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The Prelle-Singer procedure is an important method for formal solution of first order
ODEs. Two different REDUCE implementations (PSODE versions 1 & 2) of this pro-
cedure are presented in this paper. The aim is to investigate which implementation is
more efficient in solving different types of ODEs (such as exact, linear, separable, linear
in coefficients, homogeneous or Bernoulli equations). The test pool is based on Kamke's
collection of first order and first degree ODEs. Experimental results, timings and compar-
ison of efficiency and solvability with the present REDUCE differential equation solver
(ODESQLVE) and a MACSYMA implementation {CDEFI) of the Prelle-Singer proce-
dure are provided. Discussion of technical difficulties and some illustrative examples are

also included.

1. Introduction

Prelle and Singer (1983) proved that if a system of differential equations has an ele-
mentary first integral (i.e. a first integral expressible in terms of exponentials, logarithms
and algebraic functions) then it must be of a very special form. For example, if a two
dimensional autonomous system

&= Ple,y), v=0Q(z,y) (1.1)

where P and @ are polynomials with coefficients in the complex field C, has an elernentary
first integral, it has one of the form

F(:E, y) = Uu(&?,y) + Z Ci log(v;(w, y))

where the ¢; are constants and the v; are algebraic functions of ¢ and y. The first order
ordinary differential equation associated with (1.1) is

P, 1) 3 = Q(z,0)

One can prove (see Prelle and Singer (1983)) that if an elementary first integral exists,
then we can find an integrating factor R with ™ € C(z, y) for some nonzero integer n,
such that 6—6’1_3 + a_;zyg = ( and hence we can solve the differential equation by quadrature.
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Let R =[], f'* where f; are irreducible polynomials and »; are nonzero integers. Since
R is an integrating factor, we have f;|Df; where D is the differential operator P% +
Q%. Conversely, Darboux showed that if one could find all irreducible f such that
fIDf, then one could decide if such an integrating factor R exists. It is known (see
Jouanolou (1979) or Singer (1992)) that if f is irreducible and f|Df, then deg f <
N for some integer N. But how we can find such N effectively is still an unsolved
problem and that is why the Prelle-Singer method is only a semi-decision procedure.
However one can use the procedure outlined in Prelle and Singer (19¢3) by arbitrarily
assigning a bound to the degree of the f’s such that f|Df. The drawback is that the
method sometimes may not find a first integral even if it exists. This approach has been
implemented in MACSYMA (see Shtokhamer et al (1986)) with surprising success and
the present implementation in REDUCE (see below) also uses such an approach. From
now on, 1 will use the abbreviation ODEFI to refer to the MACSYMA program, SGC
to refer to the experimental results mentioned in Shtokhamer et al (1986) and PSODE
(versions 1 & 2) to refer to the REDUCE programs reported in this paper.

2. Prelle-Singer Procedure

In this section, a brief review of the Prelle-Singer Procedure is given. But the actual
implementation in REDUCE is quite different from ODEFI and this is cne of the reasons
why there are discrepancies in degree bounds and number of solved examples between
PSODE and SGC (see details in later sections). Below, D, P,Q, R and f; have the same
meanings as before.

Prelle-Singer Procedure.

1 Set N =1.
2 Find all monic irreducible polynomials f; such that deg f; < N and fi|Df..

3 Let Df; = f,-g.-.Jr Decide if there are constants n;, not all zero, such that

m

Zn.‘gi =0.

=1

If such n; exist then w = [[-, S/ is a first integral and we return w — ¢ = 0, where

¢ is an arbitrary constant, as the general solution to the first order differential equation
P(z,y)% = Q(z,y). If no such n; exist then go to the next step.

4 Decide if there are constants? n;, such that

—~_ _ _feP 8Q
Znogl——(ﬁ'{'ay)-

i=1

™

If such n; exist, then R = []i~, f{** is an integrating factor for the given differential

equation and we return the general solution w — ¢ = 0, where ¢ is an arbitrary constant

1 Since this is analogous to an eigenvalue problem Az = Az in linear algebra, we sometimes call f;
an eigenpolynomial.

n; can be all zeros here. In this case, it means the integrating factor is equal to unity, i.e. the
equation was already exact. In Prelle and Singer (1983}, it was mentioned that one needs to decide if
there are rational n; at this stage, but in practice we discover that it also works for non-rational n;, so
we say n; are constants here.
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and w is determined either by

fRQd::—~/(RP+%/Rde) dy
—/Rde+/(RQ+;;-/Rde) do.t

If no such n; exist, then go to the next step.

or

5 Increase the value of N by 1. If N is greater than the preset bound then return failure,
otherwise repeat the whole procedure.

Note that this procedure as originally described in Prelle and Singer (1983) assumed P,
@ are polynomials in = and y over C. The extension of it to solve differential equations
with transcendental terms or algebraic terms (heuristically) was described in Shtokhamer
et al (1986). The main idea is to regard the different transcendental terms or algebraic
terms that appear in P and @ as new variables which are then used to construct the
polynomial(s) f; (with undetermined coefficients) in addition to the original variables =
and y (e.g. see Example 3.2). But since we are working on differential field extensions
over C(z,y), we must guarantee that all the derivatives with respect to the derivations
56; and ai lie in the same differential field extension. Therefore one needs to determine
all the derivatives of the new variables. If the derivatives obtained are new transcendental
terms or algebraic terms then consider them as new variables too and repeat the differ-
entiations again until no more new variables can be derived. For instance, if we are given
a differential equation gﬁ- +ycosz = e~ %"% then the transcendental terms are cos z and

e¥"?_ So the new variables obtained will be {cosz,sinz, esm“’}.i However, if we regard

t = tan(%) as a transcendental generator of cos 2 and sin z, then we can also use {t, e1_+L:'-"'}
as our new variables (similazly if we express cos z, sin z in terms of exponentials). In the
latter case, we will have just 4 variables (including ¢ and y) to work on and in general
this will speed up the subsequent calculations. In addition, we need to modify P and @
in step 2 by P «— P x dendem, Q@ « @ x den_lem where den_lermn means the lem of all
the denominators of the derivatives of the new variables and the right hand side of the
equation in step 4 is replaced by —(% + %3) x den_lem. In Shtokhamer (1988), the D
operator is modified to Z?zl(P% + Q%‘;‘) x den_fem x 5‘% where t; = 2,13 = y and
the remaining #;’s (i > 3) are the new variables obtained, but one can see that this is
equivalent to modifying P, @ as above. The advantage of our approach here is to keep
the D operator in simple form. Now once all these small steps have been done, we can
apply the Prelle-Singer procedure to solve differential equations with transcendental or
algebraic terms. For more details, see section 3.2 where two examples are given.

1 Mathematically, they are equal expressions, but this certainly does not mean that the actual com-
putations of the integrals involved are equally easy.

I It is because d%e““ T = " ¥ cosr and ad;cos:r: = —sinz and further differentiations give us no

extra transcendental terms.
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3. Implementations
3.1. PSODE (vErsion 1)

The implementation (PSODE version 1) of the Prelle-Singer Procedure (abbreviated
as P.S from now on) in REDUCE has three main procedures

1 ezcoef(poly,varlist) — Given a multivariate polynomial, this procedure will return
the extracted coefficients with respect to the variables specified in varlist.

2 ps_I(P,Q,varlist, degreebound) — Given P, Q in the differential equation P(z, y)

Q(z,y) and a preset degree bound, this procedure will return al. the monic 1r.re-

ducible polynomials f; and the associated polynomials g; such that Df; = fig;.

3 ps_2(P,Q,gflist,varlist) — This procedure uses the ¢; and f; polynomials (called
gflist) returned by ps_1 to construct a first integral (if step 3 of P_S succeeds) or
an integrating factor (if step 4 of P._S succeeds); otherwise it returns failure.

The whole idea behind the implementation is to treat step 2, step 3 and step 4 of
PSS as problems of solving systems of algebraic equations — they come separately
from the extraction of coeﬂicients from Df; = figi (step 2), Yo, negi = O (step 3)
and Yore nigi = —(48 + & ) (step 4). Therefore, PSODE uses solve and groebner in

REDUCE!. When an 1ntegra,tmg factor R is found, then the evaluation of integrals is

done by calling inth (top level function call for the integrator in REDUCE). In general,
the systems of equations arising from step 2 are more complicated (they contain non-
linear equations) than those arising from steps 3 or 4. In fact, the implementation of
steps 3 and 4 is quite straightforward compared with step 2, and in most cases, the time
complexity is less than that in step 2. Because of these reasons, more detailed descrip-
tions of the procedure ps_1 are provided below.

ps1(P, Q, varlist, degreebound).

w{ule k < degreebound do

1 construct all monic polynomials (with undetermined coefficients) fi of degree < k

(see explanations below).
2 for each f; do

— calculate D f; = P%’} + Q%‘%‘.
— lW_fi — leading term of f; ; {_Df; — leading term of D f;
- if lt_f; divides {_Df; then

* n — deg Df; —deg fi

* if n < 0, then n — 0.

+ g; — construct a polynomial (with undetermined coefficients) of degree n

% eqns — excoef(figi — D fi, varlist)

+ split eqns into two sets: gegns +— equations which come from multiplying

¢ by It_f.'.§ fegns — rest of the equations.

T SGC used a self-written equation solver in addition to the standard solver in MACSYMA.

! PSODE uses ALGINT {a package in REDUCE which can handle integration of algebraic functions)
rather than the standard integrator by default.

§ e.g If lt_fi = xy and gi = g1 + g2z, then gegns will consist of all extracted coeflicients of the terms
zy and x2y in the product fig; — D fi.
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* gegns — solve gegns in terms of the coefficients of fi;
feqns — sub{gegns, fegns)

* calculate groebner(feqns) with respect to the undetermined coefficients in
£

+ if the system is consistent, then all unknown coeflicients in f; and g; can be
determined; otherwise jump the next step and try the next f;.

+ if fiis irreducibleT, then Spg «— (f, 9} U Sgy-
3 end_forloop

k—k+1
. end.while doop
return Sgg

In Prelle and Singer {1983), a Darboux bound is mentioned, which is defined as 2 4
m(m + 1)/2, where m = max(deg P, deg @) and P, Q are pure polynomials in z and y.
This is used to inform us that in case the number of elements in 5, is greater than or
equal to this bound, then we are guaranteed to have a rational first integral, which means
the g;’s are linearly dependent (i.e. non-zero n;’s exist in step 3) and we can obtain a
solution without the need to integrate at all. But since we allow P, ) to contain some
transcendental terms or algebraic terms, we cannot use this bound directly and need to
go through step 3 of the Prelle-Singer procedure to check for the dependencies of the
g.—’s.jt The step constructing f; and g; with undetermined coeflicients is done like this: for
instance, if ¥ = 1, two polynomials f; can be constructed, namely, a; +z and a; +asz+y,
where a1, az € C are undetermined coeflicients. (Note: we must consider the ordering
of z and y in the actual program). When we construct g;, if the leading term of g¢; is
known, say, zy, then g; is defined as by + baz + bay + baz? 4 bszy; otherwise it is defined
as by + byx + bay + bz 4 bszy + bey® — a general bivariate polynomial of deg 2, where
b; € C(1 < ¢ < 6) are undetermined coefficients. The reason for splitting egns into gegns
and fegns is that we want to determine all the unknown coefficients in f; first and then
determine those in g;. Normally, fegns is a non-triangular system of non-linear algebraic
equations, while gegns is a triangular system of linear equations. More details can be
found in the examples in section 3.

3.2. EXAMPLES

This section will give some examples to illustrate the procedures in finding a general
solution of a first order ordinary differential equation by P_S. Some examples on how to
run PSODE in REDUCE can be found in the appendix.

ExAMPLE 3.1. Suppose we want to solve a linear ordinary differential equation (z* +
1)% + 2y = x(2? +1). First we define a differential operator D as (22 +1) 2 + (2% +z ~
a:y)%. For N =1, there are £ monic polynomial candidates, namely, (1) f = fi +x and
(2) f = fi+fax+y. For (1), Df = 22+1. Since the leading term of f divides that of Df,
then we can define g = g + gz, Putling this into Df = fg and cquating coefficients, we
get a consislent system of equations. In this case, gegns = {ga—1,g1+ figa} and feqns =

1 This can be checked by dividing f; by each element in S;,. If none of them divide f;, then f; is
irreducible.

o may be one of the reasons why Shtokhamer et al (1986) did not mention this bound explicitly in
the description of this procedure.
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{fig1—~1}. Solving this system, we oblain fi = %i, g1 = Fi and go = 1. Therefore we gel
two seis of f and g, namely, {f =2z +i, g=z—i}and {f=2—1i, g==z+i}. Nest,
we consider (2). In this case, Df = (22 +1)fo + (2% +z - zy). But since the leading term
of f cannot divide x® (which is the leading term of Df in total degree ordering), there is
no solution for this case. So, we have to considers nmlz =9 +ny{z414)=— %i—’- + %g),
where P = 22+ 1 and @ = 23 + z — zy. Solving, we get ny = ny = —% and hence an
integrating factor R = (z+1i)"¥(¢—i)~% = (224 1)~ 7% is obtained. Pulting it into one of
the formulas in step § of P_S, we get the general solution ¢ = —yv/22 + 1 + L(2® +1)3,
where ¢ is an arbitrary constant.

EXAMPLE 3.2. Suppose we want to solve a separable equation %-"I’- =logz. Here we have

P =1 and @} = logz. Since logz is a franscendental term and %logx =1 no er

T
ira transcendental term can be obtained by further differenticiions and we have only
three variables to work on, namely {z,y,logz}. The differential operaior D is defined

as xPé%- + ng% = :v-a% + ::]oga:%, where the extra z comes from the denominator of

%]ogm. For N =1, there are 3 monic polynomial candidates, namely, (1) f = fi + =,
(2} f=H+fax+yand (3) f = fi + fax + fay + logz. For (1), Df = z, so it is
obvious thet ¢ = 1 and f = z. For (2), Df = fox + zlogz, but the leading term of f
cannol divide zlogx, so f cannot divide Df. For (3), Df =1+ faz 4 fzzlogz. Define
g = g1+ gaz and solve for the unknown coefficients in Df = fg. Bul tire system of equa-
tions obtained by equating coefficients is inconsistent. In this case, geqns = {g2 — f3,01}
and feqns = {fig1—1,91f2+ f192~ f2, 9113, f292, Faga}. Therefore, there is only one set
of f and g polynomials. Next, consider n1g = —(-aa—i+ %)I.T Solving, we getn; = 0 and
an inlegrating fector R =1 (as ezpected). Putting if into one of the formulas in step 4 of
P_S5, we obtain the general solution ¢ = zlogx — z — y, where ¢ 1s an arbifrary constant.

Compared with pattern matching techniques (i.e. identifying appropriate type and then
applying standard techniques), P_S will certainly not be so efficient in some cases, but
it provides a systematic way of finding an integrating factor (provided the solution is
elementary) without a prior knowledge of what type the equation is. In fact, by doing
experiments, we can see that it is an important and useful algorithmic tool in solving
first order differential equations. Compared with ODESOLVE (the differential equation
solver in REDUCE), PSODE can solve far more equations, based on the Kamke’s (1959)
collection of ODEs (see table 6 below).

3.3. PSODE (VERSION 2)

As mentioned before, PSODE uses the packages GROEBNER and ALGINT as sup-
port. Experimental results indicated that the computational effort in step 2 is usually
much more than that in steps 3 & 4. We have seen in the above examples that not every
case within each degree bound N can lead to solution(s), and quite often we have to ‘pass’
a lot of nasty inconsistent cases before coming to a solvable case for the polynomials f
and g. PSODE (version 1} relies solely on GROEBNER to detect inconsistency as well as

§ We do not go through step 3 of PS8 here because we can recognize that z — i and z + 7 are linearly
independent.
U Again, the extra x comes from the denominator of % logz.
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solving consistent systems of equations, which is sometimes computationally expensive.
Can we have an alternative way of doing it 7 The following description provides such
an alternative. The notations used below have the same meaning as before and the new
notations will be introduced in the context.

new.ps_1(P, Q, varlist, degreebound).

S_fg — ﬂ, k—1
while k < degreebound do

1 construct all menic polynomials (with undetermined coefficients) fi of degree < k.
2 for each f; do

calculate D f; = P%Zzi + Q%E,"-.

— g0

indivistble — false

— fegns —

while not indivisible and Df; # 0 do

* if it_fi divides H.Df; then
g+ kDL

te—f;
- Dfi— Dfi— fix 8B4
* else if {c_D f; (leading coefficient of D f;) is a constant then indivisible — true
* else if lc.D f; contains one f; variable (say var) only then

- 3 « sofve(le_D f;, var)
- fi — sub(s, fi)
- gi — sub(s, gi)
- feqns — sub(s, feqns)

* else

. feqns — le.Df; U feqns
. Dfi = Df; - t-DF;
— end_while_loop
— if not indivisible and feqns # @ then

* calculate groebner(fegns) with respect to the undetermined coefficients in
i

* if the system is consistent, then all unknown coefficients in f; and g can be
determined; otherwise jump the next step and try the next f;.

— if not indivisible and f; is irreducible, then Sy, — (f, 9) U Sy,
3 end_forloop
k—~k+1

end_while_loop
return Syg

The main difference between the current approach and the previous approach is that
there is an inner while_loop inside the procedure which is basically performing ‘long

divisions’ (i.e. Df; divided by f;). A few remarks concerning such an approach are listed
below:

1 There is no need to construct g with unknown coefficients. g is just the quotient of
Df; over fi (in the divisible case).
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2 There is no need to split the determining system of equations into 2 parts (i.e.
feqns and gegns); only one system of feqns is necessary.

3 An inconsistent case can sometimes be detected without calling ‘groebner’, namely
the case when le_Df; is a constant.

4 The substitution part can help to reduce the size of the system of fegns and may
even determine f and ¢ completely sometimes, namely in the case when feqns = {)
after the inner while_loop.

5 It is better to represent the polynomials f; and Df; in distributed forms' in this
approach since we need to use lf_f; and Ic.Df; quite often.

PSODE (version 2) was implemented using such an approach and the internal represen-
tations of f; and Df; (in RLISP) are distributed polynomials. By performing computer
experiments and taking timings, this approach proves useful and more efficient than the
previous approach in most cases {see section 4). Another useful ansatz is that it is not
really necessary to separate the steps 2-4 in the P.S procedure — we can check the
dependence of the g; polynomials or try to construct an integrating factor whenever a
new pair of {f;,g;:} has been found. The reason is that we may probably skip a lot of
inconsistent cases (some may be nasty systems of polynomial equations which GROEB-
NER will take a long time to reduce to {1}) within a given value of N. If we look back
at the examples 1 & 2 above, we can see that this strategy can save us one step in the
first example and two steps in the second example. For this reason, such a strategy has
been incorporated into PSODE (version 2) as well.

3.4. A SIMPLE EXAMPLE

Suppose we want to solve the differential equation (Qa:zy—m)%g- = 2xy’ +y by using the
‘division’ method. Firstly, we define a differential operator D as (2z%y - 2) & + (2z3* +
y)% and assume we are using total degree ordering on # and y. For N =1, there are 2
monic polynomial candidates, namely (1) f = fy +« and (2} f = fi + fox + y. For (1},
Df=2z%y~z lt.f =z and {t_Df = 22%y, so

g—2zy and Df — -2fizy—=.
Next, we have lt_Df = -2f,zy,
g—22y—2fiy and Df —2fly—e.
Since #t_Df = 2f%y and x divides {{_Df only if f; = 0,
g+— 2ry and Df « —=z.
Hence one more division leads to
g—2xy—1 and Df « 0.

Therefore we obtain f = z and ¢ = 2zy — 1 in this case. For (2, we have Df =
2ry® + 2fo2ly + y— foxr, lt.f = y and It _Df = 22y?, so

g+—2zy and Df — -2fizy+y— faz.

t e.g 252 4+ z(y? + 1) + y is a recursive form (assuming a total degree ordering of x and y) while
zy® + 222 + = + v is a distributed form
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Next we have {.Df = —2f12y and
g—2zy—2fiz and Df —2fi fox® +y+ (2f2 - fo)=.
Since t_Df = 2f, foz? and y divides it_Df only when f; f = 0,

fegns — {fifs} and Df —y+(2ff - fo)e.
Next we have {_Df = g, so
g—2zy-2fiz+1 and Df —(2ff —2f)z - f1.
Now it is easy to see that we need to assign

fegns = {fifa} U{2fZ = 2f5, i} and Df «—0.

Solving the feqns gives fi = fo = 0, s0 we obtain f = y and ¢ = 2zy + 1. Since 22y — 1
and 2zy+1 are linearly independent, so consider a1 (22y—1}+ny(2zy+1) = —(%i—’-{- %%),
where P = 2z%y — z and Q@ = 2zy® + y. Solving we get n; = ny = —2 and hence an
integrating factor R = (xy)~2. Performing the integration steps, we can get the general
solution ¢ = 2logz — 1/zy — 2log y, where ¢ is an arbitrary constant.

4. Comparison of Efficiencies

In this section, ten examples are chosen from Kamke (1959) and comparison of effi-

ciencies are done for PSODE (version 1 & 2), ODEFI and ODESOLVE!. All testings are
done interactively on a Sun Sparcstation II and the timings are in terms of milliseconds.
Those exampies which a particular program failed to solve or no answer was returned in
more than 30 minutes will be marked with a F and an asterisk repectively. The REDUCE
version is 3.4.1 and the MACSYMA version is 417.1. On can recognize that the second
version of PSODE is faster than the first version in general. The next observation is that
although ODESOLVE failed in most of these examples, we can see that it is significantly
more efficient in those cases which it can solve. This suggests that if we want to build up
a general, efficient and powerful first order ODE solver, then pattern-matching is always
worthwhile to try first ! In table 1, PS(I) and PS(II} refer to the first and second version
of PSODE respectively. For convenience, I have used intfactor as an abbreviation for
‘integrating factor’.

5. Experimental Results

From this section onwards, the name PSODE will mean PSODE (version 2) unless
stated otherwise. Table 2 is a summary of the experimental results obtained by running
PSODE through 331 Kamke examples. Altogether there are 367 first order and first de-
gree Kamke examples: 210 of them are polynomial type, 81 of them are transcendental
type, 40 of them are algebraic type and 36 of them are non-explicit type (i.e. no explicit
functions are given in the equations, only arbitrary funciions f(#) or h{y) etc). There-
fore the meaningful test set consists of 331 Kamke examples only. Whenever an answer
obtained involves one or more unevaluated integrals, T will regard it as partially solved.

t Putting ODESOLVE here is just for reference purposes since it is based on pattern-matching rather
than the PS5 procedure.



432 Y.K. Man

Table 1. Comparison of Efficiencies

Example Type PS(I) ODEFI PS(II} ODESCLVE
k41 Abel 4505 * 2227 F
k93 Linear 21641 15483 2278 3123
k120 unknown 3213 10516 1513 F
k163 Riccati 1904 19583 1479 F
k182 Riccati 5032 36583 4964 F

k220 reducible 1717 18250 B850 204
to Linear

k249 reducible to 4998 * 8885 F
Bernoulli

k275 special 629 5866 510 F
intfactor

k291 reducible 1632 14083 1258 F
to Linear

k341 Exact 7582 * 1139 340

In summary, with a degree bound N < 4,1 we discovered that 241 of them can be com-
pletely solved while 23 of them can be partially solved. Among these solvable cases, 161
of them are of polynomial type, 69 of them are of transcendental type and 34 of them
are of algebraic type. More details about the partially solved examples can be found in
table 6 and the timings for the examples solvable by PSODE are tabulated in table 3
(all timings are in terms of milliseconds and the garbage collection time is excluded).

6. Discrepancies between PSODE and SGC

In this section, the discrepancies in results obtained by PSODE and SGO! are dis-
cussed. They arise mainly from two causes: the first one is that the two implementations
were done in different computer algebra systems — the equation solver and the stan-
dard integrator in the two systems are different; and the second one is that the actual
approach is somewhat different — PSODE uses the Groebner Package while SGC did
not, and SGC incorporates other methods for finding special integrating factors while
PSODE did not. As a result, two kinds of discrepancies arise: degree bound set and
missing examples. They are mentioned in the next two subsections,

6.1. DEGREE BouNDs

Table 4 shows the differences in degree bound set in PSODE and SGC. Comparisons
are done for the polynomial type of Kamke examples only since SGC did not mention
the explicit degree bound set for transcendental or algebraic cases.

¥ Setting N > 4 will normally lead to a too large search space for the P.S procedure step 2, so the
default maximal value of N in PSODE is 4, but the user can always alter it by specifying ancther value
of N in the fourth arguient of the input (see appendix).

t We are comparing the results obtained by PSODE with those results tabulated in Shtokhamer et
al (1986) here, so the name SGC is used instead of the program’s name ODEFI.
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Table 2. Experimental Results

Type N  Kamke examples solvable by PSODE Total

Polynomial 1 12,17,19,23,26,29,31,39,94,96-98,101-103,130 128
135-138,148-150,153,155,156,158,160-162,165,167
171,174,175,177,178,180,183,188,204,207,210
213-216,218,221-229,231,232,236,235- 247,249
252,254-256,258,260-264,270-273,275-277
279-282,284-287,290,291,293-303,306-310
313,315,317-319,321-325,327-330

2 15,41,104,140,141,143,163,170,182,186,187,217 16
220,257,304,312

3 42,106,151,172,181,248,274,289,316,320 10

4 44,142,168,173,251,288,305 7

Transcendental 1  2-4,6-9,75-78,90-93,117-120,122-125,131,132 61

134,152,154,159,193,194,196-200,233,259,267
283,314,341,342,344-349,352-359,361-364

2 32,81,108,109,195,208,278 7
3 21 1

Algebraic 1 57-68,89,112-116,190-192,209,332-340,360 32
2 3852 2

6.2. MiIsSING EXAMPLES

By “missing examples”, we mean those Kamke examples which should be solvable
by P_S method, but unfortunately do not appear in the solvable list of the test results.
They are missed by PSODE due to technical difficulties and we will discuss the underlying
problems in more detail in section 9. In table 5, N means the degree bound set reported
in the successful program. Since there is no explicit degree bound N given in SGC for
the example k350, we just put a -’ in such a case. Again, we can only give information
for the polynomial or transcendental types due to the lack of reported results for the
algebraic cases in SGC.

7. Applicability of PSODE

In this section, the applicability of PSODE in solving first order ODEs is investigated.
For this purpose, the different types of equations are tabulated in tables 7-8 below. Those
equations which cannot be solved by PSODE are entered in table 10. An analysis of the
number of solvable examples by Kamke, PSODE and ODESOLVE can be found in table
6. Since there is no explicit result given by SGC for the algebraic type examples, so 1
will enter ‘-’ for those non-comparable cases. The column for success rate (I) means the
success rate if we consider all polynomial, transcendental and algebraic types together
while the column for success rate (II) means the success rate if we consider polynomial
and transcendental types only. In tables 7-8, there is a column called adjusied success
rate — which means the success rate if we do not consider those Kamke examples which
are known to be non-elementary or those having no explicit answer in Kamke (1959).
The classification of types follows Kamke closely with only slight modifications. The
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Table 3. Timings for solvable examples by PSODE

Time N=1 N=12 N=3 N=4 Total
0-1000 2,12,17,19,26,29,57,01,94,96,101-103 170,217 103
118,119,130,131,135-138,148-150,153
155,156,158-161,165,171,174,175,177
193,194,207,210,218,221-229,232,236
238-247,252,254-256,258,260-263,270
271,273,275-277,280-282,284,293,295
297.303,300,313,317,318,321,323,324
328,344,353,354
1000-2000  3,4,6,8,9,23,31,58,89,97,112,117,120 15,108 57
123-125,132,134,162,167,196-198,204 109,140
200,214-216,264,267,272,279,283,286 143,163
287,291,294,306-308,314,315,319,330 220
334,337,341,345,349
2000-3000 75,76,98,113,114,122,180,183,213,259 141,257 21
310,322,327,342,346,362-364 304
3000-4000  7,61,90,92,93,115,152,154,192,199,200 104 248,320 17
332,347,355
4000-5000 233,285,339 41 289 5
5000-10000 59,60,62,63,190,191,249,333,335,336 182,187 316 251 21
338,348,352,356,357, 358 312
100006-20000 65,178 208,278  ¥T4 168,288 8
305
20000-40000 64,67,77,231,359,361 32,186 172,181 173 11
> 40000 39,66,68,78,116,188,290,325,329,340 38,52 42,108 14,142 21
380 81,195 151,211

Table 4. Differences in Bounds

Example PSODE SGC Example PSODE 8GC
k98 N=1 N=2 k289 N=3 N=1
k180 N=1 N=2 k248 N=3 N=2
kZ04 N=1 N=2 k274 N=3 N=2
k264 N=1 N=2 k318 N=3 N=2
k323 N=1 N>3 k320 N=3 N=2
k325 N=1 N>3 k288 N=+4 N=1
k181 N=3 N>3 k305 N=4 N=1
k42 N=3 N=1 k251 N=4 N=2
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Table 5. Missing Examples

Name N  Examples Remarks
1 311 polynomial type: 311, 326
PSODE 2 326 trancendental type: 350
- 350 They are unsolved because of
technical difficulties

(see table 11).

1 39,188,231,291 polynomial type: all except 211
SGC 2 41,163,182,220 trancendental type: 211 only

3 39,188 and 211 are partially

4 142,168 solved by PSODE

classification scheme is like this: (1) If there is an explicit type name mentioned in Kamke
{1959), then it will be used, unless Kamke’s classification was incorrect or it is more
appropriate to classify the example concerned into a simpler type. (2) If Kamke did
not give an explicit type name but mentioned a suitable transformation to reduce the
example concerned to standard type, say Linear, then it will be tabulated as reducible
to Linear. (3) If the above two rules cannot be applied, then [ will classify the example
according to what type of integrating factor (abbreviated as intfactor in the tables) it
will require to convert it into an exact equation, e.g. integrating factor depending on y
only or integrating factor depending on xy only, etc. If Kamke did not provide an explicit
integrating factor {normally, an equivalent higher order equation was given), then such
examples will not be classified (see table 8).

8. Comparison with QDESOLVE

In this section, we will compare the solvability by PSODE with ODESOLVE. The
331 tested examples were again used for testing ODESOLVE. We discovered that 137
of them can be completely solved by ODESOLVE while 36 of them can be partially
solved. Among these solvable cases, 94 of them are of polynomial type, 52 of them are of
transcendental type and 27 of them are of algebraic type. Some of the partially solved
examples can be improved if the ALGINT package is used. For comparison purposes,
the performance of ODESOLVE in solving different types of examples is tabulated in
table 9. Since ODESOLVE uses a pattern-maiching technique, several Kamke examples
that are known to be non-elementary can be partially solved by it. These examples are
k1,k5,k69-k71,k73,k129, k133 and k335-k338.

9. Technical Difficulties

From table 6, we can see that the success rate of PSODE in solving polynomiai,
transcendental and algebraic types of first order and first degree ODEs is 264/331, so
there are 67 examples remaining unsolved. Of course, there is no reason why PSODE
should be abie to solve all of them — what we expect PSODE can solve are those examples
which have elementary selutions, or occasionally some examples with non-elementary
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Table 6. Analysis of solvable examples

number of number of

Name examples examples success success Remarks
completely  partially rate rate
solved solved @ (1)

4 partially solved examples
Kamke 218 22 72,5 % 3.2 % can be further simplified.
{240/331) (213/291) 18 of them are
non-elementary.

6 partially salved examples
PSODE 241 23 79.8 % 79.0 % are non-elementary, 9 of
(264/331) (230/291) them have no answer in
Kamke and 8 of them can
be further simplified,

7 partially siolved examples

ODE- 137 36 523 % 50.2 % are non-elementary, 11 of
SOLVE (173/331) (146/291) them have no answer in
Kamke and 18 of them can
be further simplified.

no informaticn about the
S5GC - - . 6.0 % number of partially solved
(221/291) examples was mentioned
in Shtokhamer et al {1986).

solutions which are returned from P_S step 3 with non-integers n; (see section 2) or

P_S step 4 with non-elementary integralsT contained in the answers. In order to clarify
the situation, all these unsolved examples by PSODE are tabulated in table 10 and
the explanations of why 3 examples known to have elementary solutions are missed can
be found in table 11. The followings are further remarks on the technical difficulties
encountered in step 2 of the P_S procedure:

1 In general, the system of feqns (see section 3.1 and 3.3) generated in step 2 can
be huge and their inconsistency, or otherwise, may he hard to determine by using
GROEBNER. Even when the system of equations is consistent, it may not be
possible for the underlying computer algebra (CA) system to solve if the arithmetic
needs to be done in algebraic extensions over the rationals. In fact, the latter is a
commeon problem in all known CA systems.

2 The choice of the input variables in calling GROEBNER can seriously aflect the
efficiency of the subsequent calculations. For example, if we want to solve the ex-
ample k305 and use the default ordering (lexicographical) in GROEBNER with

the switch groeboptt on, it will still take much longer time than we just reverse

T It is because the integrator in REDUCE is based on the Risch-Norman semi-decision algorithm
rather than the Risch decision algorithm.

t Supposed to be able to rearrange the input variables so that the subsequent calculations can be
optimised.
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Table 7. Solvability by PSODE

adjusted partially
Type Solved Kamke Examples Success  success solved
rate rate examples

2-4,6-8,90-94,130,134,148-150  26/28  26/26
Linear 153,154,161,174,175,192,193
196,198,200

112,113,117,123-125,136-138  35/35  35/35 325
167,204,223,232,239,246,262
Homogeneous ~ 271,272,276,281,284-286,290
295,297,306,308,310,315,325
337,349,363,364

Bernoulli 20,44,101,108,109,132,156,158  15/16 15/15
160,171,177,197,208,240,314

245,248,251,263,270,273,274 2324  23/24

Exact 288,289,299,305,309,322,330
336,341,347,348,352,353,355
356,361
9,12,17,23,26,31,39,57,59-61 32/37 3232 39,59
Separable  63-68,76,89,06,118,135,159 63
183,190,191,199,209,256,335 65-68
358,359
Abel 38,41,42,151,188 5/17 5/5 38,42
151,188
19,32,98,102-104,106,140-143 28/50 28/28 106,173
Riccati 155,162,163,165,068,170,172 178,181
173,178,180-182,186,187,194 186,195
195,207
Jacobi 0/1 0/0

Linear in 213-216,221,222,224. 229,231 13/13 13/13
coefficients

the order of the input variables or adopt a total degree orderingi. Some examples
like k44 and k173 cannot even be solved after spending several hours if we do not
choose the total degree ordering. But certainly, we do not know yet (still an active
research topic) which ordering will be optimal for all cases.

3 Multiparametric equations, such as k250 and k292t (with 8 and 6 parameters re-
spectively) are also hard for GROEBNER to solve, even though the number of
fegns generated in both cases is only 3. In Shtokhamer et al (1986), it was men-
tioned that ODEFI ran out of space for the equation k250 on a VAX/780 machine
and could solve it only if 2 parameters are specified explicitly. That means such sets

} The current default ordering in PSODE version 2.
T Not expected to be solvable by PSODE (see table 10).
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Table 8. Solvability by PSODE(cont’d)

adjusted  partially
Type Solved Kamke Examples success success solved
rate rate examples
reducible to 75,131,152,210,217,220,233 18f20 18/18
Linear 241,242,259,267,278,283,291
298,300,316,354
reducible to 247,277,282,287 4/4 4/4
Homogeneous
reducible to 249,252,296,320,321,328,345  8/10 8/9
Bernoulli 357
reducible to 15,52,77,97,115,116,119,211 20/20 20/20 52,116
Separable 218,254,258,279,280,294,303 211,360
307,329,338,360,362
reducible to o/2 0/0
Abel
reducible to 0/3 0/0
Riccati
intfactor depends  122,319,340,344 4/4 4/4
on y only
intfactor depends 275,339 2/2 2/2
on 72 + 2 only
intfactor depends  243,255,260,304,318,324,333 77 77
on xy only
intfactor depends 301,302,317 3/3 3/3
on ry?
or z%y only
intfactor is a 244,293,327 3/4 3/4
general function
of r and ¥
no explicit 58,62,78,81,114,120,236,238 18/31 18/18 81

form given
in Kamke

257,261,264,312,313,323,332
334,342,346
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Table 9. Solvability by ODESOLVE

success partially
Type Solved Kamke Examples rate solved
examples
Linear 2-8,75,90-94,130,131,133,134,148-150 39/48 5,889
or reducible 153,154,161,174,175,192,193,196,198 133,148
to Linear 200,210,220,233,241,242,259,267,298,300 174,192
Homogeneous 112,113,117,123-125,136-138,167,204,223 36/39 112,113
or reducible 232,239,246,262,271,272,276,281,284-287 325,337
to Homogeneous  290,295,297,306,308,310,315,325,337
349,363,364
Bernoulli 29,44,101,108,109,129,132,156,158,160 16/26 129
or reducible 171,177,197,208,240,314
to Bernoulli
245,248,251,263,270,273,274,288,289,299 24/24 336
Exact 305,309,311,322,330,336,341,347 348,352
353,355,356,361
Separable 1,9,12,17,23,26,31,39,57,59,60,61,63-71 43/57 1,39,59-61
or reducible 73,76,89,96,118,135,159,183,190,191,199 67-71,73
to Separable 209,211 ,256,258,280,307,335,338,358-360 89,190,191
211,280,335
338,360
Abel o0/19
or reducible
to Abel
Riccati 19,207 2/53
or reducible
to Riccati
Linear in 213-216,221,222,224-229,231 13/13
coefficients
special 0/20
intfactor
Jacobi 0/1
no explicit 0/31
form given

in Kamke
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Table 10. Examples unsolved by PSODE

known to be  known to be non-elementary claimed to be

Type elementary or no explicit answer in be solved by
but unsolved Kaike’c book. 83C
by PSODE
Linearor h
reducible to none 5,133,435,343 none
Linear

Homogeneous or

reducible to none none none
Homogeneous
Bernoulli or
reducible to 350 129,351 350 only
Bernoulli
Exact 311 none 311
Separable or
reducible to none 1,69,70,71,73 none
Separable -
Abel or 36,37,40,43,45-48,111
reducible to none 145,147,169,185,237 none
Abel
Riccati or 13,14,18,20,21,22,24,25
reducible to none 27,28,30,88,95,99,105 none
Riccati 107,121,139,144,157,164
166,176,179,184
Linear in
coefficients none none none
special
intfactor 326 none 326
Jacobi none 250 none
no explicit 82,83,100,146,189,203
form given none 205,206,234,253,265 none
in Kamke 266,292

of equations pose common technical problems no matter whether the GROEBNER,

package1 is being used or not. Other algorithms for solving parametric algebraic
systems may be helpful in this respect (e.g. see Gao and Chou (1992)).

! ODEFI did not use GROEBNER basis approach.



Computing closed form solutions of first order ODEs using the Prelle-Singer procedure

44]

Table 11. Technical Difficulties

Example

Difficulties

Remarks

k311

The eigenpolynomials can be solved, but the
answers come from a quartic equation and so
all the eigenpolynomials contain a lot of
square root expressions. The main difficulty
arises when we come to solve for a rational
first integral because the arithmetic

should be done in an algebraic extension of
rationals and thus it is hard for REDUCE to
solve the problem.

solved by SGC
with reported
N=1

k326 Solving feqns and gegns will result in solving  solved by SGC
a quartic equation with 2 parameters, with reported
REDUCE cannot solve it after spending N=2
more than 8 hours.

k350 Solving for the irreducible eigenpolynomials solved by SGC
in step one of P.S is hard - in a particular with 2
step, 307 feqns are generated and such transcendentals

systems of equations are hard to solve.

and > 6 max

order terms

10. Conclusion

A simple and eflicient implementation of the Prelle-Singer procedure was developed to
solve first order ODEs. By performing experiments on Kamke examples, we confirm that
the Prelle-Singer procedure is an important method for formal solution of first order
ordinary differential equations, even though it is still a semi-decision algorithm. The
experimental results also indicated that by assigning a small degree bound (N < 4) in
the program, we can still solve a large proportion of differential equations in Kamke (1959)
and the solvable equations can cover most of the common types of differential equations
(such as linear, homogeneous, Bernoulli, exact, separable, etc) and some special types
of equations (such as Riccati and equations which require special integrating factors to
solve). Besides, by comparing the results for the polynomial and transcendental types of
equations, we discover that they are almost consistent with those reported in SGC, except
for a few examples which have discrepancies in degree bounds and some missing due to
technical difficulties. It was mentioned in MacCallum (1989) that the P_S procedure will
be incorporated into the present differential equation solver in REDUCE and such a goal
can be realized when the interfacing of PSODE with ODESOLVE is completed.
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Appendix

Suppose y is a dependent variable in a differential equation and z is the corresponding
independent variable. The present input format of PSODE is as follows:
psdesolve(ode,y,x [,deg bound,convert_index]).

The first four arguments should be self-explanatory. The fifth argument is an integer
value— setting it to 1 will result in converting all the trigonometric terms in ode into
tangents; while setting it to 2 will result in converting all of them into exponentials, These
conversions are done before the actual P_S procedure is performed. That means if we have
a trigonometric term like sin 2z in ode, then setting the convert_index to 1 will convert
it into 13-:2?15 5 While setting the convert_index to 2 will convert it into -5—2--—-3—?_—21
In general, setting the convert_index to 1 will enable the subsequent calculations to
run slightly faster than setting it into 2. If the user does not specify the fourth or the
fifth arguments, then the default values in PSODE will be used, they are N = 4 and
convert_index = 1 respectively. The following examples are chosen for demonstration

purposcs.

REDUCE 3.4.1, 15-Jul-g2 ...
1: load psode;
2: on psdetimings; % a time switch in PSODE
3: psdesolve(x*df(y,x)-y*(x*log(x~2/y)+2),y,x};
Solved by Prelle-Singer Algorithm with ¥ = 1
Time taken: 1938 ms
ARBCONSTANT=X + LOG{2#L0OG(X) - LOG(Y))
4: psdesolve(df(y,x)*(2x 3%y 3-x}+2x"3%y~3-y,y,x);
Solved by Prelle-Singer Algorithm with N = 1
Time taken: 799 ms

3 2 2 3

4*X *Y + 4 *Y + 1
ARBCONSTANT=—-

2 2
X &Y

5: psdesolve(df(y,x)+2x*y-x*e~(-x"2),y,x);
Solved by Prelle-Singer Algerithm with ¥ = 1

Time taken: 952 ms



Computing closed form solutions of first order ODEs using the Preile-Singer procedure 443

2
2 X
ARBCONSTART= - X + 2%E *Y

6: psdesolve(2y*df (y,x)-x*y 2=x"3,y,x};
Solved by Prelle-Singer Algorithm with N = 2
Time taken: 1037 ms

2 2 2
ARBCONSTANT=X - 2*LOG(X + Y + 2)
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