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Given a positive integer /, this paper establishes the existence of constants
n > 1and 8 > 0 such that for large N at least N of the positive integers up to N
are not expressible in the form p 4+ m?, where p is a prime and m is a positive
integer not exceeding nlogh.

Using methods of Linnik [2] [3], the author has shown [4] that almost
all integers are representable as a sum of a prime p and of the /-th power m?
of an integer m with m! < p*, where [ is a fixed integer > 2 and A is a
suitably chosen constant satisfying 0 << A < 1. If the Riemann-hypothesis
is true for all Z-functions (or even only the so called density hypothesis),
p* can be replaced by a certain power of log p. (For the case / = 1 this was
proved by A. Selberg [5] and follows also from Linnik’s work cited above;
the theorem holds also for / > 2 with the value A = 19/77 given by
A. Selberg.) In 1964 Erdss proposed to show that there are more than
o(N) integers < N not representable in the form p 4+ m?, 1 < m < log N,
p aprime, and gave a proof* for / = 1. With the help of a new method of
Bombieri and Davenport [1] we prove Erdds’s conjecture for / = 2 and
also a result concerning the existence of “small” differences p’ — p which
are of the form m,' — m,".

THEOREM 1. There are infinitely many pairs of primes p, p’ satisfying

p—p=m—m
with 0 <my < my <(} + €)log p, where € > 0 is an arbitrary small
Sfixed number.

* Oral communication by Professor Erdos. Selberg states (Joc. cit.) the same with
1 <m << Klog N, K an arbitrary large positive constant. But, as far as the author
knows, no proof of this result has been published.
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THEOREM 2. There is a constant m > | and a positive constant 8
so that for large N at least N integers << N are not representable in the form

p + I <m < nlogh.
Here v and 8 may depend on [.
Proof of Theorem 1. Let k be any positive integer and
.

T(a) = ), tnme2ny)  (e(®) = ™) (M

n=—~r

any trigonometric polynomial with real coefficients #(n) satisfying
t(—n) = t(n), which is nonnegative for all real «. Define

Z(N;2n) = ), (logp)(logp). ()

Then Bombieri and Davenport in their paper cited above proved: If
k < (log N)C for some fixed C, then for any fixed positive ¢ we have

Zk: t(n) Z(N; 2n) > 2N i tn)Hn) — (3 + )t NlogN, (3)

n=1

provided N is sufficiently large, where

Hoy = H ] 5= @
and ~
H= 11— =13 )
We put "
16 = | £ e[ + | 3 e~ 11, ©

where P = [4nlog N] for some constant 7 to be fixed later. Then
t(0) = 2P and, for 1 < n < (2P)}, t(n) is the number of representations
of 2n in the form

2 =mg —myl, 0<my <my<?2P,

™

m; = m, mod 2.
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Therefore, if n >> 1, we have #(n) 7= 0 only if » has the form

n = §(my! — m,
where
0<m1<m2<2P, mlzmzmodz- (8)

In the following considerations we always impose on m, and m, the above
conditions (8) without saying so explicitly. We get from (3)

Y Y Z(N; myt — myY)

"y My

> 2N} > HE(m' — m?)) — ( + €) 2PN log N. ®

From the definition (4) of H(n) we conclude that
H((my' — m)) = H(x(my — my)),
since (my — my) | (my' — my?), and therefore

Y. 2 HG(my — myY)

nty My

¥y HGme—m)+ XY HGm;—my). (10

m, =m, =0mod2 m, =m, =1mod2
1 2 1 2

W

Both sums on the right hand side are equal to

Y)Y H(g—2) (11)

0<gy <9, <P

This is the sum arising from the trigonometric polynomial

P

2 sin 2P \2
g;e(Zga)‘ - ( sin 2o )

which was treated by Bombieri and Davenport. They proved that

Yy H(g,—eg)>31—¢P 12

0<<g) <9y <P
Substituting this in (10) and (9) we get

Y'Y Z(N; mgt — my?) > 2(1 — € PN — (3 + €) 2PNlog N. (13)

‘A'ILI mz
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With P = [(1 + 3€) log N], this gives as in Bombieri-Davenport loc. cit.

> Y Z(N;mg! — my') > 2eP?N.

wy I,

The number of terms on the left hand side is P2 — P <C P2 Then there is
some number 2n = m,' — m,! for which

Z(N;2n) = Y (logp)logp') > 2eN.

It is impossible that all the terms in the sum should have p << N(log N)3,
for then the sum would be less than

Y (log N)? = O(N(log N)™1).

p<N(logN) 2

Hence, for all sufficiently large », there is a pair of primes p, p’ with

N(log Ny* <p <N, p <N,
p—p=m — m, 0 < my < my < 2§ + 3¢) log N],

which, because of log N ~ log p for large N, implies Theorem 1.
Proof of Theorem 2. (13) gives, with P = [in log N],

2
Y Y Z(N; my — myt) > (-’;— — % — 4e) N log? N, (14)

my My
if p < 2, say. Now let

Z(N;2my = YL
PN, p' N
P —p=2n

Then
Z(N; 2n) << Zy(N; 2n) logt N
and we have by (14)

2
Y Y Zy(N;myt — myl) > (12— — % — 4e) N. (15)

ml m._,'

Now we define

r(n) = Y L
PN, m<2P
ptmi=n
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It is easily seen from the prime number theorem that

Y or¥m) =23 Y Zy(N; mi' — my¥) + N + O(N(log N)™), (16)

n<N ™y my

the last two terms arising from the case m; = m, . Thus

S0 > (1 1 9. a7

n<N

On the other side we have

Y rn) = 9N + O(N(log N)™). (18)

n<N

We denote by 4,(N) the number of n’s with » << N, r(n) = k, that is
AN) = Yy 1, k=12,...

n<N,r(n)=k

(Trivially we have k < 2P.) The sum Y ,<n.p ¥3(n) is the number of
solutions of the system

P+ mt = py - myt = py + my!

with p; <N, m; < 2P < 5log N. By Brun’s method" we conclude for
every integer L > 2

1
n<N§u)>L rg(n) < -L- néN ra(n)
c N c
<T To@® N (mlog N)> = —7°N, (19

where ¢ is a constant which may depend on /. This gives with (17), since
A(N) <N,

4A4,(N) + 943(N) + +-- + L24(N)
¢

>(772+—§~—1—Ln3~9e)N. (20)

t Brun’s method gives for the number or primes p less than N with p + a and
p + b also prime the upper bound

N 1 1
c—— |1 (1+~) I1 (1+—)
loga N plab p »[(a—b) p

Putting p, = p, a = my! — m}, b = m,' — mj!, and summing over m, , m; , m; , one
gets the estimate used in (19) (see for example the analogous considerations in [4],
p. 419).
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Further, we write

Y b= A4(N)+ AN) A+ AN+

REN.7{n) #0
= {d)(N) + 24x(N) + -+ + LAUN) + -
— {AN) + 244(N) + = + (L — 1) A(N) + )
= Z r(n) — {Ay(N) + -+ + (L — 1) A(N) + -}

n<N
<N — {do(N) + - + (L — 1) A(N)} + O(N(log N)™).
(2D
By (20) we get the estimate
AN) £+ (L — 1) AN) > - @AN) + - + L2A4,(N)
BT I T S S
> 2L(” + 11— %) N.

Expanding the coefficient of N with respect to powers of » — 1 and
putting L = 4c, where we can suppose that ¢ is an integer, we find by (21),
ifl <n <3}

1 7
1 < (1—3—2;+(~,,— D (1 —3—2-6-)+45)N.

n<N,r(n) £0

The coefficient of N is less than one, if we put, for example,

1
7’ - 1 + E >
and Theorem 2 is proved.
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