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L. Foged proved that a weakly regular topology on a countable set is regular. In terms of
convergence theory, this means that the topological reflection T ξ of a regular pretopology
ξ on a countable set is regular. It is proved that this still holds if ξ is a regular σ -compact
pretopology. On the other hand, it is proved that for each n < ω there is a (regular)
pretopology ρ (on a set of cardinality c) such that (RT)kρ > (RT)nρ for each k < n and
(RT)nρ is a Hausdorff compact topology, where R is the reflector to regular pretopologies.
It is also shown that there exists a regular pretopology of Hausdorff RT-order � ω0.
Moreover, all these pretopologies have the property that all the points except one are
topological and regular.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The notion of weak base of a topology τ is equivalent to that of a base of a pretopology, the topologization of which
is equal to τ . This fact enables reciprocal transfer and crossbreeding of results between general topology and convergence
theory. As we shall see, the framework of convergence theory will enable much richer investigations than it might have
been possible in topological terms.

If τ is a topology on X and B = {B(x): x ∈ X} is a collection of filter bases such that the filter generated by B(x) is
finer than the neighborhood filter of x for every x ∈ X , and a subset O of X is open if and only if for every x ∈ O there is
B ∈ B(x) such that x ∈ B ⊂ O , then we say that B is a weak base of τ [2]. A weak base is Hausdorff if x0 �= x1 implies the
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existence of B0 ∈ B(x0) and B1 ∈ B(x1) such that B0 ∩ B1 = ∅. A topology is called weakly regular if it admits a Hausdorff
weak base B of closed sets.

Under what additional conditions is a weakly regular topology regular?
Nyikos and Vaughan attribute to Foged [17, Theorem 2.4] the following:

Theorem 1.1. Each weakly regular topology on a countable set is normal, hence regular.

Later we provide several examples to the effect that the assumption of countability of the underlying set cannot be
dropped. Of course, every (Hausdorff) compact topology is normal, and thus, trivially, each weakly regular (Hausdorff)
compact topology is regular. This suggests a possible extension of the Foged theorem.

Let B be a weak base of a topology τ on X . We say that a family Q of subsets of X is a B-cover if for every x ∈ X there
is Q ∈ Q and B ∈ B(x) such that B ⊂ Q . A topological space is compact with respect to a weak base B if for every B-cover
there exists a finite subfamily, which is a B-cover. If a topological space is compact with respect to a weak base then it is
compact, but not conversely (see the topology Tπ of Example 4.6). If a topological space can be represented as a countable
union of B-compact sets, then it is called σ -compact with respect to B.

Theorem 1.2. If a topology is weakly regular and σ -compact with respect to the same weak base, then it is normal.

A pretopology π on a set X is a collection of filters {Vπ (x): x ∈ X} such that x ∈ V for each V ∈ Vπ (x) and every x ∈ X .
In particular, each topology τ defines a pretopology via its neighborhood system {Nτ (x): x ∈ X}. A pretopology π is finer
than a pretopology ρ , or ρ is coarser than π (in symbols, π � ρ) if Vπ (x) ⊃ Vρ(x) for every x ∈ X . The finest topology
among those that are coarser than a pretopology π is denoted by Tπ . We shall see that B is a weak base for a topology
τ on X if and only if there exists a pretopology π such that Tπ = τ and B(x) is a filter base of Vπ (x) for each x ∈ X . In
these terms, a topology τ is weakly regular whenever there exists a regular pretopology3 π with Tπ = τ . Therefore it is
convenient to investigate questions related to weak bases in the framework of pretopologies.

The category of pretopologies is a topological category over the category of sets (see [1]): there exists a forgetful functor
| · | that associates, to every pretopology ξ , the underlying set |ξ |, and to every morphism (that is, continuous map) ϕ : ζ → τ
the underlying map |ϕ| : |ζ | → |τ |. It is known that every concrete endofunctor F in a topological category4 is determined by
its action on objects of the category [1]. A map F on objects of such a category is the restriction of a concrete endofunctor
if and only if (i) |F ξ | = |ξ |, (ii) ξ � ζ implies F ξ � F ζ and (iii) f −(Fτ ) � F ( f −τ ) for all pretopologies ξ, ζ and τ , and for
each map f [9], where f −τ stands for the initial pretopology of the pretopology τ with respect to f . Therefore, in our
studies, it is enough to consider concrete endofunctors as maps on objects. In particular, the categories of topologies and
regular convergences are concretely reflective subcategories of the category of pretopologies. For brevity’s sake we shall call
the topological reflector the topologizer T (the topological reflection T ξ of ξ will be called the topologization of ξ ), and the
reflector to regular pretopologies the regularizer R (the regular reflection Rξ of ξ will be called the regularization of ξ ) (see
also [14,15]).

If π is a pretopology, then neither RTπ need be topological, nor TRπ need be regular.
How long can one iterate alternatively the topologization and the regularization before getting to a stand?
We will show that for every ordinal γ � ω0 + 1 there is a regular pretopology π such that the γ th iteration of RT is

the first to yield a Hausdorff regular topology, which is moreover compact if γ < ω0. If this is still true for an arbitrary
ordinal γ , remains an open question.

It is remarkable that the pretopologies, that we use to prove the iteration results mentioned above, are topological and
regular everywhere with the exception of a single point. Our construction is based on a concatenation of spaces of the type
{∞} ∪ ω ∪ A, where A is a maximal almost disjoint family on ω admitting a Simon’s partition, on which a pretopology is
constructed with the aid of that partition.

2. Pretopologies, regularity, topologicity

Families F , H (of subsets of a given set) mesh (F #H) if F ∩ H �= ∅ for every F ∈ F and for each H ∈ H. The operation
# is related to the notion of the grill H# of a family H, which was defined by Choquet [3] as H# = ⋂

H∈H{G: G ∩ H �= ∅}.
A pretopology ξ is defined by assigning a vicinity filter Vξ (x) to every x ∈ |ξ | so that x ∈ V for each V ∈ Vξ (x). The

associated convergence of filters is defined by

x ∈ limξ F ⇔ Vξ (x) ⊂ F .

A pretopology ζ is finer than a pretopology ξ (in symbols, ζ � ξ ) if they are defined on the same set X and if Vξ (x) ⊂ Vζ (x)
for each x ∈ X . A pretopology is Hausdorff if for every pair of distinct elements, the corresponding vicinity filters do not

3 See Section 2 for the definition.
4 An endofunctor F is concrete if |F f | = | f | for every morphism f of the category.
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mesh. A subset A of |ξ | is compact (respectively, cover-compact) if for every family P of subsets of X such that for each
x ∈ A there is P ∈ P ∩ Vξ (x), there exists a finite subfamily P0 which is a set-theoretic cover of |ξ | (respectively, such that
for each x ∈ A there is P ∈ P0 ∩ Vξ (x)). A cover-compact set is compact, but not conversely (see, e.g., [4, Example 8.4]);
however if ξ is a topology then the converse also holds.

We notice that if B is a weak base of a topology, then a set is compact with respect to B if and only if it is cover-compact
for the pretopology determined by B.

An element x belongs to the adherence adhξ H of a set H whenever H ∈ Vξ (x)#. If F is a filter on |ξ |, then the symbol

adh�
ξ F denotes the filter generated by {adhξ F : F ∈ F }.

A pretopology ξ is regular if5

Vξ (x) ⊂ adh�
ξ Vξ (x) (2.1)

for each x ∈ |ξ |. An element x of |ξ | is said to be regular [5] if (2.1) holds. Of course, a pretopology is regular if and only
if all its elements are regular. The category of regular pretopologies is a concretely reflective subcategory of the category
of pretopologies. In particular, the corresponding reflector R , called the regularizer, associates with every pretopology ξ the
finest regular pretopology Rξ that is coarser than ξ .

A subset O of |ξ | is open if O ∈ Vξ (x) for every x ∈ O . A set N is a neighborhood of x if there exists an open set O such
that x ∈ O ⊂ N . The family Nξ (x) of neighborhoods of x is a filter. A set is closed if its complement is open. The least closed
set that includes a set A is called the closure of A and is denoted by clξ A. It is straightforward that x ∈ clξ A if and only if
A ∈ Nξ (x)#.

The family of all open sets of a pretopology ξ fulfills all the axioms of open sets of a topology. The corresponding
topology is denoted by T ξ , where the topologizer T is the reflector to the concretely reflective subcategory of topologies. An
element x of a pretopological space (X, ξ) is topological if Nξ (x) = Vξ (x).

If W (y) is a family of subsets of X for every y ∈ Y , and if F is a family of subsets of Y , then the contour of W along F
is defined by6

W (F ) =
⋃

F∈F

⋂
y∈F

W (y). (2.2)

An element of x ∈ |ξ | is called topological if Vξ (x) ⊂ Vξ (Vξ (x)) [6]. Clearly a pretopology ξ is a topology if and only if every
x ∈ |ξ | is topological.

Regular topologies form a concretely reflective subcategory of the category of pretopologies. It turned out [5, Proposition
4.4] that each regular pretopology ξ is topologically regular, that is, such that

Vξ (x) ⊂ cl�ξ Vξ (x)

for each x ∈ |ξ |, where cl�ξ F denotes the filter generated by {clξ F : F ∈ F }. However, neither RT nor TR is the reflector to

the subcategory of regular topologies. The compositions of two concrete reflectors R, T are contractive functors,7 but neither
of them is idempotent. If F is a concrete contractive functor of a topological category, then its iterations on an object π are
defined by induction F 0π = π and for γ > 0,

F γ π = F

( ∧
α<γ

F απ

)
.

Because each set is well-ordered (in ZFC), for every π there is the least γ (called the F -order of π ) such that F γ π = F γ +1π .
If γ is the F -order of π and moreover Fπ is Hausdorff (compact), then we shall say that π is of Hausdorff F -order γ
(respectively, compact F -order γ ).

In particular, we can iterate RT (and TR) and for each pretopology there is the least γ such that (RT)γ π (respectively
(RT)γ π ) is a regular topology. Therefore the RT-order and TR-order of a pretopology are well defined.

The case of F being a composition of two contractive functors leads to an additional subtlety in the definition of F -order.
If for example, the RT-order of π is n < ω, then (RT)k−1π > T (RT)k−1π > (RT)kπ for each 0 < k < n, for otherwise either
(RT)k−1π would be a (regular) topology (and thus (RT)k−1π = (RT)απ for each α � k) or T (RT)k−1 would be regular (and
a topology) and thus T (RT)k−1π = (RT)απ for each α � k. However it may happen either that T (RT)n−1π > (RT)nπ or that
T (RT)n−1π = (RT)nπ . In the latter case, we shall say that the RT-order of π is degenerate.

5 This definition is that of Fischer [10]. It is equivalent to that of Grimeisen [12] for pseudotopologies, a fortiori for pretopologies.
6 It seems that this notion was first introduced by Kowalsky for filters in [16] under the name of diagonal operation.
7 A concrete functor F is contractive if F ξ � ξ .
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3. Interplay between regularity and topologicity

If B is a Hausdorff weak base for a topology τ on X , and for each x ∈ X , we denote by Vπ (x) the filter generated by
B(x), then we have defined a pretopology π such that Tπ = τ . If B consists of closed sets, then π is Hausdorff topologically
regular (equivalently, regular). A subset of X is π -compact if and only if it is B-compact.

In these terms, having in mind [5, Proposition 4.4], Theorem 1.1 can be reformulated as follows:

Theorem 3.1. The topologization of a Hausdorff regular pretopology on a countable set is normal (hence regular).

As we have said, the assumption in Theorem 3.1 that the underlying set is countable cannot be dropped. In Example 4.6
we construct a regular pretopology ξ , the topologization of which is Hausdorff but not regular. This pretopology is defined
on {∞} ∪ ω ∪ A, where A is an arbitrary maximal almost disjoint family on ω. Recall that a is the least cardinal number,
for which there is a maximal almost disjoint family of that cardinality.

Therefore,

Theorem 3.2. There exists a pretopology ξ on a set of cardinality a such that RTξ is Hausdorff, and

Rξ = ξ > T ξ > RTξ.

In other terms,

Corollary 3.3. There exists a Hausdorff, non-regular, weakly regular topology on a set of cardinality a.

The class of pretopologies, for which the regularity implies the regularity of their topologization is larger than those with
countable underlying set. For example,

Theorem 3.4. Each Hausdorff cover-compact regular pretopology π is topological, hence Tπ = π is normal (thus regular).

Actually, this is a special case of a more general fact (due to M.P. Kac [13]; see also [11, 3.17.9]) that every Hausdorff
compact regular pseudotopology is a topology.8 Of course, each Hausdorff compact topology is normal, a fortiori regular. But
the assumption of Hausdorffness in Theorem 3.4 regards a pretopology, and not its topologization. In terms of weak bases,
Theorem 3.4 becomes

Corollary 3.5. If B is a Hausdorff weak base of closed subsets of a topology that is compact with respect to B, then B is a base of the
topology.

Here is a common generalization of Theorems 3.1 and 3.4.

Theorem 3.6. If π is a Hausdorff regular σ -cover-compact pretopology, then Tπ is normal.

Proof. Let X = ⋃
0�n<ω Kn , where each Kn is a cover-compact set repeated infinitely many times. Let A0, B0 be two closed

disjoint sets. Suppose that we have constructed ascending sequences of closed sets A0, A1, . . . , An, . . . and B0, B1, . . . , Bn, . . .

such that An ∩ Bn = ∅.
If Kn ∩ An �= ∅ then let cl Q n = Q n ∈ V (Kn ∩ An) be disjoint from Bn; set An+1 = An ∪ Q n . Otherwise An+1 = An . If

Kn ∩ Bn �= ∅ then let cl Rn = Rn ∈ V (Kn ∩ Bn) be disjoint from An+1; set Bn+1 = Bn ∪ Rn . Otherwise Bn+1 = Bn . Let A =⋃
n<ω An and B = ⋃

n<ω Bn . Then A, B are disjoint. To show that A is open, let x ∈ A. Then there exists n < ω such that
x ∈ An . Let k � n be the first integer such that x ∈ An ∩ Kk . Thus Q k ∈ V (Kk ∩ Ak) ⊂ V (x) and so A ⊃ Ak+1 ∈ V (x). It follows
that A is open. Likewise B is open. �

In the language of weak bases, Theorem 3.6 becomes Theorem 1.2.
The topologization of a σ -cover-compact pretopology is σ -compact. We do not know if one can weaken the assumption

of Theorem 3.6 to the σ -compactness of Tπ . In other words, is a Hausdorff σ -compact weakly regular topology normal
(regular)?

In contrast,

Proposition 3.7. There exists a topology τ on a countable set such that τ > Rτ > TRτ and TRτ is Hausdorff and regular.

8 A convergence is a pseudotopology provided that x ∈ lim F if and only if x ∈ lim U for every ultrafilter U ⊃ F .
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This fact follows from Example 3.9 below. Indeed, the phenomenon is somewhat more general.
We denote by F ∨ G the supremum and by F ∧ G the infimum of two filters F and G . If G is the principal filter generated

by G , then we abridge F ∨ G and F ∧ G , respectively.
Let {Xv : v ∈ V } be an infinite family of disjoint infinite sets such that v ∈ Xv for each v ∈ V and let F be a free filter on

V . Consider a pretopology ξv on Xv for each v ∈ V . Then the topologizing module is a pretopology τ = τ (F ; ξv : v ∈ V ) on
X := {∞} ∪ ⋃

v∈V Xv such that its restriction to
⋃

v∈V Xv is the coproduct
⊕

v∈V ξv and Vτ (∞) is generated by F ∧ {∞}.

Lemma 3.8. If τ = τ (F ; ζv : v ∈ V ) is a topologizing module such that ζv > Rζv and Rζv is a Hausdorff regular topology for each
v ∈ V , then τ > Rτ > TRτ and TRτ is a Hausdorff regular topology.

Proof. As τ restricted to V is discrete, Vτ (∞) has a base of τ -closed sets, that is, Vτ (∞) = V Rτ (∞). Therefore
Rτ (F ; ζv : v ∈ V ) = τ (F ; Rζv : v ∈ V ) and is strictly coarser than τ . All the elements of X with the exception of ∞ are
topological in Rτ . Therefore VTRτ (∞) = V Rτ (Vτ (∞)), the contour of V Rτ = VTRτ along Vτ (∞) = V Rτ (∞). �
Example 3.9. Let W and Xw be countably infinite sets for each w ∈ W . Let W be the cofinite filter of W and X (w) be the
cofinite filter of Xw for each w ∈ W . We define a pretopology ζ on the disjoint union X := {∞} ∪ ⋃

w∈W Xw so that Vζ (w)

is generated by X (w)∧{w} and Vζ (∞) is generated by X (W )∧{∞}. All the other elements are isolated. This is a topology.
All the points except ∞ are regular, and V Rζ (∞) = Vζ (∞) ∧ W . By applying τ = τ (F ; ζv : v ∈ V ) with the cofinite filter F
of a countably infinite set V , with Xv being a copy of X and ζv a copy of ζ for each v ∈ V , we are in the assumptions of
Lemma 3.8. Of course, the underlying set of τ is countably infinite.

As we shall see below, similar constructions with the inverted role of T and R give rise to regular pretopologies, the
topologizations of which are necessarily regular.

Theorem 3.10. Let ξv be a regular pretopology on Xv and ∞v ∈ Xv so that all the elements of Xv \ {∞v} are topological and T ζv is
a Hausdorff regular topology for each v ∈ V . Let ρ be a regular Hausdorff pretopology on a disjoint union X := {∞} ∪ ⋃

v∈V Xv such
that ρ|⋃

v∈V Xv = ⊕
v∈V ξv . Then Tρ is regular.

Proof. Suppose that there is an ultrafilter U # cl�ρ VTρ(∞) and such that U does not converge to ∞ in Tρ . It follows

that {∞v : v ∈ V } /∈ U . As U # cl�ρ VTρ(∞) is equivalent to VTρ(U )#VTρ(∞) and all the elements of
⋃{Xv \ {∞v}: v ∈ V }

are topological, we infer that Vρ(U )#VTρ(∞), that is, Vρ(U )#VTρ(Vρ(∞)), because VTρ(Vρ(∞)) = VTρ(∞). It follows

that cl�ρ Vρ(U )#Vρ(∞), hence Vρ(U )#Vρ(∞), because the elements of
⋃{Xv \ {∞v}: v ∈ V } are topological. Therefore

U #Vρ(Vρ(∞)) and thus U � VTρ(∞), contrary to the assumption. �
4. Modules

To construct pretopologies of prescribed (finite) RT-order, we will use some modifications of the Mrówka–Isbell topology.
If A is an infinite subset of ω, then E (A) denotes the cofinite filter of A ⊂ ω, that is, E (A) is the filter generated by the
free sequence of the elements of A. Recall that a family A of infinite subsets of ω is almost disjoint (AD) if any two of its
elements have finite intersection. If A is an AD family, then the Mrówka–Isbell topology τ = τA is defined on a disjoint
union ω ∪ A so that Nτ (A) := {{A} ∪ E: E ∈ E (A)} is the neighborhood filter of A (seen as an element of A) for every
A ∈ A, and that all the elements of ω are isolated. The topology τA is locally compact and Hausdorff (because A is almost
disjoint). The Alexandrov compactification of τA (on a disjoint union X := ω ∪ A ∪ {∞}) is called the Franklin compact
(of A) [18].

We shall consider a disjoint union X := ω ∪ A ∪ {∞}, where A is a maximal almost disjoint (MAD) on ω, and a free filter
F on X such that A ∈ F . We call a module of F (over A) the finest pretopology μ = μ(A, F ) such that E (A) converges
to A for every A ∈ A, and F converges to ∞. Consequently, Vμ(∞) = {∞} ∧ F and Vμ(A) = {A} ∧ E (A). Of course, the
restriction to ω ∪ A of a module is equal to τA .

Each module is a regular pretopology. More precisely, each x ∈ X \ {∞} is regular and topological for (RT)αμ, T (RT)αμ,

(TR)αμ and R(TR)αμ for each ordinal α, because the vicinity filters of such an x remain invariant under regularization and
topologization. All these pretopologies are Hausdorff.

Notice that VTμ(A) = Vμ(A) for every A ∈ A, and

VTμ(∞) = Vμ(∞) ∧ E (F ) = {∞} ∧ F ∧ E (F ),

where the contour E (F ) is defined by (2.2), so that μ > Tμ. The regularization RTμ of Tμ is described by

VRTμ(∞) = cl�Tμ

(
VTμ(∞)

) = cl�μ
(

Vμ(∞) ∧ E (F )
) = Vμ(∞) ∧ cl�μ E (F ). (4.1)

Whether RTμ is strictly coarser than Tμ or not, depends on the module. Consequently the topologization (of a module) can
be described with the aid of contours.



S. Dolecki et al. / Topology and its Applications 156 (2009) 1306–1314 1311
It is often insightful to perceive this operation in terms of the Čech–Stone compactification of ω. The (free) Stone trans-
form β∗ of the contour E (F ) fulfills

β∗(E (F )
) =

⋂
F∈F

clβ

( ⋃
A∈F

β∗ A

)
, (4.2)

hence is the upper Kuratowski limit of F . The residual filter (on ω) of an AD family A is the contour E (F A) of the cofinite
filter F A of A. In the case of F A , (4.2) becomes

β∗(E (F A)
) = clβ

⋃{
β∗ A: A ∈ A

} \
⋃{

β∗ A: A ∈ A
}
.

If moreover A is maximal, then β∗(E (F A)) = β∗ω \ ⋃{β∗ A: A ∈ A}.
The regularization of this special type of pretopologies can be described in terms of a set-theoretic operation adh�

A . If H
is a filter on ω, then adh�

A H is the filter (on A) generated by

{adhA H: H ∈ H},
where adhA H = {A ∈ A: card(A ∩ H) = ∞}. Notice that if μ = μ(A, F ), then

VRTμ(∞) = Vμ(∞) ∧ E (F ) ∧ adh�

A E (F ).

Of course, if F0, F1 are filters on A then F0 � F1 implies that E (F0) � E (F1), and H0 � H1 implies that adh�

A H0 �
adh�

A H1. Therefore the operation

AdhA F := adh�

A E (F ) (4.3)

is isotone. Finally,

F � adh�

A E (F ). (4.4)

Indeed if B ∈ adh�

A E (F ), that is, there is F ∈ F and for each A ∈ F , there is E A ∈ E (A) such that {D ∈ A: card(D ∩⋃
A∈F E A) = ∞} ⊂ B . Hence F ⊂ B , and thus, (4.4) holds.
By (4.4) AdhA is contractive, thus can be iterated till it becomes stationary. How long does this iteration last for a given

free filter F on A? This is another way of asking about the RT-order of a certain pretopology constructed with the aid of
A and of F .

Lemma 4.1. If F A is the cofinite filter of a MAD family A, then F A = adh�

A E (F A).

Proof. If A0 is a finite subset of A, then
⋃

D∈A0
D ∩ A is finite for each A ∈ A \ A0, hence there is W ∈ E (F A) disjoint

from
⋃

D∈A0
D and thus A0 ∩ adh�

A W = ∅ showing that F A � adh�

A E (F A). �
This means that the cofinite filter of A is a fixed point of AdhA .

Corollary 4.2. If F is a free filter on a MAD family A, then Adhα
A F is free for each ordinal α.

Proof. A filter F on A is free whenever it is finer than the cofinite filter F A of A, that is, F � F A . Hence AdhA F �
AdhA F A = F A by Lemma 4.1, that is, AdhA F is free. �
Corollary 4.3. For each module μ = μ(A, F ) and each ordinal α, the pretopology (RT)αμ is Hausdorff.

Example 4.4. Let F A be the cofinite filter of a MAD family A on ω.9 Its topologization Tμ is homeomorphic to the
Alexandrov compactification of the Mrówka–Isbell topology. Therefore the RT-order of the corresponding module is 1, and
is degenerate in the sense that RTμ = Tμ. In fact, each free ultrafilter on ω ∪ A ∪ {∞} is either finer than F A , finer than
the cofinite filter E (A) of A for some A ∈ A or finer than the residual filter E (F A). Therefore Tμ is a (Hausdorff) compact
topology, and in particular, is regular.

9 Then the module μ of F is a Fréchet α1 pretopology, because all the vicinity filters of non-isolated elements are cofinite filters. It follows (see, e.g.,
[7]) that Tμ is a sequential topology.
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Remark 4.5. Of course, card(A ∩ H) = ∞ if and only if β∗ A ∩ β∗H �= ∅. Consequently, the contour E (adh�

A H) is a filter on
ω, and its Stone transform is the upper Kuratowski limit

⋂
H∈H

clβ
⋃{

β∗ A: β∗ A ∩ β∗H �= ∅}
.

Therefore β∗H ⊂ β∗(E (adh�

A H)), because β∗H = ⋂
H∈H β∗H , that is, E (adh�

A H) � H.

Example 4.6. If A is a MAD family and A0 is a countably infinite subfamily of A, and let A1 := A \ A0. Denote by
F A0 the cofinite filter of A0. We notice that for each F ∈ F A0 and every choice E A ∈ E (A) with A ∈ F , there exists
H ⊂ ⋃

A∈F E A such that H ∩ E A is a singleton for each A ∈ A0. Because A is maximal, there exists AH ∈ A such that H ∩ AH

is infinite, hence AH ∈ A1, and thus AH ∈ clμ(
⋃

A∈F E A), which means that cl�μ E (F A0) meshes with A1. Consequently,

Tμ > RTμ. Actually, the restriction to A1 of every element of cl�μ E (F A0) is uncountable, because the restriction of A to
each B ∈ E (F A0 )

A ∨∞ B := {
A ∩ B: card(A ∩ B) = ∞, A ∈ A

}
is infinite and maximal almost disjoint. Actually it is easy to see that cl�μ E (F A0) ∨∞ A1 is finer than the cocountable filter
of A1. Indeed, if B is a countable subfamily of A1 then for each A ∈ A0 ∪ B there is E A ∈ E (A) so that {E A: A ∈ A0 ∪ B}
consists of disjoint sets. Therefore clμ(

⋃
A∈F E A) is disjoint from B.

It is essential for the precision of estimates of the RT-order of pretopologies constructed later, to find a module π of
non-degenerate (Hausdorff) RT-order 1, that is, such that π > Tπ > RTπ = TRTπ and the latter topology is Hausdorff.

In [18] P. Simon showed that there exists a maximal almost disjoint family A on ω that can be split into two subfamilies
A0, A1 so that, if S is an infinite subset of ω such that A j ∨∞ S is maximal, then A j ∨∞ S is finite (for j ∈ {0,1}). We call
such A0, A1 a Simon’s partition of A.

Theorem 4.7. Let A = A0 ∪ A1 be a Simon’s partition. If F A0 is the cofinite filter of A0 , then the module μ(A, F A0) fulfills μ >

Tμ > RTμ = TRTμ.

Proof. The main point is that the contours of the residual filters of A0, A1 and A are all equal. Indeed, if H is an infinite
subset of ω, then A0 ∨∞ H is infinite if and only if A1 ∨∞ H is infinite, because if A j ∨∞ H is infinite (for j = 0,1), then it is
not maximal, but A ∨∞ H is maximal. This means that the boundaries of

⋃
A∈A0

β∗ A and
⋃

A∈A1
β∗ A are equal, that is, the

residual filters of the respective cofinite filters F A0 and F A1 are equal. Since F A0 ∧ F A1 is the cofinite contour F A of A,

we have E (F A0) = E (F A1 ) = E (F A). As a result, adh�

A E (F A0) is the cofinite filter of A so that RTμ is homeomorphic to
the Alexandrov compactification of the Mrówka–Isbell topology. �

What is the RT-order of the module μ(A, F ) for a given filter F on a MAD family A? What is the supremum of the RT-orders of
all the modules of a given MAD family A?

As a by-product of our main quest, we shall provide some elements of reply. A systematic study of the questions above
deserves a separate paper.

5. Concatenation of modules

Are there Hausdorff regular pretopologies of every (Hausdorff) RT-order? What are the least cardinalities of the under-
lying sets of such pretopologies? In a preliminary version of this paper [8] we believed to have answered positively to
the (first) question. The proof however contained a gap. We know now that methods based on well-capped trees are not
adequate in a construction of a regular pretopology, the topologization of which is not regular. Nevertheless, by using other
methods we prove in this section that there exist Hausdorff regular pretopologies (with the underlying sets of cardinal-
ity not greater than c) of every RT-order less than or equal to ω0 + 1. Moreover, for each γ � ω0 there is a module of
RT-order γ .

Theorem 5.1. For every cardinal n < ω0 there is a regular pretopology π (on a set of cardinality not greater than c) of non-degenerate
RT-order n and such that (RT)nπ is a Hausdorff compact topology.

Proof. Let A = A0 ∪ A1 be a Simon’s partition of a maximal almost disjoint family on ω. Let {Wk: k < ω} be a family of
disjoint countably infinite sets, and let fk : ω → Wk be a bijection for every k < ω. Then fk(A) := { fk(A): A ∈ A} is a MAD
family on Wk . If γ � ω let Xγ be a disjoint union

Xγ := {∞} ∪
⋃

Wk ∪
⋃

fk(A). (5.1)

k<γ k<γ
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For each k < γ , the subset Wk ∪ fk(A) of Xγ is endowed with the Mrówka–Isbell topology, that is, for each A ∈ A
the cofinite filter E ( fk(A)) converges to fk(A), and all the elements of Wk are isolated. We define a pretopology πγ by
identifying fk−1(A1) with fk(A1) for each odd 0 < k < γ and fk−1(A0) with fk(A0) for each even 0 < k < γ , and by
setting Vπγ (∞) = {∞} ∧F0, where F0 is the cofinite filter on f0(A0).

For n < ω0 the pretopology πn is regular of RT-order n. In fact, if n = 1 then π1 is the module of Theorem 4.7 and
RTπ1 is a Hausdorff compact topology that differs from Tπ1 only at ∞, namely VRTπ1 (∞) = VTπ1(∞) ∧ F1 where F1 is
the cofinite filter of f0(A1). Proceeding by induction, we assume that 0 < n < ω and πn satisfies the requirements of the
theorem for n = n so that

V(RT)nπn (∞) = VT (RT)n−1πn
(∞) ∧ Fn,

where Fn is the cofinite filter of fn−1(A j) for j = 1 if n is odd and j = 0 if n is even. As πn is the restriction of πn+1
to Xn , by Theorem 4.7 with A0 replaced by fn(A0) if n is even and by fn(A1) if n is odd, we see that VT (RT)nπn+1(∞) =
V(RT)nπn+1 (∞)∧ E (Fn) and V(RT)n+1πn+1

(∞) = VT (RT)nπn+1(∞)∧ Fn+1 where Fn+1 is the cofinite filter of fn(A j), where j = 1

if n is even and j = 0 if n is odd. Clearly (RT)n+1πn+1 is a Hausdorff compact topology. �
Remark 5.2. Consider the pretopology π = πω0 from the proof of Theorem 5.1 on Xω0 . The vicinity filter of ∞ in the
pretopological infimum

∧
n<ω0

(RT)nπ is the intersection of all Fn and of all E (Fn) for n < ω0. Hence π is a regular
topology.

Corollary 5.3. There exists a regular pretopology (on a set of cardinality not greater than c) of Hausdorff RT-order ω0 .

Corollary 5.4. For every cardinal n < ω0 there is a topology (on a set of cardinality not greater than c) of Hausdorff compact TR-order n.

To see this, it is enough to put ρ = Tπ , where π fulfills the conditions of Theorem 5.1.
Actually, the proof of Theorem 5.1 enables us to replace an unspecified pretopology fulfilling the conditions of Theo-

rem 5.1 by a module.

Theorem 5.5. For every n < ω0 there is a module π such that (RT)nπ is a Hausdorff compact topology and (RT)kπ > T (RT)kπ >

(RT)nπ for each k < n.

Proof. Let Xn be given by (5.1), and let B be the family of subsets of W := ⋃
k<n Wk consisting of all the elements of

f0(A0), fn−1(A j) (where j = 1 if n is odd and j = 0 if n is even) and of the unions fk(A) ∪ fk+1(A) where 0 � k < n and
A ∈ A1 if k is even and A ∈ A0 if k is odd.

The so defined B is a MAD family on W . Therefore the pretopology πn on Xn defined in the proof of Theorem 5.1 is in
fact the module of F0 (the cofinite filter of f0(A0) over B). �
Theorem 5.6. There is a module of Hausdorff RT-order greater than or equal to ω0 .

Proof. Let Xω be given by (5.1), and let B be the family of subsets of W := ⋃
k<ω Wk consisting of all the elements of

f0(A0) and of the unions fk(A) ∪ fk+1(A) where 0 � k < n and A ∈ A1 if k is even and A ∈ A0 if k is odd. Of course, B is
almost disjoint but not maximal. Let A∞ be a family on W such that B ∪ A∞ is MAD. Let μ be the module of the cofinite
filter of f0(A0) over B on W . Then (RT)nμ > T (RT)nμ > (RT)n+1μ for each n < ω. The infimum μ∞ := ∧

n<ω0
(RT)nμ (in

the lattice of pretopologies) turns out to be topological. This follows from the equality

E
( ∧

n<ω0

Fn

)
=

∧
n<ω0

E (Fn).

In fact, if B ∈ ∧
n<ω0

E (Fn) then for each n < ω there is Fn ∈ Fn such that B ∈ E (A) for each A ∈ Fn . In other words,
there is F = ⋃

n<ω Fn ∈ ∧
n<ω0

Fn such that B ∈ E (A) for each A ∈ F , that is, B ∈ E (
∧

n<ω0
Fn). The converse is always

true. We shall see that μ∞ > Rμ∞ . Indeed, if wk ∈ Wk for each k < ω, then {wk: k < ω} has infinite intersection with an
element A of A∞ . It follows that the trace adh�

A∞ Nμ∞ (∞) of adh�
μ∞ Nμ∞(∞) on A∞ is non-degenerate. We have proved

that (RT)nμ > (RT)ωμ for each n < ω. �
Actually, it can be shown that adh�

A∞ Nμ∞ (∞) is finer than the cocountable filter of B ∪ A∞ . The construction in the
proof above enables us to make one more step.

Proposition 5.7. There is a module of Hausdorff RT-order equal to or greater than ω0 + 1.



1314 S. Dolecki et al. / Topology and its Applications 156 (2009) 1306–1314
Proof. Take the “mirror image” with respect to A∞ of the module from the proof of Theorem 5.6, that is, let h be a
one-to-one map defined on W , and consider a disjoint union

X := {∞} ∪ W ∪ B ∪ A∞ ∪ h(B) ∪ h(W ).

We define the following pretopology ζ on X . For each B ∈ B, let Vζ (B) := {B} ∧ E (B) and Vζ (h(B)) := {h(B)} ∧ E (h(B)). For
every A ∈ A∞ we set Vζ (A) := {A} ∧ E (A ∪ h(A)) and Vζ (∞) := {∞} ∧ F f0(A0) . As the so defined family B ∪ A∞ ∪ h(B) on

W ∪ h(W ) is MAD, ζ is in fact a module. From the proof of Theorem 5.6, it follows that H := adh�

A∞ Nμ∞(∞) converges
to ∞ for (RT)ω0ζ but not in T (

∧
n<ω0

(RT)nζ ) = ∧
n<ω0

(RT)nζ . Therefore, E (H) has non-degenerate trace on h(W ) and

converges to ∞ for T (RT)ω0ζ but not in (RT)ω0ζ , so that (RT)ω0ζ > (RT)ω0+1ζ . �
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