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INTRODUCTION

Let X,, ..., K, be p-adic closures of a field K. In this paper we investigate
the behavior of the field K,=K'n --- nK%*nK(6,4 1, s 0,4 ,,), Where
Gy, 0.4, are automorphisms in the absolute Galois group G(K) of K
which are chosen at random and where K(o, , ..., 0., ) is the fixed field
of 6, 1; . 0.4 in the algebraic closure K of K. More precisely, the com-
pact group G(K)“*" is equipped with a unique normalized Haar measure
(with respect to the Krull topology on G(K)). We prove:

INTERSECTION THEOREM. Ler K be a countable Hilbertian field. Then the
Jollowing statements hold for almost all (¢, ..., 6, ,,)€ G(K)**™:

(a) The field K, is pseudo p-adically closed (abbreviation: PpC), that
is, each absolutely irreducible variety defined over K, has a K -rational point,
provided it has a simple rational point in each p-adic closure of K_;

(b) G(K,)=D,,, where D,, is the free pioduct G(@ | R
G(Q,) * F, of e copies of G(Q,) and a free profinite group F,, of rank m,
in the category of profinite groups,

(c) The field K, admits exactly e non-equivalent p-adic valuations,
induced by the p-adic closures K7\, ..., K% of K;
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d) The value group of each p-adic valuation on K, is a Z-group; and

{
(2) Distinct p-adic valuations on K, are independent.

These resuits extend Theorems 16.13 and 161§ of [(FJ], which
correspond to the case where ¢ =0. Also, the special case X=0Q is provad
in [HIJ, Prop. 12.9]. The observation that the p-adic cicsures of Q are
exactly its Henselizations plays there an important role. Gver arbitrary
fields, however, this might not hold. Moreover, two p-adic closures of X
may induce the same p-adic valuation on K without being K-isomorphic. In
order to obtain information about the K-isomorphism classes of p-adic
closures of X we use here extensively the theory of sites, developed in [HI].
In particular, we have to study the family of PpC fields having exactiy ¢
@-sites.

The basic notions and results regarding sites are reviewed briefly in Sec-
tion 1. In Section 2 we prove a “strong amalgamation property” for &-site
{Proposition 2.4). It is then used to give an alternative condition on £ ic
be a PpC field with e ®-sites (Theorem 3.11). We apply this condition
the measure theoretic arguments that iead to the proof of the intersection
theorem.

In a forthcoming paper, the first author reformulates this condition as a
first order sentence on fields with e valuations. Then he applies the inter-
section theorem to study the elementary theory of free PpC fislds with ¢
valuations.

The second author applies the intersection theorem in another forth-
coming paper for a realization of p-adicaily projective groups of countabie
rank as absolute Galois groups of PpC ficlds which are algebraic over Q.

1. PRELIMINARIES

We first make the following conventions:

The letter p stands for a fixed prime and the letter e for a fixed naturai
number. By a variety we always mean an affine absolutely irreducibie
variety. We do not distinguish between equivalent valuations. All fields
{with the exception of residue fields of valuations or unless explicitly stated
otherwise) are assumed to have characteristic O.

We say that a valuation v on a field K is p-adic if the corresponding
residue field is the field with p clements F, and o p} is the smallest positive
element of the value group (K™ ). By [HJ, Lemma 6.7] there is a canoni-
cal bijection v« 7, between p-adic valuations on a field K and places
n:K—Q,u {oc}. Moreover, a p-adic field (X, v,) extends another p-adic
valued field (K, v,) if and only if (K|, n,)) extends (X,, n,,). We refer w0
such places as Q,-places on K.
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Denote @ =limQ,/(Q,)". The canonical map @, — & is injective [HJ,
Lemma 6.8(a)], so we may identify Q@ with its image under this map.
A @-site on a field K is a pair § = (n, ¢), where 7 is a Q,-place on K and
¢@: K* > @ is a homomorphism, such that ¢(x)=n(x) whenever xeK”™
and n(x)#0, oo. For each Q,-place n there exists a (usually non-unique)
homomorphism ¢ as above such that (=x, ¢) is a @-site [HJ, Cor. 8.10].

Let X' be an extension of K and let §'=(n’, ¢') be a @-site on K'. We
say that §' extends 9 (and write Res; $' = 3), if n’ extends 7 and ¢’ extends
. We say that (K, 3) is ©-closed if § does not extend to any proper
algebraic extension of K. If in addition K/K, is an algebraic extension, then
we say that (K, 3) is a @-closure of (K,, Resg, ). By [HJ, Lemma 8.6],
(K, §8) is ®-closed if and only if (X, v) is p-adically closed, where v is the
p-adic valuation which corresponds to 7.

The sets @ * and & are naturally embedded in &=( @ x @)/
{(a ', a Iae@ }. Now, a @-site on a field K is a pair (=, go) where

n: K-> Q,u {m} is a place and ¢: K* — @ is a homomorphism, such that
(p(r)—n \) whenever xe K* and =(x)+#0, co. In particular, a &-site is
also a O-site.

For a Galois extension L/K we denote the set of all &-sites $ on L such
that Resg § is a O-site by X(L/K). Thus X(K)= X(K/K) is the set of all
O-sites on K. The Galois group ¢4(L/K) acts on X(L/K) as follows: for
each 0 e 9(L/K) and 9= (r, ¢)e X(L/K), ° =950 = (n-0, ¢o0). Also, if
Ly/K is another Galois extension, where Lo< L, and if € X(L/K), then
Res,, 8€ X(Ly/K). Obviously, for all o € 4(L/K), Res, (3-a)=(Res, 3)°
(Res,, o).

We use the following facts about @-sites [HJ, Prop. 9.3]: If 3, is a @-site
on a field K and if L/K is a Galois extension, then 3, extends to a @-site
3 on L. Also, if § is another @-site on L that extends 8,, then there exists
a unique g€ ¥%(L/K) such that 3= % -¢. Finally, for a Galois extension
L/K and a @-site 3 e X(L/K) there exists a unique maximal field L, called
the decomposition field of 3, such that K< L, < L and such that Res, 3 is
a @-site [HJ, Lemma 9.5(b)].

2. THE STRONG AMALGAMATION PROPERTY OF @-SITES

In this section we prove that two @-sites on linearly disjoint extensions
K., K, of a field K which coincide on K extend to a @-site on the com-
positum K, K,. This is a p-adic analog of [D, p. 75]. In this paper we use
only a special case of this result, in which the extension K, /K is algebraic
and K,/K is regular. Nevertheless, we prove the result in its most general
form.



e
Uik
L

FIELDS OF FINITE CORANK

Notration. We denote the first order language of fields augmented by
one unary relation symbol ¢ (denoting a p-adic valuation ring} and new
constant symbols for the elements of a set 4 by Z(4).

LemMa 2.1 Let E, and E, be linearly disjoint extension of a field X
and let O, be a p-adic valuation ring on E, i=1,2, such thor
Oy=0 nK=0,nK Furthermore, assume that (K, Oy) is existenrialiy
closed in (E,, O). Then there exists a p-adic valuation ring O on E,E, such
that ONE,=0,,i=1,2.

Proof.  There exists a set FpF of & -sentences whose models are exactly
the formally p-adic fields [PR, p. 83]. Denote the diagram of (£, 0, in
FLUE) by Diag(E,, 0,), i=1,2, and define an F(E, U E,)-theory I as
follows:

=FpFu Diag(E,, O,)u Diag(E,, 0,)

a;,..a,cE; and ) (241
NS

5 £0 and L
v JA, b,# by, .. b,e E,linearly independent over K}~

Let Iy be a finite subset of I We show that /', has a model. Indeed, Izt
4y, - 4, (1esp., by, .., b,) be all the elements of £ (zresp., £,) which appear
in sentences of [y and set a,=0. Also, let ¢ (a, .., a,), .., ¢ {a,, ... a,} be
the Z(E, U E,)-sentences of Diag(E,, 0,) which appear in I',. Further-
more, let 37, a,, ,b;#0, j=1,.., 1 be a list of all the sentences in I
which belong to the last set in (2.1). Here. 0<k(, j)<s and for each
I <7</ there is at least one 1 < i< for which k(i jj #0.
Since the existential sentence

[ 3
(3X0)-+BX) ] A 0uXin /\ X204
L P

holds in {E,, O,), there exist 4}, .., a,€ K such that

5

q
(K, Op) E /\ oi{a’) A ,/\ a; #0
k=1 ;

For each 1< </, the bs for which k(i, /) #0 are hnearlv independent

over K. Hence, with a;=0, Y| | ay, ,,5,#0, j= 1. ..,/ Therefore the
structure (£,, O,) is a model of Iy, with 4,, .., ¢, and bl, .., b, interpreted
as 4y, .., a, and b,, .., b, respectively, and the relation symbol ¢ inter-

preted as the p-adic valuation ring O, of E,.

The compactness theorem now yields a model (#, @) of 1. Thus, (F, &)
is a formally p-adic field which contains copies of (E,, O} and of (£,, 35}
The definition of [ guarantees that these copies are linearly disjoint over
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K. Therefore, the restriction of O to their compositum gives a p-adic valua-
tion ring as asserted. ||

COROLLARY 2.2. Let (E,,my) and (E,, ®,) be formally p-adic linearly
disjoint extensions of a p-adically closed field (K, ny) and suppose that
Resy ny =Resg ny =m,. Then there exists a Q,-place = on E, E, such that
Respn=m, i=12

Proof. 1t follows from the model-completeness of the theory of p-adi-
cally closed fields [PR, Th. 5.1] that (K, =) is existentially closed in both
(E,, ;) and (E,, w,). The assertion now follows from Lemma 2.1. ||

Remark. An alternative proof for Corollary 2.2 in the case where E,
and E, are p-adically closed is given by Pop [P, Lemma 5.6].

The following general lemma can be verified using the tower property of
linearly disjoint extensions [L, p. 50; p. 58, Cor. 6]:

LemMmA 2.3. Let E|, E, be linearly disjoint extensions of a field K and let
K', E\, E; be algebraic extensions of K, E,, E,, respectively, such that E|/K
is a regular extension. Then

(a) The fields E\K' and E,K' are linearly disjoint over K';
(b) The fields E| and E; are linearly disjoint over K,
(c) The fields E\E, and E| E; are linearly disjoint over E | E,.

ProOPOSITION 2.4. Let E| and E, be linearly disjoint extensions of a field
K and let 8,€ X(F,), i=1,2. Assume that Resy 3, =Resy $,. Then there
exists $e€ X(E| E,) such that Res; 3=3,, i=1, 2.

Proof. Case 1. E,, E,/K algebraic. In this case we even prove that 6
is unique.

Indeed, let { be a @-site of K, let (K, {) be a @-closure of (K, {) and let
7 be an extension of { to a @-site of K. Then, for each algebraic extension
E of K the map o {, = (Res,z {) - o canonically maps the set of K-embed-
dings of E into K bijectively onto the set of all @-sites of F that extend (.

Indeed, suppose that ¢ and ¢’ are K-embeddings of E into K such that
{,={, . Extend them to elements ¢ and &', respectively, of G(K). Then

Res({6) = (Res,z{) o= (Res, {)o0'=Res({>6").
Hence, there exists ¢ € G(E) such that {<6-e={_-¢". Hence, 6oe=¢" and
therefore o =¢'.
If x is a O-site on E that extends { and (E, k) is a ©-closure of (E, k)
then there exists a K-isomorphism &:E — K such that k={-¢ [HJ,
Prop. 8.7]. Then, with ¢ = Res; &, we obtain that k=¢,.
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Having proved our statement about E, the existence and unigueness
of 9 extending 9, and 3, follow now from the following fact: Each pair of
K-embeddings o, 0, of E,, E,, respectively, into K uniguely extends to a
K-embedding ¢: E|E, > K.

Case 11. E,/K algebraic and E./K regular. Extend §, to a &-site
S.eX(E/E), i=12 and let J=Resz J,. Bv assumption,
Res, 3, =Res, J. Hence, there exists o e G{K) such that 3,=3:0. Since
E./K is regular, o extends to some te€ G(E,). Then

P

Resgi{d,o1) = ResEl(@: o)=Resg 3, =3, Res ;.

=

%
(V&)

yeTi=Resy,

2

. o

r; ]

r2
R

Denote §= ResElE(&or) Thus Res; 3=28,. i=1,2

We still have to show that § is a @-site on E, E,. Indeed., by (2.2), 8
is a @-site in X(E,/E,) whose decomposition field contains £,. Heme i
contains £, F,.

Case L. K, E\, E, p-adically closed. Let n; be the @ ,-place induced
on E; by 8, i=1,2. Corollary 2.2 yields a Q,-piace = on E £, which
extends n; and n,. We complete = into a @-site 3= (n, ¢ e X{ £, E,} [HI,
Cor. 8.107 1o obtain from [HJ, Prop 8.9(a)] that Res; 8=§,. i=1, 2

Case 1V. E,;/K regular. Let (E,, 3,) be a @-closure of (£,. §,). Then,
with K=K n E, and §=Resg J,, the pair (K, 3} is a &-closure of (K, Resz 3,)
[PR. Th.3.4]. By CaseIl, 3, and J have a common extension to a @-site
on E,X. hence to a @-site 3, on a @-closure £, of E£,. By Lemma 2.3{2},
E,K and E,K are linearly disjoint over K. As E /K is regular, Lem-
ma 2.3{b) implies that E, and E, are linearly dlsjouit over K. Froin
Case III we obtain a O@-site on E, E, which extends &, and 3,. Iis restric-
tion & to £, £, is as desired.

Case V. The general case. Let K'=(E, NEy(E,n K} Casel gives a
@-site §' of K’ which extends both Resg, .z &, and Resy, .z d,. Case IV
allows us to extend §, and 9’ to a common &-site 3| of E, K’ Conclude.
again from Case IV, that £, E, has a @-site & that extends 4, and ), hence
also 3,. §

3. PpCe FiELDS AND THEIR AXIOMATIZATION

In this section we study the class of PpC fields with ¢ @-sites. This is a
subclass of regularly closed fields with respect to a finite set of localizers.
as defined in [HP]. We obtain a characterization theorem for these fields
{Theorem 3.11) which resembles the well known characterization of p-adi-
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cally closed fields in which the Hensel-Rychlik Lemma holds and whose
values group is a Z-group [PR, Th. 3.1].

LemMma 3.1.  Let 9 be a O-site on a field K and let V be a variety defined
over K with function field F. Then the following are equivalent:

(a) V has a simple K-rational point for each O-closure (K, 8) of
(K, 9);

(b) V has a simple K-rational point for one @-closure (K, §) of (K, §).

(c) & extends to a @-site on F.

Proof. Assume (b), and let (K, ) be a O-closure of (K,$) [HIJ,
Prop. 8.7]. By [PR, Th. 7.8; HJ, Cor. 8.10] there exists a @-site { on KF.
Since K admits a unique @-site [HJ, Prop. 8.9], Resg (=43 Therefore
Res, { =8, whence Res,{ is a @-site on F which extends 3.

Conversely, assume (c) and let (K, J) be an arbitrary ©-closure of (K, 3).
Since F/K is regular [L, p. 717, Proposition 2.4 yields a @-site on KF which
extends 9. As KF is the function field of ¥ over K, [PR, Th. 7.8] implies
that ¥ has a simple K-rational point. [

CorOLLARY 3.2. The following conditions on a field K with ©O-sites
3¢, ... 3, are equivalent:

(a) Every variety V defined over K which has a simple rational point
in each O-closure of (K, 3,), i=1, .., e, has a K-rational point;

(b) Every non-empty variety V defined over K for which 3, ..., 3,
extend to @-sites on the function field of V over K, has a K-rational point.

DerFiNTION.  Let 94,..,3, be e O-sites on a field K We call
(K, 3, .., 9.) a pseudo p-adically closed field with e O-sites (PpCe) if the
following hold:

(a) Kis PpC;
(b) X(K)={%,..3};and
(c) 4, .., 3, are distinct.

Notation. For a field K with e &-sites 9, ..., 3, we denote the p-adic

valuations and the p-adic valuation rings on K which correspond to

350 d by vy,.,v, and Oy, .., O,, respectively. We also let O=
O,n---n0O,.

Remark 33. If (K, $,,..3,.) is a PpCe field, then by [HJ, Cor. 8.10],
vy, .., U, ar¢ the only p-adic valuations on K.

PrOPOSITION 34. (1) Let K be a field with X(K)={3;};cs» I} <R,
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and let v; be the p-adic valuation which corresponds to 3, i€ L. Then for euch
L, v AK™)is a Z-group.

(Iy I {8,},c, are distinct ©-sites on K and if for each iel, v (K"} s
a 7-group, then the following hold:

{a) The p-adic closures of K with respect to v,, i€l, are exactiy
its henselizations. Hence, any two p-adic closures of (K, )}, i€l ure
K-isomorphic,

(b} For each iel §, is the only ®-site in X{K) whicli induces »,
on X,

K
ic) The valuations v;, i€ I, are distinct:

{d) For each iel, 3, extends to a G-site on any formally p-adic
extension of (K, v,).

In particular, a PpCe field has all the properties menticned above.

¥

Proof. (1) U v, (K™) were not a Z-group, it would follow from a resul:
of Prestel and Roquette [ PR, Remark 3.37 that X has uncountably many
non-isomorphic ©@-closures. By [HJ, Prop.8.7] this would imply that
X(K)>¥,. contrary to the assumption.

{(I1¥{a) This follows from [PR, Th.3.27.

{b) Let § be another @-sitc on K which induces r, on X Let
(K., 3,) {resp., (K, §)) be a @-closure of (K, 3,} (resp., {K, 3}). Also denote
the p-adic valuation which 3, (resp., 3} induces on X, (resp., K} by 7, {resp.,
#). By [H], Lemma 861, (K,, §,) and (K, ) are p-adic closures of (K. v}
According to {a), there exists a K-isomorphism ¢ such that CK X, By the
uniqueness of &-sites on @-closed fields [HJ, Prop. 897, 3,00 =4 Hence,
3,=4

{c) This foilows from (b).

(d) Let (F,w) be a formally p-adic extension of (K, v,j and com-
plete the Q,-place which corresponds to w into a &-site {. By (bl
Res (=3, §

COROLLARY 3.5. There is a canonical bijection between PpCe fieids and
structures of the form (K, vy, .., v,), where vy, .., v, are the distinct p-adic
valuations on the PpC field K and v,(K™ ) is ¢ Z-group, i=1, ... e

LemMa 3.6. Let (K, 8, ..., 8,) be a PpCe field and let (K,, t,) be a fixed
p-adic closure of (K, v,), i=1, ..., e. Also let VS A" be a varieiy defined over
K, and for each 1 <i<e ler a, be a simple K-rational point of V. Finallv le:

vy oo U, be neighborhoods of a,,..,a, in the topologies induced 5v
Dys o U, respectively. Then VU, --- n U, contains a K-rational poin:.
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Proof. By Remark 3.3 and Proposition 3.4(I1)(a), K is regularly closed
with respect to vy, .., v, in the sense of [HP]. Since a p-adically closed
field admits a unique p-adic valuation [PR, Th. 6.15], no p-adic closure
of K with respect to v, can be K-embedded (as a field) into any p-adic
closure of K with respect to v;, i#j Therefore [HP, Th.19] gives
acV(KynU,n---nU,. 1

COROLLARY 3.7. Let (K &,..83,) be a PpCe [field, let
feO[T,,..T.,X] be an absolutely irreducible polynomial and let
0#£geK[T,,..,T,]. For each 1<i<e let a,,.,a,, b,e0; satisfy
v,(f(a;, b;))>2v,((0f/0X)a,, b;)). Moreover, let U, =K be a v
neighborhood of a;, i=1, .., e. Then there exist a,, .., a,, be O such that
fla,b) =0, g(a) #0, ae U; and v,(b — b;) > v,((0f/cX)a;, b;)) = O,

i=1, .., e

Proof. For each 1 <i<e let (K,, ;) be a p-adic closure of (X, v,), with
O, its valuation ring.- By changing a; slightly we may assume that g(a,) #0,
i=1, .., e. Thus we can find for each 1 <i<e a 5-neighborhood U; < O of
a, on which g does not vanish such that K" n U; < U;. By the Hensel-
Rychlik Lemma [D, p.144] and the assumptions, there exists c,e O,
such that f(a;, ¢;)=0 and m,=v,;((8f/0X)a,;, b,)) <5;(c;— b;). In particular
(0f/eX)(a,, c;) #0, and therefore (a;, c;) is a simple K,-rational point of
the variety V(f). Now Lemma 3.6, applied to the neighborhoods
Ul x(b;+ p™*10,) of (a;, ¢;), yields a point (a, b) as desired. |

Lemma 3.8. Let (K, 9,,..9,) be a PpCe field If V< A" is a variety
defined over K which has a simple K-rational point in each p-adic closure K
of K, then V(K) is Zariski-dense in V.

Proof. Use Rabinovitz’ trick as, eg., in [FJ, Prop.10.1], and
Lemma 3.1. ]

LemMA 39. Let wy, .., w, be p-adic valuations on a field L and for each
1<i<<e let a;ew,(L*). Then there exists acL™, so that wila)=u;,
i=1,.,e

Proof. First note that if v is a p-adic valuation on L, then for all xe L™,
v(x/(px*—1)) >max{v(x),0}. For each i choose a;eL* for which
w;(a;)=a,. Then, with a=T]°_, a;/(pa’?—1) we have w,(a)>w,(a;)=2,,
i=1.,e |}

LemMma 3.10. Let F/K be a finitely generated extension and let w, ..., w,
be p-adic valuations on F. Then there exist t,, ..., t,, x € F such that 1, ..., I,
are algebraically independent over K, x is algebraic over K(t,, ..,t,),
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F=K(ty, . t,, x} and such that w,(x), w{1,)>0 for all 1<i<e, 1<j<r
If F/K is also regular then there exists an absolutely irreducible polynomial
feO[T, X1 for which f(t,x)=0 (where O={xeK"|w{x}20,
i=1,.,e})

Proof. Let u,, ... u, be a transcendence base for /X, so that Fis a finite
extension of K(u). Also. set f;=py(u,), j=1,..,r where y is Kochen's
operator

1 X=X

HX)=— o
plXP-Xy—1
For each 7, j, w,(r;)>0 [PR, Th.6.14]. Since u; is algebraic over K{1},
j=1,.., 7 the elements ¢, .., ¢, also constitute a transcendence base for
F/K. Choose a primitive element x,# 0 for the extension F/K(t) and let
irr{xy, K(t))=X"+a, X" '+ -~ +a, with qa,.,a,eK(t). Lemma39
yields aeK(t)* such that for each I<i<e, 1<j<n wic}>
max{1—wy{a), 1}. Then x=ax, is a primitive element for F/K(t) and
wixy=!foral l<i<e.

Now multiply irr(x, K(T)) by a suitable element of K{T) to obtain a
polvnomial fe K[T, X] which is primitive over K[T]. Lemma 3.9 yields
be K* such that 6fe O[T, X], so we may assume that fe O[T. X1 ff F/X
is regular, then K(t) and F= K(t, x) are linearly disjoint over K{t). There-
fore fit, X) is irreducible over K{(t). By Gauss' Lemma, j is absolutely
irreducible. §

TeeoreM 3.11. Let 3,. .., 8, be ©@-sites on a field K. Then (K, &, .., §.;
is PpCe if and only if the following conditions hold.

(a) Let feO[Ty,..,T,, X] be an absolutely irreducible polynomial
and for each i between 1 and e let a,..,a,, b0, satgy

57
v(fla;, ,))> 20, ((6f/oX )N a;. by)). Moreover, le: U, K" be a v-neighbor-
hood of a;, i=1, .., e. Then there exist a,, .., a,, be O such that f(a, ) =0,

acl,and v,(b—5b;)>0,i=1, .., ¢€;
(bY  For each i between | and e, v,{K™ ) is a Z-group,

(€} oy, .0, are distinci.

Preof. The necessity of {(a—c) follows from Corollary 3.7 and Proposi-
tion 3.4. The proof of their sufficiency breaks into four parts.

art A. K is T,-dense in each p-adic closure (K, ¢) of (K »)
i=1,..,e. By (b) and Proposition 3.41I(a), (X,, ;) is a henselization: of
(K. v,). Thus, according to [D, p. 1081, it suffices to prove that for each
polynomial geO,[X] and each beO, such that v(g()}>3 and
v {g'(b))=0, the set v,(g(h+ pO;)) has no upper bound in v, {K™}.
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Indeed, let g(X)=3_,c,X'€0;[X] and be O, be as above. Denote
f(Tys o T, X)=>7_, T,X". Thus f(c, X) = g(X). Let a,=¢, b,=b and for
each j#i, 1<j<e, let ap=—1, a;=1, ap=--- =aj,=0, bj=1. Then
v;(f(a,, b))>2v,((0f/0X)(a;, b,))=0, j=1,..,e. For each deO; we
obtam from (a), applied to the (r+ 2)-tuples (a,, b,), .., (a,, b,), elements
a,,..d,, b eK such that f(a,d')=0, v,—(a,—c,)>v,(d), I=1,..,r and
b' e b+ pO,;. Therefore, v,(g(b'))=rv,(f(c, b)) >v,(d).

Part B. Condition (b) of Corollary 3.2 holds. Let V be a variety
defined over K such that each 3, extends to a @-site {; on the function field
Fof Vover K Lety=(y,, ... y,) be a K-generic point of V', with F= K(y).
Let (K;, 3,) be a @-closure of (K, 3;) [HJ, Prop. 8.7]. By Proposition 2.4,
3, and ¢, extend to a @-site on K, F and hence to a @-site {; on a ©-closure
F, of K;F. Denote the p-adic valuations on K;, F, which correspond to J,,
; by ., w,, respectively. Also, let 7, ..., f,, x, and f be as in Lemma 3.10.

We take a K-birational map A:V{f)— ¥V and a non-empty Zariski
K-open set U< A’ such that whenever f(a, b})=0 and ae U, the point
(a, b) belongs to the domain of definition of A. Thus, in F,

0 Y

te U, f(t, x)= 6X

(t, x)#0, w,(2), ,(x)>0, j=1,.,r

According to [HJ, Lemma 8.6], (K;, 5;) and (F;, w,) are p-adically closed
and therefore, (F;, w;) is an elementary extension of (K;, #,) [PR, Th. 5.1].
Therefore, for each 1 <i<e there exist ¢;, ..., ¢;, d; in K, such that

i)
c,el, fl(e;,d;)=0, %{ ¢;, d;)#0, v{cy), v.,(d;)>0, j=1 ..,r,

Since K is #-dense in K; and since U(K,) is #,-open, we can find a
b;e K arbitrarily v-close to ¢;q, ..., ¢;, d;, respectively, such that

its = Airs

i)
a,eU, v,(f(a; b,))>2v, (gi‘, (a;, bi))a Ui(a,_'/)a v,(6,)>0, Jj=1..,r

Since U is v,-open for each i between 1 and e, (a) yields a K-rational point
(a, b) in V(f) with ae U. Then, A(a, b)e V(K).

Part C. p(K)+y(K)+7y(K)=0. By [PR, Th.6.14], (K)+p(K)+
7(K) < O. Suppose that ae O. For each 1 <i<e let (X, #;) be a p-adic
closure of (K,v;) and let O, be the corresponding valuation ring. By
Hensel's Lemma [PR, p. 207, the polynomial pa[ (X7 — X)*—1]—X?+ X
has a zero x; in O,. The point (x,, 0, 0) is thus a K-rational point of
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GUX, Y. Z)=(X"— X)X~ Y~ 1I[(ZF — Z) — 1]
X7 = XY =1 (Y= V(Z"~ Z) 1]

o

+LX? Xy - 1Y =Y —1]{Z7 - Z)
—pal(X? =X —11(Yr = ¥Y¥—1][(Z" = Z) - 1],

which is the numerator of y(X)+(Y)+7(Z)—a By a theorem of
Schinzel [S] and Fried [F], G is absolutely irreducible. Alsg,
(8G/0X)(x,,0,0)= —1 (mod p0O,). Hence, (x,,0,0) is a simple K-rational
point of the variety V(G). By Part B and by Corollary 3.2, we conclude
that V{G) has a K-rational point (x, y, z). Since the denominatcr ©
Kochen's operator does not vanish on a formally p-adic field, we hav
wWx)+7v(3)+7(z)=¢a Hence, aey(K)+ 1K)+ 1{K).

Par: D. X(K)={3,...,3.}. By [E, p.78]. O0np0;...00np0, are
the distinct maximal ideals of O. Conclude from [PR, Th. 6.14] and Part C
that O is the Kochen ring of X and that v, ... v, are its distinct p-adic
valuations.

Now let 3 be a &-site on K and let ¢ be the p-adic valuation it defines
on K. Thus v=v, for some 1<i<e By assumption {b) and Proposi-
tion 3.41I{(b}, 3=23,.

EA

[

According to Cerollary 3.2, Parts B and D together with assumption {c}
prove that the structure (KX, 3, ..., 3,) 1s PpCe.

Note that the arguments in Parts C and D of the above proof assume
only that K is pseudo p-adically closed with respect to the p-adic valuation
rings O,, ... O,—ie., every variety defined over K has a K-rational point,
provided that it has a simple K -rational point for eack p-adic closure X
of K with respect to O;, 1 <i<e. A similar argument yields the following
result;

COROLLARY 3.12. Suppose that K is pseudo p-adically closed with respeci
to the p-adic valuation rings O,, i€ I. Then y(Kj+ 7 K)+ 1 K)= Ve, Ci &
I is finite, then the rings O,, i€ I, are the only p-adic valuation rings on XK.

Remark 3.13. From Part A of the proof of Theorem 3.11 we alsc
deduce that if (K. 3,, ... §,) is a PpCe field, then X is T -dense in any p-adic
closure (K. &;) of (K, v,).

4. DENSITY OF HILBERTIAN SETS

We begin by strengthening a lemma of Geyer [FJ. Lemma 9.257 which
allows one to substitute a variable in an irreducible polynomiai by another
polynomial and to get, under certain conditions, an irrzducible polynomial.
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LemMA 4.1. Let K be a field of arbitrary characteristic. Let
feK[T, X,, .., X,] be an irreducible polynomial such that 0f/0T #0. Let
geK(Y,, ..., Y, ) be a non-constant rational function such that the numerator
of g(Y)+ ¢ (in its reduced form) is absolutely irreducible for each c € K. Then
the numerator of f(g(Y), X) is irreducible over K.

Proof. Let g=g,/g,, with g,, g, relatively prime in K[Y,,.., Y,].
Consider the K-algebraic set ¥ in A'*"+™ defined by the equations
AT, X)=0 and g(Y)— Tg,(Y)=0. Since g,(Y)— Tg,(Y) does not vanish
identically on V(f), the dimension theorem [L, p.36] implies that each
K-component of V has dimension »+ m — 1. We prove that V" has only one
component.

Let (4, x,y) and (¢, X', ¥') be points in V of dimension #n+ m — 1 over K.
Then dimg(x)=dimg(x')=n, and ¢ (resp., t') is algebraic over K(x)
(resp., K(x')). Also, dimgy o(y)=dimg, (¥ )=m—1 and dimg(y)=
dim (y’) =m. Since f(T, X) is irreducible the map (i, x) — (¢, X') extends
to a K-isomorphism ¥,: K(t, x) — K(¢', x'). By assumption the numerator
g1(Y)—cg,(Y) of g(Y)—c is irreducible over K for each ce K. From the
model-completeness of the theory of algebraically closed fields [FJ,
Cor. 8.5] we deduce that g,(Y)—1g,(Y) is irreducible over I/('&/) and
therefore also over K(¢, x). Consequently, ¥, extends to a K-isomorphism
Y. K(t, x,y)— K(¢',x", y') such that y(y,)=y;, j=1, .., m. Conclude that
V is irreducible over K.

So, let (¢, x, y) be a K-generic point of ¥ and let W be the projection of
V7 on A"*™ with respect to the variables (X, Y). Then (x,y) is a generic
point of W. Moreover, dim( W)= dim(V)=n+ m— 1. Theorefore W= V(h)
with he K[X, Y] irreducible. For d=deg f the polynomial 4(X, Y) g-(Y)
vanishes identically on V(f(g(Y), X) g,(Y)). By Hilbert’s Nullstellensatz
[L, p. 331, there exists a positive integer r and a polynomial g;€ K[X, Y]
such that

h(X, Y) gx(Y) = f(g(Y), X) g>(Y) g5(X. Y).

As f(g(Y), X) g2Y)*' =327 ai(X) g(Y) g5(Y)"" with @, K[X] and
a;#0, this polynomial is relatively prime to g,(Y). Since A(X,Y) is
irreducible it follows that there exists s>1 such that A(X,Y)'=
F(8(Y), X) g>(Y)".

We have to show that s = 1. Assume that s> 2. Then, for each i between
1 and m,

, _, Oh of og
O=s- s=1_— =L Z5 d
s-h(x,y) ayi(x,y) aT(g(Y)’X)aY,.(‘V)gz(y)
a1 98>

+d- f(g(y) x) g&:(y) (y)-

Y,
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Observe that f(g(y), x)=/f{t,x)=0 and g;(y}sﬁ(}. Moreover, since
OfioT#0 and dimg(x)=n, we have (&f/eT ) gly), xi=(3fieT {1, x} #
Hence (0g/0Y,}{y)=0. Conclude from the algebralc mdepsndence of
Yise i over K that 8g/dY;=0. Therefore 8g,/0Y,=0g,/CY,=0 and
hence g is a constant or a pth power (if char K= p> 0}, contrary tc ths
assumption.

COROLLARY 4.2. Let K be a field of arbitrary characteristic. Let

feK[T,,..T,,X,,...X,] be an irreducibie polynomial such rhaor
Qf, 0T, #0,i=1,..,r Foreachibetween 1 and r let g, € K{Y, .., ¥, ...} he
a non-constant rational function such that the numeraior of g{¥ )+ is
absolutely irreducible for each ce K. Then the numeraior of the polvaomial
flgdY ), gY,), X) is irreducible in K[Y, X .

Now. let K be a Hilbertian field with ¢ valuations v, .., t,. For each
positive integer r equip the ith factor of K" x --- x K" {e factors) with the
v~topology. Geyer [G, Lemma 3.4] proves that if »,,.., v, are indepen-
dent, then the diagonal map x— (x, .., x) maps each Hilbertian subset &
of K" onto a dense subset of K"x ... x K". If however, ¢, .., U, are p-adic
valuations, they need not be independent. So, Geyer’s Lemma does not
apply. Nevertheless we may prove the density of the Hilbertian sets in this
case by using the properties of the Kochen operator.

LEmMma 4.3, Let vy, .., v, be p-adic valuaiions of ¢ Hilbertian field K, iei
ai, .., a, be elements of K and let B,ev{K*), i=1, . Then eac’ Hiiber-
tian subset H of K contains X € H such thai v{x )>,L’S’ fori=1,..e

P

Proof. Consider a  Hilbertian  set  H{f\,..f,:1g) wi
feK(7,,..,T,, Y] is an irreducible polynomial, j=1..,m, ana
G#geK[Tl,.. T,.] (we use the notaticn of [FJ, Section t1.17}. A ply
Lemma 3.9 to obtain an element be K™ suck that v,(6)2§,, i=1, .., e

Using again [S] or [F], we obtain that the numerator of each of
the rational functions c+a, +b((Z 7 (Lt + 1 Zs)) k=1,..,7, 18
absolutely irreducible for each ceX Hence, by Corollary 4.2, the
numerator of

hAZ, Y)=fla, +bl(Z )+ 942 ) + 5 (wB,.,
ar+b(}y(zrl)+)‘(zr2} + ‘:’quB} s ‘

j=1,..,m, is irreducible in K(Z)[ ¥]. We may therefore find z,e K such
that the denominator of ,(z, ¥) is non-zero, its numerator is irreducibie in
K{ Y7 and both the numerator and the denominator of

gla, +h(p(z ) 9z ) H 1zl en @, 0z 020+ 728 ¥
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are non-zero. Let x,=a, +b(y(z4)+y(242) +7(243)). Then fi(x, Y) is
irreducible, and  v;(x,—a)=0,(b) +0,(7(zx1) + 7(242) + 7(243)) = 0:(B)
=p. 1

5. THE INTERSECTION THEOREM

We now come to the main results of this paper.

5.1. Notations. Let K be a field with e p-adic closures K, ..., K,. Denote
the unique p-adic valuation of K; by #, [PR, Th. 6.15]. Let v, be the restric-
tion of v; to K. With each (g4, -, 0, ,,) € G(K)**™ we associate the field

K,=Ko'n ---nK%n Ko o

e+ 19 e+m)'

Let &% be the p-adic valuation of K¢ defined by &%(x”)=v,(x) for xe K,.
Denote the restriction of #Y" to K, by v,;. For i between 1 and e let
0,,={xeK,|v,;(x)=0}, let O,=0,,n---n0O,,, and let Ox={xeK]|
0;(x)=0,i=1,..,e}.

For K=Q, [HJ, Prop. 12.9] states that for almost all 6 G(Q)**"™ the
field Q, is PpC and v, ..., v, are distinct. Since the rank of the latter
valuations is 1 they are independent. Arbitrary p-adic valuations need not
be of rank 1. So we replace the latter argument by a direct one
(Lemma 5.3). Also, the proof of [HJ, Prop. 12.97] relies on the v-density
of K in K,. Again, this need not hold in general. However, since the
quotient of 7,(K;) by v,(K*) is a torsion abelian group [E, Cor. 13.117,
each element of the former group is less than some element in the latter
group. So, in the following proofs, whenever we speak on a &,
neighborhood of an element of K¢ we may assume that it is defined by an
element of »(K ™). This occurs frequently in applications of various versions
of Krasner’s lemma. As we lack an appropriate reference we reproduce here
a combination of Krasner’s lemma with the continuity of roots.

LeMMA 5.2. Let E be a Henselian field with respect to a valuation v.
Denote the unique extension of v to E also by v. Consider a polynomial
fe E[X] of degree n with n distinct roots x,, ..., x,,. Then, for each e v(E™)
there exists y e v(E>} such that the following holds: If ge E[X] is a polyno-
mial of degree n with v(f— g) >y, then the roots of g are distinct and can
be enumerated as y,, .., y, such that v(x;— y;)>f and E(x;)=E(y;),
i=1,..n

Proof. Let pev(E*) and assume without loss that fS>

min, ., {v(x;—x;)}. Then there exists yev(E*) such that if vo(f—g)>7,
then the roots of g can be enumerated as y,, ..., v, such that v(x;,— 3,)>f,
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=1, .., n [PZ, Th.4.5]. Thus y, is the unique root of g with v(x;,— y,] > £

{In particular y,. .., v, are distinct.) Moreover, for each 7 e G{E) we have
o{ox;—oy,)=rv{x;,— »;). Thus, y, has at leaat as many conjugates over £
as x; has. As this holds for each i, y; and x, have the same number of
conjugates over E. In other words, [E{\,) s £l =deglirr(x,, E}} =
deg(irr{ v,, £))= [E(1 J:E]. By Krasner's lemma £Eix)=£(y,) [Ri
p. 1907. Hence E(x,)=E(y,). §

LeMua 5.3. Under the assumption and notation of 5.1, suppose that X is
a countable Hilbertian field. Then for almosi ali 6 GIKY ™" the p-adic
valuations v v, of K, are independent.

ol eene

- are independent for

gl

Proof. Without loss, we show that v, and v
almost ali 6e G(K)* ™™,

For each 6 G(K)* ™™, K, is algebraic over K and therefore v, (&~} is
cofinal in v,(K). Also, v;(K*} is countable, i =1, 2. Therefore it suffices
to prove that for fixed positive elements o, ¢ (K™ ) and a,ev,(K™ § and
for almost all 6 € G(K)**™ there exists x € K, such that

(5.1) vo{x)>a, and vo{x—1)>x,.
To this end consider the polynomial Y>— T, Y+ 7, and use Lemma 4.3 to
construct, as in [FJ, Lemma 1587, a sequence (&, b, Cro» Cpyl
KxKxKxK, k=1,2,3,.., together with a sequence L, L,, L;,..
linearly disjoint extensions of K such that for each £>1:

1

i

E.) Is

(5.2a) (ay, b,)is v-close to (1,0). i=1,.

{5.2b) the polynomial g (Y)=Y" ~a, ¥+ bA is rreducible over X
(5.2¢) glY)=(Y—cpollY—c, . ); and

(5.2d) Ly=Kl(cro)=K(cp1)-

For each k=1 we apply Lemma 5.2 on the polynomials gAY} and
Y2 — Y, use (5.2a), (5.2b), (5.2¢) and obtain S(k}e {0, 1] such that

Tl Ch siny) > A1y UlCh oy — 1) >0y, and Cros Ci1 €K

Similarly we obtain e(k}e {0, 1} such that

Pm

Eo{Cr1 — o)) > %2, T3 Cpoiiy— 1) >, and Cros Cr, 1 EF

and also ¢, ¢r € Ks, ., K,. In particular, L, K7 n - n K% for ail
G5 0,€G(K). Now for almost all 6eG(K)**™" [FJ, Lemma 16,117
vields & = { such that

0 ((Ch.0) = Cp sikye G3{Cr0) = Crocirr>

481 133 i-11
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and
res,, o,=1 for i=e+1,..,e+m

In particular, ¢, o€L,=K,. Since res, ¢;=1 for i=1,2, we have

Vor(Cro) =01(01(ch0)) = 01(Cr s)) > ¢y and vy, (cp o — 1) =02(05(ck0) — 1)=
05(Ch k) — 1) > 5. Hence x = ¢, , satisfies (5.1). ||

LEMMA 5.4. Under the assumption and notation of 5.1, suppose that
K is a Hilbertian field Let wo,ev,(K™), i=1,..,e. Suppose that
feO[X,,...X,, Y] is an absolutely irreducible polynomial and that
Qg s s Aoy Do are elements of O g such thar

. of .
Ao, b0)) > 20, (2 . bo)>, i=1, e (53)
Then for almost all oc G(K)**"™ there exist a,,..da,, be O, such that

f(a, b)=0, v,(a—ay)>a;, and v, (b—by)>0.

Proof. Let n=deg,(f) Since K is Hilbertian we may apply
Lemma 4.3 inductively to construct a,, a,, a;,..€ K" and b, b,, b5, €K
such that for each j> 1,

(5.4a) v;(a;—ag)>max{o,, y;}, with y,ev,(K™) sufficiently large,
i=1,..,e;

(5.4b) f(a;, Y) is irreducible over K of degree n and f(a;, ;) =0; and
(5.4c) the sequence K(b,), K(b,), K(b3), ... is linearly disjoint over K.

By (5.3), the Hensel-Rychlik lemma gives a root by, of f(a,, Y) in K,
such that @by —by)> v ((f/6Y)(ay, by)). By Lemma 52 and (5.4a),
f(a;, Y) has a root b,e K, such that i,(b;—by;)>v,((3f/0Y)(ay, by)). In
particular 7,(b,; — bo) > v,((df/@Y)(a,, by)). Since both b, and b;; are roots of
the irreducible polynomial f(a;, ¥) there exists a K-isomorphism of K(b;)
onto K(b;) that maps b, onto b,. Extend this isomorphism to an
automorphism o of K over K.

By (5.4¢) and by [FJ, Lemma 16.11], for almost all 6 G(K)**" there
exists j such that Res,qu,o-,f’l =Res k)05 for i=1, .., e and Resg,,0,=1
for i=e+1,..,e+m (use that the map oo~ ' of G(K) onto itself is
measure preserving.) But then b, = b»;’/""'= bj", EK;" fori=1, .. eand b;" =b;
for i=e+1, .., e+m. Conclude that b,e0,. |

THEOREM 5.5. Under the assumption and notation of 5.1, suppose that K
is a countable Hilbertian field. Then for almost all 6 € G(K)*"™ the following
statements hold:

(a) K, is PpC;
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{b) K, admits exactly e p-adic vaiuations which arve induced 5y
Ko, Ko

(c) For each p-adic valuation v on X, o{X ) is a Z-group; and

(¢} (K)=D,,,.

Proof. The proof of the isomorphism G{&,) = D, , for almost all 5 ca
be carried out exactly as the proof of [HJ, Lemma 12.87. All we have t
do is to replace @ by K, to replace Q by K, .. K, and to us
Lemma 4.3.

Nex: suppose that E is a p-adic closure of K,. Then G{E)=G(Q,}
[HJ, Cor.6.6]. Hence G(E) is conjugate in G(K,) to some G(K°)
[HI. Prop. 12.10] and therefore E is K -isomorphic to X7. Thus, “(, kas,
ap to a K, -isomorphism, only e p-adic closures. Conclude from
[PR, Remark 3.3] that ¢,,(K) ) is a Z-group.

By Lemma 3.3, the set of all e G(K)* """ for which the valuatons
Uoys oo U OF K, are independent has measure 1. By Theorem 3.11, all that
is left o prove is that the following condition holds for almost zll
ge G{Ky¥ "

DL

¢

p.alg

(5.5 LetfeO,[X,,..,X,. Y] be an absolutely irreducible polvnomiai
and for each i between 1 and e let ag, ;ﬂo,,oqeu satisfy
v flay, b)) > 20, ((8f/€ Y N4y, by)). Also, let a;ev (Kr 3
there exist «y,..,qa,, beO, such that fia,b)-O, and fm gach |,
v, (8 —a,)>2a and v,,(b—bg)>0.

i= e T

<,

To show this we first choose a countable dense subset T of GIK )™ T\Te %t
suppose we are given the following data: automorphisms 7,, ... 7,,,,€ 7, 2
finite Galois extension L of K contained in X, an absolutely irreducible
polynomial fe{O,nL)[T,, .., T,, X], elemenis aq. .., 25,.80 Of 0.~
such that for each i between 1 and e, v {f{ac, bq)} > 20,,{{0f ’EX)\am b))
and clements x,€0,(L*), i=1, .., e Let S{r, L, f, a,, by, @) be the set 01 a;
e G(Ly¥*" for which there ex1st a,..,a,, b0, such that f(a, b)=
and such that for each i we have v, (8 —a,)>x, and v, (b — Dy} > O 3
Lemma 5.4, applied to the p-adic closures K[\, .., K of L, the s
S(x, L, f, aq, by, @) is of measure 1 in G{L)}**"™. Since K is countable, the s
R=Ut{G(LY* "~ S(x, L, f, a,, by, @), where the union ranges over a!
possible data, is a zero set in G(K)** ™.

Now suppose that 6 G(K)**"” — R and iet f, ag, b, and @« be as in
(5.5). Then there is a finite Galois extension L of K, L< K, , which
contains &y, .., do,» by and the coefficients of / and such that x,e (i)
i=1,.,e. As TneG(L)Y*"£@ there exists heG(L)Y+" such that
(s, L, [, a4, by,0) 1s a set of data as above. Hence e¢oi(G(L) ™" -
S(ok, L, , a,, by, @) so A e S{oh, L, f, a5. by, @), which is exactly the
assertion of (5.5). §

'\
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