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1. Introduction

The classes of I-favorable and very I-favorable spaces were introduced by P. Daniels, K. Kunen and H. Zhou [2]. Let us
recall the corresponding definitions. Two players are playing the so-called open–open game in a space (X, T X ), a round
consists of player I choosing a nonempty open set U ⊂ X and player II a nonempty open set V ⊂ U ; I wins if the union
of II’s open sets is dense in X , otherwise II wins. A space X is called I-favorable if player I has a winning strategy. This means
that there exists a function σ : ⋃{T n

X : n � 0} → T X such that for each game

σ(∅), B0,σ (B0), B1,σ (B0, B1), B2, . . . , Bn,σ (B0, . . . , Bn), Bn+1, . . .

the union
⋃

n�0 Bn is dense in X , where ∅ �= σ(∅) ∈ T X and Bk+1 ⊂ σ(B0, B1, . . . , Bk) �= ∅ and ∅ �= Bk ∈ T X for k � 0.

A family C ⊂ [T X ]�ω is said to be a club if: (i) C is closed under increasing ω-chains, i.e., if C1 ⊂ C2 ⊂ · · · is an increasing
ω-chain from C , then

⋃
n�1 Cn ∈ C ; (ii) for any B ∈ [T X ]�ω there exists C ∈ C with B ⊂ C .

Let us recall [7, p. 218], that C ⊂c T X means that for any nonempty V ∈ T X there exists W ∈ C such that if U ∈ C and
U ⊂ W , then U ∩ V �= ∅. A space X is I-favorable if and only if the family

{
P ∈ [T X ]�ω: P ⊂c T X

}

contains a club, see [2, Theorem 1.6].
A space X is called very I-favorable if the family

{
P ∈ [T X ]�ω: P ⊂! T X

}

contains a club. Here, P ⊂! T X means that for any S ⊂ P and x /∈ clX
⋃

S , there exists W ∈ P such that x ∈ W and
W ∩ ⋃

S = ∅. It is easily seen that P ⊂! T X implies P ⊂c T X .
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It was shown by the first two authors in [5] that a compact Hausdorff space is I-favorable if and only if it can be
represented as the limit of a σ -complete (in the sense of Shchepin [10]) inverse system consisting of I-favorable compact
metrizable spaces and skeletal bonding maps, see also [4] and [6]. For similar characterization of I-favorable spaces with re-
spect to co-zero sets, see [14]. Recall that a continuous map f : X → Y is called skeletal if the set IntY clY f (U ) is nonempty,
for any U ∈ T X , see [8].

In this paper we show that there exists an analogy between the relations I-favorable spaces—skeletal maps and very
I-favorable spaces—d-open maps (see Section 2 for the definition of d-open maps). The following two theorems are our
main results:

Theorem 3.3. A Hausdorff space X is very I-favorable if and only if X = a- lim←− S, where S = {X A,qA
B , C} is a σ -complete inverse

system such that all X A are (not-necessarily Hausdorff) spaces with countable weight and the bonding maps qA
B are d-open and onto.

Theorem 4.1. A completely regular space X is very I-favorable with respect to the co-zero sets if and only if X is d-openly generated.

We say that a space X is an almost limit of the inverse system S = {Xσ ,πσ
� ,Γ }, if X can be embedded in lim←− S such that

πσ (X) = Xσ for each σ ∈ Γ . We denote this by X = a- lim←− S , and it implies that X is a dense subset of lim←− S . A completely
regular space X is d-openly generated if there exists a σ -complete inverse system S = {Xσ ,πσ

� ,Γ } consisting of separable
metric spaces Xσ and d-open surjective bonding maps πσ

� such that X = a- lim←− S .
Theorem 4.1 implies the following characterization of κ-metrizable compacta (see Corollary 4.3), which provides an

answer of a question from [14]: A compact Hausdorff space is very I-favorable with respect to the co-zero sets if and only
if X is κ-metrizable.

2. Very I-favorable spaces and d-open maps

T. Byczkowski and R. Pol [1] introduced nearly open sets and nearly open maps as follows. A subset of a topological
space is nearly open if it is in the interior of its closure. A map is nearly open if the image of every open subset is nearly
open. Continuous nearly open maps were called d-open by M. Tkachenko [12]. Obviously, every d-open map is skeletal.

Proposition 2.1. Let (X, T X ) and (Y , TY ) be topological spaces and f : X → Y a continuous function. Then the following conditions
are equivalent:

(1) f is d-open;
(2) clX f −1(V ) = f −1(clY V ) for any open V ⊂ Y ;
(3) f (U ) ⊂ IntY clY f (U ) for every open subset U ⊂ X ;
(4) { f −1(V ): V ∈ TY } ⊂! T X .

Proof. The implication (1) ⇒ (2) was established in [12, Lemma 5]. Obviously (3) ⇒ (1). Let us prove the implication
(2) ⇒ (3). Suppose U ⊂ X is open. Then we have X \ f −1(IntY clY f (U )) ⊂ X \U . Indeed, Y \ IntY clY f (U ) = clY (Y \clY f (U ))

and by (2) we get

f −1(clY
(
Y \ clY f (U )

)) = clX
(

f −1(Y \ clY f (U )
))

.

But clX ( f −1(Y \ clY f (U ))) = clX (X \ f −1(clY f (U ))) and

X \ f −1(clY f (U )
) ⊂ X \ clX f −1( f (U )

) ⊂ X \ clX U ⊂ X \ U .

Hence f (U ) ∩ Y \ IntY clY f (U ) = ∅ and f (U ) ⊂ IntY clY f (U ).
To show (4) ⇒ (2), assume that { f −1(V ): V ∈ TY } ⊂! T X . Since f is continuous we get clX f −1(V ) ⊂ f −1(clY V ) for any

open set V ⊂ Y . We shall show that f −1(clY V ) ⊂ clX f −1(V ) for any open V ⊂ Y . Suppose there exists an open set V ⊂ Y
such that

f −1(clY V ) \ clX f −1(V ) �= ∅.

Let x ∈ f −1(clY V ) \ clX f −1(V ) and S = { f −1(V )}. Since x /∈ clX
⋃

S = clX f −1(V ), there is an open set U ∈ BY such that
x ∈ f −1(U ) and f −1(U ) ∩ f −1(V ) = ∅. Therefore, f (x) ∈ U ∩ clY V which contradicts V ∩ U = ∅.

Finally, we can show that (2) yields { f −1(V ): V ∈ TY } ⊂! T X . Indeed, let S ⊂ { f −1(V ): V ∈ TY } and x /∈ clX
⋃

S . Then
there is U ∈ TY such that

⋃
S = f −1(U ). Hence, clX

⋃
S = f −1(clY U ). Put

W = f −1(Y \ clY U ).

We have x ∈ W and W ∩ clX
⋃

S = ∅. �
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Remark 2.2. If, under the hypotheses of Proposition 2.1, there exists a base BY ⊂ TY with { f −1(V ): V ∈ BY } ⊂! T X , then f
is d-open.

Indeed, we can follow the proof of the implication (4) ⇒ (2) from Proposition 2.1. The only difference is the choice of the
family S . If there exists x ∈ f −1(clY V ) \ clX f −1(V ) for some open V ⊂ Y , we choose S = { f −1(W ): W ∈ BY and W ⊂ V }.

Next lemma was established in [12, Lemma 9].

Lemma 2.3. Let f : X → Y and g : Y → Z be continuous maps with f being surjective. Then g is d-open provided so is g ◦ f . �
Let X be a topological space equipped with a topology T X and Q ⊂ T X . Suppose that there exists a function

σ : ⋃{Qn: n � 0} → Q such that if B0, B1, . . . is a sequence of nonempty elements of Q with B0 ⊂ σ(∅) and Bn+1 ⊂
σ((B0, B1, . . . , Bn)) for all n ∈ ω, then {Bn: n ∈ ω} ∪ {σ((B0, B1, . . . , Bn)): n ∈ ω} ⊂! Q. The function σ is called a strong
winning strategy in Q. If Q = T X , σ is called a strong winning strategy. It is clear that if σ is strong winning strategy, then
it is a winning strategy for player I in the open–open game.

Lemma 2.4. Let σ : ⋃{Qn: n � 0} → Q be a strong winning strategy in Q, where Q is a family of open subsets of X . Then P ⊂! Q
for every family P ⊂ Q such that P is closed under σ and finite intersections.

Proof. Let P ⊂ Q be closed under σ and finite intersections. Fix a family S ⊂ P and x /∈ cl
⋃

S . If σ(∅)∩⋃
S �= ∅, then take

an element U ∈ S such that σ(∅)∩ U �= ∅ and put V 0 = σ(∅)∩ U ∈ P . If σ(∅)∩⋃
S = ∅, then put V 0 = σ(∅) ∈ P . Assume

that sets V 0, . . . , Vn ∈ P are just defined. If σ(V 0, . . . , Vn)∩⋃
S �= ∅, then take an element U ∈ S such that σ(V 0, . . . , Vn)∩

U �= ∅ and put Vn+1 = σ(V 0, . . . , Vn) ∩ U ∈ P . If σ(V 0, . . . , Vn) ∩ ⋃
S = ∅, then put Vn+1 = σ(V 0, . . . , Vn) ∈ P . Take a

subfamily

U =
{

Vk: Vk ∩
⋃

S �= ∅ and k ∈ ω
}

⊂ Q.

Since σ is strong strategy, then
⋃{Vn: n ∈ ω} is dense in X . Hence cl

⋃
U = cl

⋃
S . Since {Vn: n ∈ ω}∪{σ((V 0, V 1, . . . , Vn)):

n ∈ ω} ⊂! Q there exists V ∈ {Vn: n ∈ ω} ∪ {σ((V 0, V 1, . . . , Vn)): n ∈ ω} ⊂ P such that x ∈ V and V ∩ ⋃
S = ∅. �

Proposition 2.5. Let X be a topological space and Q ⊂ T X be a family closed under finite intersection. Then there is a strong winning
strategy σ : ⋃{Qn: n � 0} → Q in Q if and only if the family {P ∈ [Q]�ω: P ⊂! Q} contains a club C such that every A ∈ C is
closed under finite intersections.

Proof. If there is a club C ⊂ {P ∈ [Q]�ω: P ⊂! Q}, then following the arguments from [2, Theorem 1.6] one can construct
a strong winning strategy in Q.

Suppose there exists a strong winning strategy σ : ⋃{Qn: n � 0} → Q. Let C be the family of all countable subfamilies
A ⊂ Q such that A is closed under σ and finite intersections. The family C ⊂ [Q]�ω is a club. Obviously, C is closed under
increasing ω-chains. If B ∈ [Q]�ω , there exists a countable family AB ⊂ Q which contains B and is closed under σ and
finite intersections. So, AB ∈ C . According to Lemma 2.4, A ⊂! Q for all A ∈ C . �
Corollary 2.6. A Hausdorff space (X, T ) is very I-favorable if and only if the family {P ∈ [T ]�ω: P ⊂! T } contains a club C with the
following properties:

(i) every A ∈ C covers X and it is closed under finite intersections;
(ii) for any two different points x, y ∈ X there exists A ∈ C containing two disjoint elements Ux, U y ∈ A with x ∈ Ux and y ∈ U y ;

(iii)
⋃

C = T . �
The next proposition shows that every space X having a base B X such that the family {P ∈ [B X ]�ω: P ⊂! B X } contains

a club is very I-favorable.

Proposition 2.7. If there exists a base B of X such that the family {P ∈ [B]�ω: P ⊂! B} contains a club, then the family {P ∈
[T X ]�ω: P ⊂! T X } contains a club too.

Proof. If there exists a base B of X such that the family {P ∈ [B]�ω: P ⊂! B} contains a club, then there exists a strong
winning strategy in B. Therefore, player I has winning strategy in the open–open game G(B) (i.e., the open–open game
when each player chooses a set from B). This implies that X satisfies the countable chain condition, otherwise the strategy
for player II to choose at each stage a nonempty subset of a member of a fixed uncountable maximal disjoint collection
of elements of B is winning (see [2, Theorem 1.1(ii)] for a similar situation). Consequently, every nonempty open subset
G ⊂ X contains a countable disjoint open family whose union is dense in G (just take a maximal disjoint open family in G).
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Now, for each element U ∈ T X \ B we assign a countable family AU ⊂ B of pairwise disjoint open subsets of U such that
cl

⋃
AU = cl U . If U ∈ B, then we assign AU = {U }. Let C ⊂ {P ∈ [B]�ω: P ⊂! B} be a club. Put

C′ = {
A ∪ Q: Q ∈ C and A ∈ [T X ]�ω with AU ⊂ Q for all U ∈ A

}
.

First, observe that if A ∪ Q A ⊂ D ∪ Q D and A ∪ Q A, D ∪ Q D ∈ C′ , then Q A ⊂ Q D . Indeed, if U ∈ Q A ⊂ B then U ∈ D ∪ Q D

and U ∈ B. If U ∈ D , then we get {U } = AU ⊂ Q D (i.e. U ∈ Q D ). Therefore, if we have a chain {An ∪ Q An : n ∈ ω} ⊂ C′ , then
⋃

{An ∪ Q An : n ∈ ω} =
⋃
n∈ω

An ∪
⋃
n∈ω

Q An ∈ C′.

The absorbing property (i.e. for every A ∈ [T X ]�ω there is an element P ∈ C′ such that A ⊂ P ) for C′ is obvious. So,
C′ ⊂ [T X ]�ω is a club.

It remains to prove that A ∪ Q ⊂! T X for every A ∪ Q ∈ C′ . Fix a subfamily S ⊂ A ∪ Q and x /∈ cl
⋃

S . Define

S ′ = {U ∈ S : U ∈ Q} ∪
⋃

{AU : U ∈ A}
and note that cl

⋃
S = cl

⋃
S ′ . The last equality follows from the inclusion

⋃
S ′ ⊂ ⋃

S and the fact that
⋃

AU is dense in
U for every U ∈ A. So, if x /∈ cl

⋃
S then x /∈ cl

⋃
S ′ . Since S ′ ⊂ Q ∈ C there is G ∈ Q such that x ∈ G and G ∩cl

⋃
S ′ = ∅. �

If X is a completely regular space, then ΣX denotes the collection of all co-zero sets in X .

Corollary 2.8. Let X be a completely regular space and B ⊂ ΣX a base for X. If {P ∈ [B]�ω: P ⊂! B} contains a club, then the family
{P ∈ [ΣX ]�ω: P ⊂! ΣX } contains a club too.

Proof. The proof of previous proposition works in the present situation. The only modification is that for each U ∈ ΣX \ B
we assign a countable family AU ⊂ B of pairwise disjoint co-zero subsets of U such that cl

⋃
AU = cl U . Such AU exists.

For example, any maximal disjoint family of elements from B which are contained in U can serve as AU . The new club is
the family

C′ = {
A ∪ Q: Q ∈ C and A ∈ [ΣX ]�ω with AU ⊂ Q for all U ∈ A

}
,

where C ⊂ {P ∈ [B]�ω: P ⊂! B} is a club. �
3. Inverse systems with d-open bounding maps

Recall some facts from [5]. Let P be an open family in a topological space X and x, y ∈ X . We say that x ∼P y if and
only if x ∈ V ⇔ y ∈ V for every V ∈ P . The family of all sets [x]P = {y: y ∼P x} is denoted by X/P . There exists a mapping
q : X → X/P defined by q[x] = [x]P . The set X/P is equipped with the topology T P generated by all images q(V ), V ∈ P .

Lemma 3.1. ([5, Lemma 1]) The mapping q : X → X/P is continuous provided P is an open family X which is closed under finite
intersection. Moreover, if X = ⋃

P , then the family {q(V ): V ∈ P } is a base for the topology T P . �
Lemma 3.2. Let a space X be the limit of an inverse system {Xσ ,πσ

� ,Σ} with surjective projections πσ : X → Xσ . Then the bonding
maps πσ

� are d-open if and only if each πσ is d-open.

Proof. Assume all πσ
� are d-open. We are going to prove that any projection πρ is d-open. It suffices to show that

πρ((πσ )−1(U )) is dense in some open subset of Xρ for any open U ⊂ Xσ , where σ � ρ . Since πσ
ρ is d-open and

πρ((πσ )−1(U )) = πσ
ρ (U ), πρ is d-open. Conversely, if the limit projections are d-open, then, by Lemma 2.3, the bonding

maps are also d-open. �
Theorem 3.3. A Hausdorff space X is very I-favorable if and only if X = a- lim←− S, where S = {X A,qA

B , C} is a σ -complete inverse

system such that all X A are (not-necessarily Hausdorff) spaces with countable weight and the bonding maps qA
B are d-open and onto.

Proof. Suppose (X, T ) is very I-favorable. By Corollary 2.6, there exists a club C ⊂ {P ∈ [T ]�ω: P ⊂! T } satisfying condi-
tions (i)–(iii). For every A ∈ C consider the space X A = X/A and the map qA : X → X A . Since each A is a cover of X closed
under finite intersections, by Lemma 3.1, qA is a continuous surjection and {qA(U ): U ∈ A} is a countable base for X A .
Moreover, q−1

A (qA(U )) = U for all U ∈ A, see [5]. This, according to Remark 2.2, implies that each qA is d-open (recall that
A ⊂! T ). If A, B ∈ C with B ⊂ A, then there exists a map qA

B : X A → XB which is continuous because (qA
B )−1(qB(U )) = qA(U )

for every U ∈ B . The maps qA are also d-open, see Lemma 3.2. In this way we obtained the inverse system S = {X A,qA, C}
B B
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consisting of spaces with countable weight and d-open bonding maps. Since C is closed under increasing chains, S is
σ -complete. It remains to show that the map h : X → lim←− S , h(x) = (qA(x))A∈C , is an embedding. Let πA : lim←− S → X A ,

A ∈ C , be the limit projections of S . The family {π−1
A (qA(U )): U ∈ A, A ∈ C} is a base for the topology of lim←− S . Since

h−1(π−1
A (qA(U ))) = U for any U ∈ A ∈ C , h is continuous and h(X) is dense in lim←− S . Because C satisfies condition (ii) (see

Corollary 2.6), h is one-to-one. Finally, since h(U ) = h(X)∩π−1
A (qA(U )) for any U ∈ A ∈ C (see [5, the proof of Theorem 11])

and C contains a base for T , h is an embedding.
Suppose now that X = a- lim←− S , where S = {X A,qA

B , C} is a σ -complete inverse system such that all X A are spaces with
countable weight and the bonding maps qA

B are d-open and onto. Then, by Lemma 3.2, all limit projections πA : lim←− S → X A ,
A ∈ C , are d-open. Since X is dense in lim←− S , any restriction qA = πA |X : X → X A is also d-open. Moreover, all qA are

surjective (see the definition of a- lim←−). Then, according to Proposition 2.1, {q−1
A (U ): U ∈ T A} ⊂! T , where T A is the topology

of X A . Consequently, if B A is a countable base for T A , we have P A = {q−1
A (U ): U ∈ B A} ⊂! T . The last relation implies

P A ⊂! B with B = ⋃{P A: A ∈ C} being a base for T . Let us show that P = {P A: A ∈ C} is a club in {Q ∈ [B]�ω: Q ⊂! B}.
Since S is σ -complete, the supremum of any increasing sequence from C is again in C . This implies that P is closed under
increasing chains. So, it remains to prove that for every countable family {U j: j = 1,2, . . .} ⊂ B there exists A ∈ C with
U j ∈ P A for all j � 1. Because every U j is of the form q−1

A j
(V j) for some A j ∈ C and V j ∈ B A j , there exists A ∈ C with

A > A j for each j. It is easily seen that P A contains the family {U j: j � 1} for any such A. Therefore, P is a club in
{Q ∈ [B]�ω: Q ⊂! B}. Finally, according to Proposition 2.7, the family {Q ∈ [T ]�ω: Q ⊂! T } also contains a club. Hence,
X is very I-favorable. �

It follows from Theorem 3.3 that every dense subset of a space from each of the following classes is very I-favorable:
products of first countable spaces, κ-metrizable compacta. More generally, by [13, Theorem 2.1(iv)], every space with a
lattice of d-open maps is very I-favorable.

The next theorem provides another examples of very I-favorable spaces.

Theorem 3.4. Let f : X onto−−→ Y be a perfect map with X, Y being regular spaces. Then Y is very I-favorable, provided so is X .

Proof. This theorem was established in [2] when X and Y are compact. The same proof works in our more general situa-
tion. �
Corollary 3.5. Every continuous image under a perfect map of a space possessing a lattice of d-open maps is very I-favorable. �
4. Very I-favorable spaces with respect to the co-zero sets

We say that a space X is very I-favorable with respect to the co-zero sets if there exists a strong winning strategy σ :⋃{Σn
X : n � 0} → ΣX , where ΣX denotes the collection of all co-zero sets in X . By Proposition 2.5, this is equivalent to the

existence of a club in the family {P ∈ [ΣX ]�ω: P ⊂! ΣX }.
A completely regular space X is d-openly generated if X is the almost limit of a σ -complete inverse system S =

{Xσ ,πσ
� ,Γ } consisting of separable metric spaces Xσ and d-open surjective bonding maps πσ

� .

Theorem 4.1. A completely regular space X is very I-favorable with respect to the co-zero sets if and only if X is d-openly generated.

Proof. Suppose X is very I-favorable with respect to the co-zero sets and σ : ⋃{Σn
X : n � 0} → ΣX is a strong winning strat-

egy in ΣX . We place X as a C∗-embedded subset of a Tychonoff cube I
A . If B ⊂ A, let πB : I

A → I
B be the natural projection

and pB be restriction map πB |X . Let also XB = pB(X). If U ⊂ X we write B ∈ k(U ) to denote that p−1
B (pB(U )) = U .

Claim 1. For every U ∈ ΣX there exists a countable BU ⊂ A such that BU ∈ k(U ) with pBU (U ) being a co-zero set in XBU .

For every U ∈ ΣX there exists a continuous function fU : X → [0,1] with f −1
U ((0,1]) = U . Next, extend fU to a continu-

ous function g : I
A → [0,1] (recall that X is C∗-embedded in I

A ). Then, there exists a countable set BU ⊂ A and a function
h : I

BU → [0,1] with g = h ◦ πBU . Obviously, U = p−1
BU

(h−1((0,1]) ∩ pBU (X)), which completes the proof of the claim.
Let B = {Uα: α < τ } be a base for the topology of X consisting of co-zero sets such that for each α there exists a finite

set Hα ⊂ A with Hα ∈ k(Uα). For any finite set C ⊂ A let γC be a fixed countable base for XC .

Claim 2. For every countable B ⊂ A there exists a countable set Γ ⊂ A containing B and a countable family UΓ ⊂ ΣX satisfying the
following conditions:

(i) UΓ is closed under σ and finite intersections;
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(ii) Γ ∈ k(U ) for all U ∈ UΓ ;
(iii) BΓ = {pΓ (U ): U ∈ UΓ } is a base for pΓ (X).

We construct by induction a sequence {C(m)}m�0 of countable subsets of A, and a sequence {Vm}m�0 of countable
subfamilies of ΣX such that:

• C0 = B and V0 = {p−1
B (V ): V ∈ B B}, where B B is a base for XB ;

• C(m + 1) = C(m) ∪ ⋃{BU : U ∈ Vm};
• V3m+1 = V3m ∪ {σ(U1, . . . , Un): U1, . . . , Un ∈ V3m, n � 1};
• V3m+2 = V3m+1 ∪ ⋃{p−1

C (γC ): C ⊂ C(3m + 1) is finite};

• V3m+3 = V3m+2 ∪ {⋂i=n
i=1 Ui: U1, . . . , Un ∈ V3m+2, n � 1}.

It is easily seen that the set Γ = ⋃∞
m=0 Cm and the family UΓ = ⋃∞

m=0 Vm satisfy the conditions (i)–(iii) from Claim 2.

Claim 3. The map pΓ : X → XΓ is a d-open map.

It follows from (ii) that UΓ = {p−1
Γ (V ): V ∈ BΓ }. According to Lemma 2.4, UΓ ⊂! ΣX . Consequently, UΓ ⊂! T X . Therefore,

we can apply Proposition 2.1 to conclude that pΓ is d-open.
Now, consider the family Λ of all Γ ∈ [A]�ω such that there exists a countable family UΓ ⊂ ΣX satisfying the condi-

tions (i)–(iii) from Claim 2. We consider the inverse system S = {XΓ , pΓ
Θ,Λ}, where Θ ⊂ Γ ∈ Λ and pΓ

Θ : XΓ → XΘ is the
restriction of the projection πΓ

Θ : I
Γ → I

Θ on the set XΓ . Since pΘ = pΓ
Θ ◦ pΓ and both pΓ and pΘ are d-open surjections,

pΓ
Θ is also d-open (see Lemma 2.3). Moreover, the union of any increasing chain in Λ is again in Λ. So, Λ, equipped the

inclusion order, is σ -complete. Finally, by Claim 2, Λ covers the set A. Therefore, the limit of S is a subset of I
A containing

X as a dense subset. Hence, X is d-openly generated.
Suppose that X is d-openly generated. So, X = a- lim←− S , where S = {Xσ , pσ

� ,Γ } is a σ -complete inverse system con-
sisting of separable metric spaces Xσ and d-open surjective bonding maps pσ

� . Let pσ : lim←− S → Xσ , σ ∈ Γ , be the limit
projections and qσ = pσ |X . As in the proof of Theorem 3.3, we can show that P = {Pσ : σ ∈ Γ } is a club in the family
{Q ∈ [B X ]�ω: Q ⊂! B X }, where B X = ⋃{Pσ : σ ∈ Γ } and Pσ = {q−1

σ (V ): V ∈ Bσ } with Bσ being a countable base for the
topology of Xσ . Since B X consists of co-zero sets, by Corollary 2.8, the family {Q ∈ [ΣX ]�ω: Q ⊂! ΣX } contains also a club.
Hence, X is very I-favorable with respect to the co-zero sets. �

We say that a space X ⊂ Y is regularly embedded in Y is there exists a function e : T X → TY satisfying the following
conditions for any U , V ∈ T X :

• e(∅) = ∅;
• e(U ) ∩ X = U ;
• e(U ) ∩ e(V ) = ∅ provided U ∩ V = ∅.

Theorem 4.1 and [13, Theorem 2.1(ii)] yield the following external characterization of very I-favorable spaces with respect
to the co-zero sets (I-favorable spaces with respect to the co-zero sets have a similar external characterization, see [14,
Theorem 1.1]).

Corollary 4.2. A completely regular space is very I-favorable with respect to the co-zero sets if and only if every C∗-embedding of X in
any Tychonoff space Y is regular.

The next corollary provides an answer of a question from [14] whether there exists a characterization of κ-metrizable
compacta in terms a game between two players.

Corollary 4.3. A compact Hausdorff space is very I-favorable with respect to the co-zero sets if and only if X is κ-metrizable.

Proof. A compact Hausdorff space is κ-metrizable spaces iff X is the limit space of a σ -complete inverse system consisting
of compact metric spaces and open surjective bonding maps, see [11] and [10]. Since every d-open surjective map between
compact Hausdorff spaces is open, this corollary follows from Theorem 4.1. �

Recall that a normal space is called perfectly normal if every open set is a co-zero set. So, any perfectly normal spaces
is very I-favorable if and only if it is very I-favorable with respect to the co-zero sets. Thus, we have the next corollary.

Corollary 4.4. Every perfectly normal very I-favorable space is d-openly generated.
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Lemma 4.5. Let (X, T ) be a completely regular space. If there is a strong winning strategy σ ′ : ⋃{T n: n � 0} → T , then there is a
strong winning strategy σ : ⋃{Rn: n � 0} → R, where R consists of all regular open subset of X .

Proof. Assume that σ ′ : ⋃{T n: n � 0} → T is a strong winning strategy. We define a strong winning strategy on R. Let
σ(∅) = Int clσ ′(∅). We define by induction σ((V 0, V 1, . . . , Vk)), Vk+1 ⊂ σ((V 0, V 1, . . . , Vk)), by

σ
(
(V 0, V 1, . . . , Vn+1)

) = Int clσ ′((V ′
0, V ′

1, . . . , V ′
n+1

))
,

where V ′
k+1 = Vk+1 ∩ σ ′((V ′

0, V ′
1, . . . , V ′

k)).
Let us show that F = {Vn: n ∈ ω} ∪ {σ((V 0, V 1, . . . , Vn+1)): n ∈ ω} ⊂! R. If S ⊂ F and x /∈ cl

⋃
S , let

F ′ = {
V ′

n: n ∈ ω
} ∪ {

σ ′((V ′
0, V ′

1, . . . , V ′
n+1

))
: n ∈ ω

}

and

S ′ = {
W ′ ∈ F ′: W ∈ S

}
.

Note that
⋃

S ′ ⊂ ⋃
S , hence x /∈ cl

⋃
S ′ . So, there is W ′ ∈ S ′ such that W ′ ∩ U ′ = ∅ for all U ′ ∈ F ′ . Assume that W ′ =

Vk+1 ∩ σ ′((V ′
0, V ′

1, . . . , V ′
k)) and U ′ = V i+1 ∩ σ ′((V ′

0, V ′
1, . . . , V ′

i )). Then we infer that

Vk+1 ∩ Int clσ ′((V ′
0, V ′

1, . . . , V ′
k

)) ∩ V i+1 ∩ Int clσ ′((V ′
0, V ′

1, . . . , V ′
i

)) = ∅.

Since Vk+1 ⊂ σ((V 0, V 1, . . . , Vk)) = Int clσ ′((V ′
0, V ′

1, . . . , V ′
k)) and V i+1 ⊂ σ((V 0, V 1, . . . , V i)) = Int clσ ′((V ′

0, V ′
1, . . . , V ′

i )),
we get Vk+1 ∩ V i+1 = ∅. Suppose W ′ = Vk+1 ∩ σ ′((V ′

0, V ′
1, . . . , V ′

k)) and U ′ = σ ′((V ′
0, V ′

1, . . . , V ′
i )). Then

Vk+1 ∩ Int clσ ′((V ′
0, V ′

1, . . . , V ′
k

)) ∩ Int clσ ′((V ′
0, V ′

1, . . . , V ′
i

)) = ∅.

So, W ∩ U = ∅. Similarly, we obtain W ∩ U = ∅ if W ′ = σ ′((V ′
0, V ′

1, . . . , V ′
k)) and U ′ = σ ′((V ′

0, V ′
1, . . . , V ′

i )). This completes
the proof. �

We say that a topological space X is perfectly κ-normal if for every open and disjoint subset U , V there are open Fσ

subset W U , W V with W U ∩ W V = ∅ and U ⊂ W U and V ⊂ W V . It is clear that a space X is perfectly κ-normal if and only
if that each regular open set in X is Fσ .

Proposition 4.6. If a normal perfectly κ-normal space is a continuous image of a very I-favorable space under a perfect map, then X
is d-openly generated.

Proof. Every open Fσ -subset of a normal space is a co-zero set, see [3]. So, every regular open subset of a normal and
perfectly κ-normal space is a co-zero set. Consequently, if X is the image of very I-favorable space and X is normal and
perfectly κ-normal, then X is very I-favorable (see Theorem 3.4). Hence, according to Lemma 4.5, X is a very I-favorable
with respect to the co-zero sets. Finally, Theorem 4.1 implies that X is d-openly generated. �
Corollary 4.7. If the image of a compact Hausdorff very I-favorable space under a continuous map is perfectly κ-normal, then X is
κ-metrizable.

Corollary 4.7 implies the following result of Shchepin [11, Theorem 18] which has been proved by different methods:
If the image of a κ-metrizable compact Hausdorff space X under a continuous map is perfectly κ-normal, then X is κ-
metrizable too.

Let us also mention that, according to Shapiro’s result [9], continuous images of κ-metrizable compacta have special
spectral representations. This result implies that any such an image is I-favorable.

References

[1] T. Byczkowski, R. Pol, On the closed graph and open mapping theorems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976) 723–726.
[2] P. Daniels, K. Kunen, H. Zhou, On the open–open game, Fund. Math. 145 (1994) 205–220.
[3] R. Engelking, General Topology, Polish Scientific Publishers, Warszawa, 1977.
[4] A. Kucharski, Sz. Plewik, Game approach to universally Kuratowski–Ulam spaces, Topology Appl. 154 (2007) 421–427.
[5] A. Kucharski, Sz. Plewik, Inverse systems and I-favorable spaces, Topology Appl. 156 (2008) 110–116.
[6] A. Kucharski, Sz. Plewik, Skeletal maps and I-favorable spaces, Acta Univ. Carolin. Math. Phys. 51 (2010) 67–72.
[7] K. Kunen, Set Theory. An Introduction to Independence Proofs, Stud. Logic Found. Math., vol. 102, North-Holland Publishing Co., Amsterdam, 1980.
[8] J. Mioduszewski, L. Rudolf, H-closed and extremally disconnected Hausdorff spaces, Dissertationes Math. 66 (1969).
[9] L. Shapiro, On a spectral representation of images of κ-metrizable bicompacta, Uspekhi Mat. Nauk 37 (1982) 245–246 (in Russian).

[10] E. Shchepin, Topology of limit spaces with uncountable inverse spectra, Uspekhi Mat. Nauk 31 (1976) 191–226.
[11] E. Shchepin, Functors and uncountable powers of compacta, Uspekhi Mat. Nauk 36 (1981) 3–62 (in Russian).
[12] M. Tkachenko, Some results on inverse spectra, II, Comment. Math. Univ. Carolin. 22 (1981) 819–841.
[13] V.M. Valov, Some characterizations of the spaces with a lattice of d-open mappings, C. R. Acad. Bulgare Sci. 39 (1986) 9–12.
[14] V. Valov, External characterization of I-favorable spaces, arXiv:1005.0074 [math.GN].


	Very I-favorable spaces
	1 Introduction
	2 Very I-favorable spaces and d-open maps
	3 Inverse systems with d-open bounding maps
	4 Very I-favorable spaces with respect to the co-zero sets
	References


