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Previously we identified a novel mutation (F71L) in the aA-crystallin gene associated with early onset
of age-related cataract. However, it is not known how the missense substitution translates into
reduced chaperone-like activity (CLA), and how the structural and functional changes lead to early
onset of the disease. Herein, we show that under native conditions the F71L-mutant is not signifi-
cantly different from wild-type with regard to secondary and tertiary structural organization, hydro-
phobicity and the apparent molecular mass of oligomer but has substantial differences in structural
and functional properties following a heat treatment. Wild-type aA-crystallin demonstrated
increased CLA, whereas the F71L-mutant substantially lost its CLA upon heat treatment. Further,
unlike the wild-type aA-subunit, F71L-subunit did not protect the aB-subunit in hetero-oligomeric
complex from heat-induced aggregation. Moreover, hetero-oligomer containing F71L and aB in 3:1
ratio had significantly lower CLA upon thermal treatment compared to its unheated control.These
results indicate that a-crystallin complexes containing F71L-aA subunits are less stable and have
reduced CLA. Therefore, F71L may lead to earlier onset of cataract due to interaction with several
environmental factors (e.g., temperature in this case) along with the aging process.

Structured summary of protein interactions:
alphaA crystallin and alphaA crystallin bind by molecular sieving (View interaction)
alphaA crystallin and alphaB crystallin bind by molecular sieving(View interaction)
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1. Introduction

Crystallins are the major structural proteins of the eye lens and
whose short ordered arrangement provides the physical basis for
the lens transparency [1,2]. Impaired lens function, due to partial
or complete loss of transparency is called cataract, a leading cause
of blindness worldwide [3]. a-Crystallin, a small heat-shock protein
(sHSP1) characterized by the presence of a conserved ‘a-crystallin
domain’ at its C-terminal region, is one of the three major crystallins
and constitutes about 40% of the total soluble proteins of the
vertebrate eye lens [1,4]. Eye lens a-crystallin is composed of two
subunits, aA and aB, encoded by CRYAA and CRYAB genes, respec-
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tively. Chaperone-like activity (CLA) of a-crystallin is considered
to be critical for the maintenance of eye lens transparency (reviewed
in [1,4,5]). Studies with single and double knockout animals of aA
and aB have highlighted the importance of a-crystallin in lens
transparency [6–8]. Further, certain point mutations in aA- and
aB-crystallin genes are linked with non-syndromic, hereditary
human cataracts [reviewed in 1,4]. However, many of these early
onset cataracts are inherited by autosomal dominant mechanism
that result in early onset either congenitally or relatively early in life.

Despite the availability of effective surgical treatment, cataracts
still comprise a significant risk for visual impairment all over the
world, particularly in older individuals. Cataract accounts for an
estimated 16 million cases of blindness worldwide, with approxi-
mately half of all cases originating from Africa and Asia [3]. Age-re-
lated cataract (ARC) is generally considered as a multifactorial
disease. While, epidemiological research has been focused mostly
on the role of environmental risk factors, recent studies indicated
a contribution of genetic factors in the pathogenesis of ARC
lsevier B.V. All rights reserved.
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[9,10]. Genetic predisposition in association with other etiological
factors may contribute to ARC. Although, evidence for the genetic
component to the development of ARC is increasing, genetic varia-
tions associated with ARC are very few compared to those for con-
genital and hereditary cataracts. Recently we identified a novel
point mutation (F71L) in exon-2 of CRYAA (aA-crystallin) gene
associated with early onset of age-related cataracts [11]. The age-
at-onset of nuclear cataract in F71L patients was about 10 years
earlier (50 years) when compared to the mean age-at-onset of nu-
clear cataract cases (60 years) in individuals without the mutation.

The effect of missense mutations on a-crystallin structure and
function have been extensively studied [12–17] In general, point
mutations in aA-crystallin result in altered structure, loss of chap-
erone-like activity, and appear to lead to cataract formation and
abnormal lens development [13–17]. While the F71L-aA-crystallin
generally displayed a loss of CLA that varied (10–90%) depending
upon the client proteins and assay conditions the mutation did
not significantly affect the apparent molecular mass, secondary
and tertiary structure and hydrophobicity of aA-crystallin [11].
Sharma et al. [18] using a synthetic peptide (mini-aA-crystallin),
have demonstrated the importance of sequence 70–88 in the chap-
erone-like function of aA-crystallin. A later study demonstrated
that Phe-71 is critical for CLA [19]. It is intriguing to note that
the missense mutation (F71L) in aA-crystallin did not cause major
structural changes, but substantially lowered CLA [11]. Hence, the
early age-at-onset of cataract in the individuals carrying F71L
mutation in aA-crystallin might be due to a partial loss of in vivo
CLA or enhanced susceptibility to structural alterations induced
by deleterious environmental factors along with aging. Structural
reorganization of a-crystallin due to thermotrophic and other
factors is known to modulate the CLA [1]. In this study we report
temperature-dependent structural and functional alterations in
F71L-aA-crystallin and the thermal sensitivity of the mutant
protein that may provide a molecular basis for the early on-set of
cataract due to the F71L mutation.

2. Materials and methods

2.1. Expression and purification of recombinant wild-type and F71L
mutant aA-crystallins

The recombinant wild-type and F71L mutant aA-crystallins
were overexpressed in Escherichia coli and the proteins were puri-
fied to homogeneity according to previously reported methods
[11,20]. The concentration of wild-type and F71L mutant aA-crys-
tallin proteins was estimated by Lowry method.

2.2. Preheat treatment

Structural perturbation in case of a-crystallin generally refers
(but not exclusive) to treatment of mild (low) concentrations of
denaturants or heating to high temperatures followed by cooling
it to ambient temperature (preheated). To understand thermo-
trophic mediated structural and functional properties, the wild-
type and F71L aA-crystallins (1 mg/ml) were heated at 65 �C for
15 min in a water bath and allowed to cool-down to room temper-
ature and referred henceforth as preheated wild-type aA- and pre-
heated aA-F71L-aA-crystallin.

2.3. Size-exclusion chromatography

The apparent molecular mass of wild-type and F71L mutant
aA-crystallins under normal conditions and after preheating was
determined by size-exclusion chromatography on a 600 � 7.5 mm
TSK-3000 SW column (Tosoh Co., Japan) using a Shimadzu HPLC
system [21]. The column was equilibrated with 0.1 M sodium phos-
phate buffer, pH 6.9 containing 0.1 M sodium sulfate at a flow rate
of 1 ml/min. Column was calibrated using standard molecular
weight markers (thyroglobulin-669, c-globulin-160, BSA-67, oval-
bumin-45 kDa).

2.4. ANS fluorescence studies

The surface hydrophobicity of normal and preheated aA-crys-
tallins was measured using a hydrophobic probe, 8-anilino-1-
naphthalene sulfonic acid (ANS). 50 lM ANS solution in 10 mM
of sodium phosphate buffer was added to protein samples of
0.1 mg/ml and incubated in the dark at room temperature for
30 min. The samples were excited at 385 nm and the emission
spectra were recorded between 400 and 600 nm using a Jasco-
FP-6500 spectrofluorometer [11].

2.5. Circular dichroism studie

Secondary and tertiary structural changes of normal and pre-
heated aA-crystallins were investigated by far- and near-UV CD
spectra in a Jasco-810 spectropolarimeter [11,21,22]. Protein con-
centrations of 0.1 mg/ml and 1 mg/ml were used for recording
the far- and near-UV CD spectra respectively. The reported CD
spectra are the average of five accumulations.

2.6. Chaperone-like assays

The ability of normal and preheated aA-crystallins to prevent
protein aggregation was assessed by using different target proteins
under different assay conditions. Heat-induced aggregation of bL-
and c-crystallins at 60 �C and DTT-induced aggregation of insulin
at 37 �C were monitored by measuring light scattering as a func-
tion of time at 360 nm using a Lamda-35 spectrophotometer (Per-
kin–Elmer) according to previously described methods [20,22].

3. Results

The secondary and tertiary structures of wild-type and F71L
mutant aA-crystallins were determined under normal conditions
and upon preheat treatment by far- and near-UV CD spectral anal-
ysis. The far-UV CD spectra of wild-type and F71L-aA-crystallins
were similar suggesting no major differences in secondary struc-
ture (Fig. 1A). While the secondary structure of preheated wild-
type aA-crystallin is essentially unchanged, a significant alteration
in secondary structure was observed with preheated F71L aA-crys-
tallin as evidenced by an increase in negative ellipticity in the re-
gion 210–220 nm indicating formation of beta-sheet rich
structure (Fig. 1A). Although, the near-UV CD spectra for the two
proteins were similar under normal conditions the near-UV CD
spectra of preheated wild-type aA-crystallin revealed alteration
at tertiary levels as reported previously [22]. However, compared
to preheated wild-type aA-crystallin, preheated F71L-aA-crystallin
showed dramatic changes in near-UV region, particularly loss of
intensity between 270 and 290 nm region (Fig. 1B) which indicates
a change in the chiral environment of tryptophan residues.

As reported previously elution profile of wild-type and F71L-aA-
crystallin was found to be similar with an approximate oligomeric
mass of 650 kDa (Fig. 2A). The preheated wild-type aA-crystallin
eluted just before its respective unheated control indicating an
increase in the aggregate molecular mass (approx. 850 kDa) upon
structural perturbation. However, F71L-aA-crystallin eluted even
before the preheated wild-typeaA-crystallin (Fig. 2A). This indicates
that preheat treatment of F71L-aA-crystallin led to formation of a
predominantly large soluble aggregate of molecular mass
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Fig. 2. Molecular mass. Size-exclusion chromatography profiles of normal and
preheated wild-type and F71L mutant aA-crystallin on a 600 � 7.5 mm TSK-3000
SW column (A). Positions of molecular weight markers is shown in top with arrows;
thyroglobulin-669, c-globulin-160, BSA-67, ovalbumin-45 kDa. Data are represen-
tative of three independent experiments. Size-exclusion chromatography profiles of
normal and preheated heteropolymer of a-crystallin with (3:1) aA to aB or F71L-
aA- to aB (B). Data are representative of three experiments.
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Fig. 3. Hydrophobicity. ANS-fluorescence spectra of normal and preheated wild-
type and F71L-aA-crystallin. Data are representative of three independent
experiments.
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Fig. 1. Secondary and tertiary structure. Far-UV (A) and near-UV CD spectra (B) of
normal and preheated wild-type and F71L-aA-crystallin. Data are representative of
three independent experiments.
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>1000 kDa and suggests that temperature disrupts the integrity of
the oligomeric assembly of the F71L mutant and thereby affects its
stability. These observations are consistent with the previous
studies that show thermally disintegration of the oligomeric struc-
ture with diminished chaperone activity for R116C and R116H
aA-crystallin mutants [23–25]. We have also shown earlier that
aB-homo-oligomer but not the hetero-oligomer with (3:1) aA to
aB precipitated upon preheating indicating that aA imparts thermal
stability to the hetero-oligomer by preventing the aggregation of
aB-crystallin at higher temperature [21]. Therefore, we determined
the mass of oligomeric complexes of normal and preheated hetero-
oligomer with (3:1) aA to aB or aA-F71L to aB. Consistent with
reported studies, preheating the hetero-oligomer of aA and aB
prevented the aggregation of aB-crystallin and eluted before its
respective unheated heteropolymer (Fig. 2B). However, in contrast
to wild-type aA, aA-F71L was not only able to protect aB upon
preheating of the hetero-oligomer of aA-F71L and aB, but it too
precipitated along with aB substantiating the role of aA moiety in
stabilizing the aB-crystallin (Fig. 2B).

Consistent with the previous studies, the intensity of ANS fluo-
rescence emission of preheated wild-type aA-crystallin was higher
than its corresponding unheated variant (Fig. 3). However, the
ANS-binding to preheated F71L aA-crystallin increased significantly
than the preheated wild-type aA-crystallin (Fig. 3) implying that the
available hydrophobic surface is increased appreciably. Notably, this
increase in hydrophobicity did not result in a corresponding increase
in CLA. Instead, heat-treatment caused a loss of CLA, suggesting that
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at higher temperatures the structural stability of F71L is altered due
to unfolding and exposure of hydrophobic sites.

Previously we reported a conditional loss of CLA for F71L com-
pared to aA-crystallin, where the degree of loss was dependent on
the aggregation assay conditions. We observed particularly greater
losses of CLA when measurements were carried out using thermal
aggregation assays [11]. It is therefore, important to study the CLA
of preheated versions in the context of temperature-induced confor-
mational changes of wild-type and F71L-mutant. Thus, the CLA of
preheated wild-type and F71L-aA-crystallin was investigated by a
battery of thermal and chemical aggregation assays. As reported
previously by many studies, in the heat-induced aggregation of
bL- and c-crystallin, the preheated wild-type aA-crystallin showed
enhanced protection compared to normal wild-type aA-crystallin
(Fig. 4). In contrast, the preheated F71L-mutant showed a decreased
CLA in suppressing the heat-induced aggregation of bL- and c-crys-
tallin compared to normal F71L-aA-crystallin (Fig. 4). Similar results
were found in the heat-induced aggregation of citrate synthase
assay even at 60 �C (data not shown). In the DTT-induced aggrega-
tion assay of insulin, the unheated F71L-mutant showed a marginal
(10%) decrease in CLA compared to that of unheated wild-type
aA-crystallin, while the preheated wild-type protein exhibited
enhanced CLA over its unheated variant (Fig. 5). However, the
preheated F71L-mutant completely lost its chaperone-like activity
and co-aggregated with the client protein in DTT-induced aggrega-
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Fig. 4. Chaperone-like activity. Chaperone-like activity of normal and preheated
wild-type and F71L-aA-crystallin (0.05 mg/ml) in heat-induced aggregation of bL-
crystallin (0.25 mg/ml) (A) and c-crystallin (0.25 mg/ml) assay (B) at 60 �C. Data are
representative of three independent experiments.
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Fig. 6. Chaperone-like activity. Chaperone-like activity of normal and preheated
hetero-oligomer of a-crystallin with aA to aB or with F71L-aA-aB in 3:1 ratio
(0.03 mg/ml) in heat-induced aggregation of c-crystallin (0.25 mg/ml) assay at
60 �C. Data are representative of three independent experiments.
tion assay of insulin (Fig. 5). The increase in light scattering of
preheated F71L-aA-crystallin due to co-aggregation in the insulin
assay might be a result of non-specific hydrophobic interactions
between F71L-mutant and reduced insulin B-chain. From the
aggregation assays, it is apparent that the CLA of F71L-mutant is
dependent on client protein but more so on temperature. Though
F71L is a homozygous missense mutation [11], the in vitro studies
described above were carried out on subunits of aA and aB sepa-
rately. However, the situation in the eye lens is not same where
the a-crystallin is known to exist as a heteropolymer with aA and
aB in 3:1 ratio [21,22,26]. Further, we have shown earlier very
clearly that aA subunit plays an important role in the heteropolymer
in that it also provides stability to aB [21,27]. Therefore, we have
combined F71L-aA with aB in 3:1 ratio and allowed subunits to
exchange to equilibrium. Then, we investigated the effect of thermal
stability on CLA. CLA of preheated (3:1) aA to aB was significantly
increased compared to unheated (3:1) aA to aB in both c-crystallin
(Fig. 6) and b-crystallin assays (not shown). In contrast, CLA of
preheated (3:1) F71L-aA to aB was significantly lower compared
to unheated (3:1) F71L-aA to aB in both c-crystallin (Fig. 6) and
b-crystallin assays (not shown).
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4. Discussion

We have identified a novel mutation (F71L) in the exon-2 of
CRYAA gene associated early-onset of ARC and reported that
despite insignificant structural changes, the F71L mutant aA-crys-
tallin displayed significant loss of CLA, particularly in thermal
aggregation assays performed at elevated temperatures [11]. Nev-
ertheless, the reasons for the time lag shown by this mutation in
the expression of a cataract phenotype around 50 years of age
compared to 60 years without the mutation are not clear. It is plau-
sible that some genes may be involved in adult cataract with late
expression of phenotype due to interaction with several environ-
mental factors during aging.

Eye lens a-crystallin is a hetero-oligomer composed of two sim-
ilar subunits, aA and aB, present in a 3:1 molar ratio in most ver-
tebrates [26]. Previously, we showed that despite high sequence
similarity, there is a dichotomy in structure and function of aA-
and aB-crystallins that is consistent with a molecular basis for
the existence of a-crystallin hetero-oligomer with 3:1 aA to aB ra-
tio [20–22,27]. Our studies showed that aA-crystallin is not only
more stable but also imparts stability to the hetero-oligomer by
preventing the aggregation of aB-crystallin at higher temperatures.
Interestingly, a-crystallin complexes containing F71L subunits in-
stead of wild-type aA subunits were not only able to protect aB-
crystallin but also unable to suppress aB-mediated co-aggregation
of lens proteins [27]. In fact, F71L mutant precipitated upon heat-
ing to high temperatures and contributed to increased light scat-
tering at high temperature in these studies. Generally, upon
heating, a-crystallin undergoes structural changes resulting in in-
creased exposure of additional hydrophobic sites associated with
increased CLA [1,20–22,28,29]. Once exposed to high tempera-
tures, the protein upon cooling does not return to its original con-
formational state but adopts a conformation characterized by
increased surface hydrophobicity and molecular mass (aggregate
size) [1,29–31]. This increase in CLA of a-crystallin upon structural
perturbation is mediated by aA- but not aB crystallin. Therefore, in
the present study we investigated alterations in the molecular
chaperone-like function of a-crystallin, and the associated struc-
tural changes, upon structural perturbation (preheat treatment at
65 �C for 15 min followed by cooling) of wild-type and F71L-aA-
crystallins to understand the mechanism of early-onset cataract
due to F71L mutation in aA-crystallins.

On comparison of human recombinant wild-type and F71L-aA-
crystallin by size-exclusion chromatography, fluorescence and far-
and near-UV CD studies it appears that aA-F71L missense mutation
did not significantly affect the apparent molecular mass, secondary
and tertiary structures or hydrophobicity of aA-crystallin under
normal conditions. However, the F71L-aA-crystallin displayed
significant loss of CLA in thermal treatment but little to no loss or
insignificant loss in chemical aggregation assays [11]. These obser-
vations were consistent with the previous studies made on replace-
ment of Phe-71 with Gly (F71G) which did not indicate structural
changes, but CLA was severely impaired in aA-F71G crystallin
[19]. It is reported that the Phe-71 contributes to the chaperone-like
action ofaA-crystallin and the 70–88-region inaA-crystallin is iden-
tified as the functional chaperone-like binding site in aA-crystallin
[19]. However, temperature-dependent studies on both the wild-
type and the F71L mutant revealed an increase in the oligomeric
mass, shift in tryptophan fluorescence emission wavelength, alter-
ation in secondary and tertiary structure, and further loss of CLA in
F71L-mutant protein suggesting that the heat stability of the protein
was affected by the mutation.

The preheated wild-type aA-crystallin exhibited a better pro-
tection in chaperone-like assays compared to wild-type aA-crys-
tallin. These observations support the hypothesis that the regions
of aA-crystallin become more exposed with temperature; a struc-
tural transition above 50 �C might therefore be important for its
CLA [20,28–30]. In contrast, the preheated F71L mutant exhibited
a decreased CLA in all the aggregation assays despite a slight in-
crease in hydrophobicity. Based on our and others studies, it has
been shown that hydrophobicity plays an important role but it is
not the sole determinant of a-crystallin CLA [1,20,32]. Therefore,
it is unlikely that all the exposed hydrophobic patches on F71L
are involved in suppressing the substrate protein aggregation.
The increase in ANS intensity might also be due to ANS-binding
to residues other than those involved in chaperone-like activity
[32,33]. Other factors like charge and structural integrity may
influence the functional property to different extents. The pre-
heated F71L mutant aA-crystallin showed almost complete loss
of chaperone-like activity in all the aggregation assays and it co-
aggregated along with insulin in DTT-induced aggregation. These
observations support the idea that the chaperone-like activity of
the mutant was dependent on client protein properties along with
environmental factors that enhanced aggregation of substrate pro-
teins might be directly related to the onset of cataract [34].

Considering that the preheated F71L mutant has a larger hydro-
phobic exposure when compared to wild-type aA-crystallin pro-
tein, the increase in amount of aggregation might be caused due
to non-specific hydrophobic interactions between F71L mutant
and the substrate protein. These results suggests that the impaired
CLA of preheated F71L mutant might be due to altered specificity
towards potential substrate proteins, since there is an alteration
in its structure as evidenced by larger oligomers and changed CD
spectra. Other mutations are known to decrease the overall struc-
tural stability of aA-crystallin such as the G98R mutation [15] and
other important proteins [34,35]. The temperature-induced con-
formational studies on F71L-aA-crystallin also indicated altera-
tions in both structural stability and chaperone-like activity.

Heat stability studies corroborated the effect of temperature on
the dynamic quaternary structure of the F71L mutant similar to
that R116C mutant [36]. This study indicates that Phe-71 is not only
essential for the chaperone-like activity, but is also important in
maintaining the structural integrity of the protein at higher tem-
peratures (it plays a role in thermal stability of the protein). These
data suggest that the F71L mutant has a compromised structural
stability, and in course of time (due to alterations in body temper-
atures and environmental factors) loses its native structural confor-
mation, which effects its protein-protein interactions resulting in
defective CLA and aggregation of potential client proteins. It might
also be more susceptible to age-related modifications and contrib-
ute to the early-on-set-cataract formation in individuals carrying
the mutation. Size-exclusion chromatography studies with pre-
heated hetero-oligomer with aA-F71L to aB in 3:1 ratio indicate
that aA-F71L precipitated along with aB instead of stabilizing it.

Together the data presented in this study indicate that the F71L
mutant is somewhat unstable even under physiological conditions.
Considering that the protein, under the best of conditions, should
last several decades of time, it seems likely that the early onset cat-
aract at 5 decades may be reflecting the slow but insidious loss of
the aA subunit over time. Further, the presence of the mutant aA
subunit destabilized the wild-type aB subunits, which resulted in
a reduction in CLA and solubility following heat treatment. In vivo,
this could be equivalent to an acceleration of a-crystallin loss over
time, which would slowly predispose the lens to cataract forma-
tion. From the present study, it is apparent that the molecular basis
for the development of cataract in the affected individuals might
be loss of thermal stability of the protein due to substitution of
Phe-71 which results in the formation of highly oligomerized aA-
crystallin with altered structural stability and defective chaper-
one-like activity.
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