi distinct p-adic 
valuations. 

Now let 3 be a O-site on K and let c be the p-adic valuation it def%~es 
on K. Thus i! = ci for some 1 <id e. By assumption (b) and Proposi- 
tion 3.4II(b\,, 9 = 3,. 

According to Corollary 3.2, Parts B and I9 tog her with assumption tc) 
prove that the structure (K9 3,) . ..~ 3,) is P&e. 

Note that the arguments in Parts C and D of she above proof assume 
only that K is pseudo p-adically closed with respect to the p-adic valuation 
rings 0, I . . . . O,+e., every variety defined over K has a K-rational 
provided that it has a simple Ri-rational point for each p-adic 40s 
of K with respect to Qi, I< i<e. A similar argument yields the followrng 
result I 

COROLLARY 3.12. Suppose that K is pseudo p-adical(v siosed :t,ith respect 
to the p-a&c valuation rings O,, ie I. Therl y(K) + y(K) + y(K) = (JiEl G;. ip 
I is.%ite, then the rings Q,, i E I. are the oni!, p-a& wimtio~~ rings m K. 

Remark 3.13. From Part A of the proof o’f Theorem 3.11 v<e a&r: 
1s a PpCe field, then K is F,-dense in any p-adic 

4. DENSITY OF HILBERTIAW SETS 

We begin by strengthening a lemma of Ceyer L + r F-J Lemma 9.25 Ii w‘hich L 
allows one to substitute a variable in an irreducible polynomia: by another 
polynomial and to get, under certain conditions, an irreducible polynomiei. 
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LEMMA 4.1. Let K be a field of arbitrary characteristic. Let 
f E K[ T, X,, . . . . X,] be an irreducible po[lwomial such that QTaT # 0. Let 
g~K(yl, . . . . Y,,) be a non-constant rational function such that the numerator 
of g(Y) + c (in its reduced form) is absolutel~~ irreducible for each c E z. Then 
the numerator of fig(Y), X) is irreducible over K. 

Prooj Let g = g,/gz, with g,, g, relatively prime in K[ Y,, . . . . Y,]. 
Consider the K-algebraic set V in A1+n+‘n defined by the equations 
f(T,X)=O and gl(Y)-Tg2(Y)=0. Since gl(Y)-Tg,(Y) does not vanish 
identically on V( f ), the dimension theorem [L, p. 361 implies that each 
K-component of V has dimension n + m - 1. We prove that V has only one 
component. 

Let (t, x, y) and (t’, x’, y’) be points in V of dimension n + m - 1 over K. 
Then dim,(x) = dim,(x’) =n, and t (resp., t’) is algebraic over K(x) 
(resp., K(x’)). Also, dim,,,,,,(y) = dim,,,.,,,,(y’) = nz - 1 and dim,(y) = 
dim,(y’) = M. Since ,f^( T, X) is irreducible the map (t, x) -+ (t’, x’) extends 
to a K-isomorphism GO: K(t, x) -+ K(t’, x’). By assumption the numerator 
g,(Y) - cgz(Y) of g(Y) - c is irreducible over K for each c E I?. From the 
model-completeness of the theory of algebraically closed fields [FJ, 
Cor. 8.51 we deduce that gr(Y)- tg2(Y) is irreducible over s) and 
therefore also over K(t, x). Consequently, tiO extends to a K-isomorphism 
$: K(t, x, y) + K(t’, x’, y’) such that II/( Ye) = y,!, i= 1, . . . . 171. Conclude that 
V is irreducible over K. 

So, let (t, x, y) be a K-generic point of V and let W be the projection of 
V on Aflf”’ with respect to the variables (X, Y). Then (x, y) is a generic 
point of W. Moreover, dim(W) = dim( V) = n + m - 1. Theorefore W= V(h) 
with h E K[X, Y] irreducible. For d= deg, f the polynomial h(X, Y) g*(Y) 
vanishes identically on V( f (g(Y), X) g,(Y)“). By Hilbert’s Nullstellensatz 
[L, p. 331, there exists a positive integer r and a polynomial g; E K[X, Y] 
such that 

hix, Y)’ g,W’=f(gWL X) MV’g,(X V. 

As f(g(Y), X) g2(Y)d=ZfC0a,(X) g,(Y)‘g,(Y)d-i with aiEK[X] and 
a,# 0, this polynomial is relatively prime to g2(Y). Since h(X, Y) is 
irreducible it follows that there exists sa 1 such that h(X, Yj’= 
f(gWL X) .iT2w. 

We have to show that s = 1. Assume that s 3 2. Then, for each i between 
1 and m, 

O=s.hlx,~)‘-~~ix,y)=~~ig(~),x)~(y)Rz(y)~ 
I I 

+d.f(g(y), x) g~W-‘~i~). 
1 
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Observe that J’( g(y), x) =f(t, x) = 0 and g?(y) # 0, Moreover, smce 
?jj!8a#O and dim,(x)=n, we have (?cST)(g(y), x)= (<flPT)(l, x)fO, 
Hence (Sgj? Yi)(y) = 0. Conclude from the algebraic independence of 
?‘I > .“, i’n, over K that Zg/8Yi = 0. Therefore Sgi :S Y? = i;g,;!?Yj = 0 and 
hence g is a constant or a pth power (if char K= p r O,!, contrary to :!I: 
assumption. 

COROLLARY 4.2. Lef K be a field qf arbirrarJ c.haracterktic. ke! 
f~ K[T,, . ..~ T,., X,, . . . . X,,] be an irredticibie po!yaomiai such i&jr 
?$?T, # 0, i = I, . ..) r. For each i between 1 and r let g, E K( Yi, : . . . . Y,.),,,,;: he 
a not?-consta2nt rational firnction such ihi the nmlerator aJf g,(Yj) i c ix 

absoht?e/y irreducible for each c E z. The,hen the mtxerator qf [he pc~:ttott~~a:’ 
f( gr(Y, ). ...i g,(‘k’,), X) is irreducible in K[U, Xj. 

Now. let K be a Hilbertian field with e vaiuations uI, . . . . z:,. For each 
positive integer r equip the ith factor of K’x ... x K’ (e factors) with :he 
:>j-topoiogy. Geyer [G, Lemma 3.41 proves that if !I~, . . . . U, are indepes- 
dent, then the diagonal map x H (x, . . . . x) maps each ilbertian subset H 
of K’ onto a dense subset of K” x x K’. Ef however, L’, 7 . . . . L’, are ~-a&c 
valuationsi they need not be independent. So, Geyer’s Lemma does not 
apply. Nevertheless we may prove the density of the Hilbertian sets in &is 
case by using the properties of the Kochen aperator. 

LEMMA 3.3. Let L’~. . . . . c, be p-adic vaiuaiiom c;f a Niibetkn ,field K, iel 
a, , . . . . il, be eiements of K and let pi E ui(Kx ). i = 1, .~.. e. Then each fC%zt+- 
I’ia,v subset H cf K’ contains x E H such rhai c,(x - ai > fli jar ! = !, ,..I e. 

Proi$ Consider a Hilbertian set N(f, 5 .~.9 f,,, 1 gl -5.&~~+‘~;;1 - - 
,$E K[T,: . . . . T,, Y] is an irreducible polynomial, J= i. ..~) X, ’ 2yi:g 

0 + g E K[T, I ~,., r,] (we use the notation of [FJ, Section g 1.11 j. AppLy 
Lemma 3.9 to obtain an element bE K” such that L’!(b) a$,, i= 1, . ..) i-‘. 

Using again [S] or [IF], we obtain that the numerator of each of 
the rational functions c + ah- + b(;‘(Z/,, if ;‘(Z,, I c ::(Z,,g): k = 1, . . . . 7, is 
absolutely irreducible for each CE K. Hence. ‘by Corollary 4.2, t5e 
numerator OF 

hi(Z, Y) =jj(q + b(i’(Z,; j +s’(Z,~) -+ “r’(z,,)), . . . . 
a,+ b(y(Z,, j + i’(Z,.,) i- ;iaZ,.,j)v Y), 

i= 1, ~_., PIZ, is irreducible in K(Z)[ I']. We may therefore find zil E K sucti 
that the denominator of /zi(z, Y) is non-zero, its numerator is irreducibIe iit. 
K[Yl] and both the numerator and the denominstor of 
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are non-zero. Let xk = ak + b(y(zkl) + y(zk2) + y(z,,)). Then fi(x, Y) is 
irreducible, and vAx,+ - ak) = v;(b) + vi(y(zkl) + y(zk2) + y(z,,)) 2 vi(b) 
2Pi. I 

5. THE INTERSECTION THEOREM 

We now come to the main results of this paper. 

5.1. Notations. Let K be a field with ep-adic closures RI, . . . . Ee. Denote 
the unique p-adic valuation of Ki by fii [PR, Th. 6.151. L.et ui be the restric- 
tion of Ui to K. With each (or, . ..) o~+,,!)E G(K)‘+m we associate the field 

K 0 = Ku1 n . . . 
1 nR~nK((ae+ ,,..., o,+,,). 

Let fip’ be the p-adic valuation of RF defined by t”‘(-~~) = Uj(x) for x E Kj. 
Denote the restriction of tip’ to K, by upi. For i between 1 and e let 
Ocri={~~~K,~v,i(x)ZO), let OO=OUIn ... no,,, and let O,={~EKI 
Uj(x) 2 0, i = 1, . . . . e}. 

For K= U& [HJ, Prop. 12.91 states that for almost all OEG(Q)~+“~ the 
field Q, is PpC and L’,,, . . . . v,, are distinct. Since the rank of the latter 
valuations is 1 they are independent. Arbitrary p-adic valuations need not 
be of rank 1. So we replace the latter argument by a direct one 
(Lemma 5.3). Also, the proof of [HJ, Prop. 12.91 relies on the ts,-density 
of K in Ej. Again, this need not hold in general. However, since the 
quotient of tl,(Kx ) by vj(KX ) is a torsion abelian group [E, Cor. 13.111, 
each element of the former group is less than some element in the latter 
group. So, in the following proofs, whenever we speak on a fii- 
neighborhood of an element of RF we may assume that it is defined by an 
element of u( K x ). This occurs frequently in applications of various versions 
of Krasner’s lemma. As we lack an appropriate reference we reproduce here 
a combination of Krasner’s lemma with the continuity of roots. 

LEMMA 5.2. Let E be a Henselian j?eld with respect to a valuation v. 
Denote the unique extension of v to E also by v. Consider a polynomial 
f E E[X] of degree n with n distinct roots x,, . . . . x,,. Then, for each /I E v(E x j 
there exists y E v(E x ) such that the following holds : !f g E E[ X] is a polyno- 
mial of degree n with v(f - g) > 11, then the roots of g are distinct and can 
be enumerated as ylr . . . . ~1~ such that v(xi- yi) > fi arid E(si) = E( y,), 
i = 1, . . . . 17. 

ProoJ: Let /I E v(E x ) and assume without loss that p> 
mini,j{v(xi-,xj)}. Then there exists 1’ E v(E” ) such that if v(.f ~- g) > y, 
then the roots of g can be enumerated as J’r, . . . . )‘n such that v(xi - 1,;) > p, 
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i= 1 3 ...? n [PZ, Th. 4.51. Thus yi is the unique root of g with P(X- I!~) > 6 
{In particular yl, . . . . j’n are distinct.) Moreover. for each 5 E G(E) we have 
U(O.Y, - 0~1~) = r(xi- yi). Thus, J’; has at least as many conjugates over E 
as xi has. As this holds for each i, yi and .x~ have the same number of 
conjugates over E. In other words, [E(x,) : E] = degjirrjx,, E) j = 
deg(irr( p‘,, E)) = [E( ~9~) : E]. By Krasner’s lemma Ei.y,) c Ef J’~) [I&., 
p. 190]. Hence E(sj) = E( ~9~). 

LEMMA 5.3. Under the assumption and no!a.tion cf 5.1, suppose hat K is 
u countab!c? Hilbertian field. Then for ahost a/t CT E G(K)““’ the 3p-~z?‘c 
ca!imtions i~,~ , ...f c,, qf K, are independent. 

Pvo@I Without loss, we show that cgl and va2 are independent for 
almost ali B E G(K)’ +“I. 

For each c E G(K)‘+?“. K, is algebraic over K and therefore ;li(S” ) is 
cofinal in L~~~(K,” ). Also, P~(K” ) is countable, i= I, L. 91 Therefore it suffices 
to prove that for fixed positive elements ~r ~vr(K” ) and u,Ec’~(K” ) and 
for almost all c E G( K)E+ m there exists I E K, such that 

(5.1) G,~(s) > al and K,~(x - 1) B zz. 

To this end consider the polynomial Y’ - T! Y + T, and use Lemma 4.3 to 
construct, as in [FJ, Lemma 15.81, a sequence (a,, b,, c~.~, L.~,!~E 
KxKxkxl% k=l,2,3, . . . . together with a sequence E,, L,, I.,, ..~ of 
linearly disjoint extensions of K such that for each k 3 1 : 

(5.2a) (uk, b,) is r!,-close to (1, 0). i= I,. .: e; 

(5.2b) the- polynomial gk( Y) = Y’ - ak Y-I 6, is irreducible over K: 

(5.2C) gk~Y)=(Y-ck.,j(Y-ck,~); and 
(52d) L, = K(c,,,)= K(c~.~). 

For each k > I we apply Lemma 5~2 on the polynomials gk( Y) and 
Y’- Y, use (5.2a), (5.2b), (5.2c) and obtain d(k) E IS, 11 such that 

t',(C k.b,k;j > rl, “,(Ck.+(J(k)- I)-,, and Ck.C> Ck.1 E R, 

Similarly we obtain E(k) E (0, 1) such that 

and also c~,~, ck,r E Rj, . . . . R,. In particular, L, E KY’ n ~. n K: for SC 
01 I ..~, o,gG(K). Now for almost all GE G(K)‘+“’ [FJ, Lemma 16.113 
yields k>, I such that 

g,(ck.C) = Ck.d(ki? a,(c,.,) = Ck,F,k,, 
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and 
resL, @i = 1 for i=e+ 1, . . ..e+nl. 

In particular, cli 0 E L, c K,. Since resLk 0: = 1 for i= 1, 2, we have 
u,~(c~,~) = ~l(aI(ck,o)) = V,(C,,,~,,) > aI and lj,2(ck,,, - 1) = &(~Ac~,~) - 1) = 
i&(c,,,,,, - 1) > CI~. Hence x = c~,~ satisfies (5.1). 1 

LEMMA 5.4. Under the assumption and notation of 5.1, suppose that 
K is a Hilbertiun field. Let xi E tli(K” ), i = 1, .,., e. Suppose that 
f E O,[X,, . . . . X,, Y] is an absolutely irreducible pollxotnial and that 
sol, . . . . a,,., b, are elements of 0, such that 

L!i(f(ao, b~jj>2~~i(~(~o, b,)), i= 1, . . ..e. (5.3) 

Then for almost all (r E G(K)e+nl there exist a1 ~ . ..) a,, b E 0, such that 
f(a, b)=O, u,(a-aa,)>ai, and Ugi(b-boj>O. 

Proo$ Let IZ = deg,(f ). Since K is Hilbertian we may apply 
Lemma 4.3 inductively to construct a,, al, a3, . . . E K’ and b,, b,, b,, . . . E E 
such that for each j 3 1, 

(5.4a) vi(aj- ao) > max{ai, I!~>. with lji~ D;(K” ) sufficiently large, 
i= 1, . . . . e; 

(5.4b) f(a,i, Y) is irreducible over K of degree II and f(a,, b.i) = 0; and 

(5.4~) the sequence K(b,), K(b,), K(b,), . . . is linearly disjoint over K. 

By (5.3), the Hensel-Rychlik lemma gives a root boj off(a,, Y) in Ki 
such that L’Jboi - b,) > ~~((ijfl?Y)(a,, b,)). By Lemma 5.2 and (5.4a), 
f(aj, Y) has a root bjieKi such that Ui(b,,- b,,j> tl,((c?f/dY)(a,, 6,)). In 
particular cj(bji- 6,) > u,((?f/laY)(a,, b,)). Since both bj and bjj are roots of 
the irreducible polynomial f(aj, Y) there exists a K-isomorphism of K(qi) 
onto K(b,J that maps b, onto bjj. Extend this isomorphism to an 
automorphism oji of K over K. 

By (5.4~) and by [FJ, Lemma 16.111, for almost all ~EG(K)~+~ there 
exists j such that Res,,,,,al-’ = Res.(,,,aj, for i = 1, . . . . e and Res,,,,, oi = 1 
for i=e+ 1, . . . . e +/?I (use that the map GH G-I of G(K) onto itself is 
measure preserving.) But then bj = b.i ~l”i=b~~EK~fori=l,...,eandb~=bj 
for i = e + 1, . . . . e + m. Conclude that big 0,. 1 

THEOREM 5.5. Under the assumption and notation of 5.1, suppose that K 
is a countable Hilbertian field. Then for almost aN c E G(K)’ fn’ the following 
statements hold: 

(a) K, is PpC; 



(b) K, admits exactly e p-adic rahatiorzs ~r~i?i:h me imked I;.!,, 
pi ~,, pt.. L. 1-p) 

(c) For each p-adic ualuatim L’ on KoT ~l(;“r,X ) is a Z-group; aud 

(d) G(K) 2 D,.,,,. 

PWC$ The proof of the isomorphism C(F&) 2 II,),, for almost all CT can 
be carried out exactly as the proof of [HJ, Lemma 12.5], All we have tc 
do is to replace Q by K, to replace QP,a,e by R, t . . . . ,CC and to use 
IX~illX 4.3. 

Nex: suppose that E is a p-adic closure of Kg. Then G(E)z G($Z,) 
[HJ: Cor. 6.61. Hence G(E) is conjugate in G(B&) to some *GI,K~~ I 
[HI. rop. 12:10] and therefore E is I&-isomorphic to KY,. Thus5 M, has, 
up to a K,-isomorphism, only e p-adic closures. Conclude from 
[PEP,, Remark 3.31 that c,,(K,“) is a Z-group. 

By Lemma 5.3, the set of all CI E C(K)eti’T for wliich the valuations 
1’ cl I .,.I c,, of K, are independent has measure 1. By Theorem 3.1 I, ah that 
is left to prove is that the following condition ho!& for almost all 
ME (-j&y=+“‘. , . 

(5.5) LetfEO,[X,, . ..) X,. Y] be an absolutely irreduci 
and fm each i between I and r Iet a,,, ...l a,,, 6, E ~2,~ satisfy 
cal(.f(a9, b,) 1> 2~,~((iYf/t? Y)(a,, b,)). Also, let ccfE c~(K: ;, i = 1, ~..~ e. Then, 
there exist a,, . . . . a,, b E 0, such that ,:‘r a, b) = 0, and for each ;q 
t~,~(a-a~j > xi and L~,~(D-b,) > 0. 

To show this we first choose a countable dense subset ;I of G(Kj’+“*. Next. 
suppose we are given the following data: automorphisms or I . ..? T,+~~ E T, 3 
finite Galois extension L of K contained in K,, an absolutely irreducible 
polynomial fE (Or n L)[Tp,, I.i, T,, Xl* eIements aol? . . . . qr3 b, of 0, f7 L 
such that for each i between 1 and e, t~,;(Jr(a~, 5,) j > Z?C,~((?$‘C?.X)(~,, 15,)) 
and elements ri E zTi(L. ’ ), i = 1, . . . . e, Let S(r, L, jt; aO, b,, CF.) be the set of ail 
~ E G(t)i’+“z for which there exist a,, I.i) a,, h E O,, 
and such that for each i we have ~.,,,~(a - ao) > 2, an 
Lemma 5.4, applied to the p-adic closures RtLy . . . . R,< of E, the se”: 
S(T, L,j’, a,, 5,, ff) is of measure I in G(L)‘+“‘~ Siace K is countable, ithe set 
R = IJ r(G(L)“+“’ - Sjt, L,f, a,, b,, a)), where the union ranges o7er a!? 
possible data, is a zero set in G(K)e+‘12. 

Now suppose that CE G(K)‘+* - R and let .f. a,. b0 and hz be as in 
(5.5). Then there is a finite Galois extension i of f=, L. E KC, which 
contains a,, 1 . . . . a,,, b, and the coefficients off and such that xi E F;(E x ), 
I’= 1, ~.~, e. As TnaG(L)‘+“‘#@ there exists ii~G(t)‘+“* such that 
(h Lf; aO: b,,a) is a set of data as above. Hence ~$~k(rS(L.j”“-- 

so X-‘ES(d,L,ji c% 6,, a;, which is exactl:; Ihe 
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