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Abstract 

Seki, S., and Y. Kobuchi, On standard locally catenative L schemes, Theoretical Computer Science 

83 (1991) 237-248. 

A standard locally catenative L scheme extracts the essential feature of the locally catenative 

property. We investigate conditions under which a standard locally catenative L scheme has 

multiple locally catenative L systems. 

1. Introduction and preliminary results 

A DOL scheme is a pair S = (2, h) where 1 is a finite nonempty set and h is a 

homomorphism from 2” into itself, called the generation mapping of S. A DOL 

system is a triplet G = (2, h, w) where (2, h) is a DOL scheme and w is a string in 

2’ called the axiom of G, while (2, h) is called the underlying scheme of G. In a 

DOL system G, we are not only interested in the generated language L(G) = 

{h’(w)li>O} but also the generated sequence E(G)=w, h(w), h2(w),.... One 

intriguing problem on DOL sequences is about the locally catenative property: A 

sequence is locally catenative if all the strings except some initial ones can be written 

as a concatenation of previously appeared strings in the same way. 

Definition. Let G = (1, h, w) be a DOL system. G is said to be (i,, i2, . . . , ik) locally 

catenative (abbreviated as l.c.) with cut p if wq = w~-~,w~-~, . . . Wq_il for any q ap, 
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where k*2,p, i,, i, ,..., 421. (il,i2 ,..., k i ) is called an l.c. formula of G. Cut 

and/or l.c. formula may be omitted when their values are immaterial. 

Observe that if an l.c. formula is once realized at some point of a DOL sequence, 

then all the strings thereafter fulfil the same formula and thus the DOL system is 

l.c. [3]. If a DOL system G = (2, h, w) is (i, , i2, . . . , ik) l.c. with cut p, then G is 

(i . ,,‘2,..., ik) l.c. with cut p’ where p’ 2 p, and also G is l.c. with infinitely many 

l.c. formulas. For example, G = ({a, b}, h, a) where h(a) = b, h(b) = ab, is (2, 1) l.c. 

with cut 2. It is (2,l) l.c. with cut 3, (2,3,2) l.c. with cut 3, (4,3,3,2) l.c. with cut 

4, and so on. 

Definition. For a positive integer m, let 2, denote the set of integers 0 through 

m - 1: _?I:, = (0, 1, . . . , m - 1). The standard (iI, iz, . . . , ik) l.c. L scheme is a DOL 

scheme S = (X,, h) where 

n =max{i,, i2,. . . , ik}, h(i)=i+l(fori=O,l,...,n-2) and 

h(n-l)=(n-i,)(n-i,)...(n-ik). 

We sometimes denote it by S(n, 6) where 6 = (n - i,)(n - i2) . . . (n - ik) as h is 

apparent from n and 8. Note that there is at least one 0 in 6 by definition. We call 

the L system G = (Z,,, h, 0) the primary L system of S. 

We have the following relationship between an l.c. L system and a standard l.c. 

L scheme. 

Theorem 1.1 (Kobuchi [ 11). A DOL system G = (I, h, w) is (i, , iz, . . . , ik) l.c. if and 
only if there exist a standard (i,, iz, . . . , ik) l.c. L scheme S = (&, h’) and a A-free 

homomorphism y:I,+Z’ such thatfor any x in E(G’) h(y(x))=y(h’(x)), where 

G’ = (Z,,, h’, 0). 

Thatis,ifaDOLsystemGis(i,,i, ,..., ik) l.c., then its generated sequence E(G) 

embodies the structure of the generated sequence of the primary L system of the 

standard ( iI, i2, . . . , ik) l.c. L scheme. Thus we can say that the primary L system 

of a standard l.c. L scheme extracts the essential feature of the l.c. property. 

For a given L scheme, we can have infinitely many L systems choosing distinct 

axiom strings. Even if an L system G is l.c., another L system with the same 

underlying L scheme as G is not necessarily l.c. If there is more than one intrinsically 

different l.c. L system with the same underlying L scheme, what kind of property 

does this L scheme have? What kind of condition must the axioms satisfy in that 

case? What is the relationship among the l.c. formulas? We would like to investigate 

these problems. To do so, we will consider only standard l.c. L schemes in this 

paper since their primary L systems typify l.c. L systems. 

Proposition 1.2 (Seki [S]). For any standard l.c. L scheme, its generation mapping is 
injective. 
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Proposition 1.3 (Rozenberg et al. [4, 51). If a DOL system is (i,, iz, . . . , &) l.c., then 

itis(i,,i,,... ,ik)I.c.withcutn=max{i,,i2 ,..., ik} whenever the generation mapping 

of its underlying L scheme is injective. 

We are interested in standard l.c. L schemes which have l.c. L systems other than 

primary L systems. We have the following proposition about the axioms of l.c. L 

systems with a standard l.c. L scheme as an underlying L scheme. 

Proposition 1.4 (Seki et al. [6]). If a DOL system G = (z,,, h, wO) is Z.C., where (-X,,, h) 

is a standard l.c. L scheme, then w,, is a substring of a string in E (G’) where 

G’ = (I&,, h, 0). 

Proof. Let G be (j,,j2,. . . , j,) l.c. and E(G) = w,,, w, , w2, . . . . By Propositions 1.2 

and 1.3, G is l.c. with cut p = max{j, , j, , . . . , j,}. That is, wI, contains w0 as a substring. 

Let w0 = b, b2. . . b, where bi E 2, for 1 c i < s. For any q 2 0, hq(b,) is a prefix of 

wq. If we take q such that Ihq(b,)la(wPl and that q-p is a multiple ofj,, h’(b,) 

has wp as a prefix. Thus w0 appears as a substring of h9(b,), which is an element 

of E(G’). 0 

If w,, in Proposition 1.4 does not have 0, we can apply h-’ to w0 repeatedly until 

we get w = h-‘(w,,) that contains 0. Then the DOL system (E,, h, w) is still l.c. with 

the same cut and l.c. formula. Hence we are basically interested in axioms that 

contain 0 and are substrings of strings of the primary L systems. 

We also do not have to worry about reversed L schemes since the following 

proposition holds readily. 

Proposition 1.5. Let S(n, 6) be a standard l.c. L scheme. If the L system (S(n, 6), w) 

is (i,,&,... , ik) l.c., then the L system (S(n, aR), w”) is (ik, ik_,,. . ., iI) l.c., where 

xR is the reversed string of x. 

2. Parallel decomposable L schemes 

Here we give one sufficient condition for a standard l.c. L scheme to have other 

l.c. L systems than its primary L system. 

Definition. A string w E Et is said to be parallel decomposable in a DOL scheme 

S=(X,h) if w=w1w2...wk (wi~Et, k 2 2) and if there exists i0 (1 s i,~ k) such 

that hqc(wb) = w, for some q1 2 0 (1 s is k). We call wi and qi a component (of 

parallel decomposition of w) and the depth of w, respectively. 

Theorem 2.1 (Seki [5]). Let G be the primary L system of a standard l.c. L scheme 

S=(&,, h). LetE(G)=O,l,..., n-l, w,, w,, ,,.... Zfw,(pan) inE(G) isparallel 
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decomposable in S, then a DOL system G’ = (E,, h, a), where LX is a component of a 
parallel decomposition of wp, is also l.c. 

Proof. Let w~=LY~(Y~...(Y, (ai E Z’,) where there exist i0 (1 s i,s m) and qi(z 0) 
such that h”((yg)=(yi forany i (lsicm). For any uap, 

w, = h”-P(aI). . . h”-P(a,). . . h”-P(a,) 

= h”-P+ql(aio). . . huPP(aio). . . hU-P+q+J. 

We will show that G’= (&, h, a,) is l.c. Then a DOL system (&, h, cxi) is also l.c. 

forany i (l<i<m). Let aio=a,az...a, (ajE&,). Then, 

hP(cy,) = hP(a,)hP(a,) . . . hP(a,) 

= wp+n,wp+a* . *. WP+a, 

= hal+q+xJ . . . hnl+q~,(aio)haz+q,((Yio). . 

. . . 

h a~+q~(~,,,). . . haf+q+io). 

Thus G’ is (p - a, - q, , . . . , p - a, - qm, . . . , p - a, - ql, 

Note that 

wp = h”l(a,)h”2(c+,) . . . h”,rl(cu,) 

. . 7 p-al-q,) l.c. 0 

= haltql(0). . . hDr+ql(0)hn~+q~(O). . . h”ffq2(0). . . hOl+qm(0). . . h”~+q~~(0). 

That is, G is (p - a, - ql,. . . , p - a, - q, , . . . , p - a, - q,,,, . . . , p - a, - q,,,) l.c. with 

cut p. Thus, the above mentioned l.c. formula for G’ is a permutation of an l.c. 

formula of G. Note also that if wp in E(G) is parallel decomposable in S, then, for 

any u >p, w, is parallel decomposable in S. The possible smallest value for p is n. 

It is the case where, in a standard DOL scheme S( n, 6), 8 is parallel decomposable. 

See the following example. 

Example. Consider the standard l.c. L scheme S(5,2301) = (&, h). Then the DOL 

system G’ = (X5, h, 01) is also l.c. 

0 01 

1 12 

2 23 

3 34 

4 42301 

2301 23013412 

. . . . . . 

the primary L system of S E(G’) 
(3,2,5,4) l.c. (3,5,2,4) l.c. 



On standard locally catenative L schemes 241 

3. Cyclic L schemes 

Here we will state another sufficient condition for a standard l.c. L scheme to 

have an l.c. L system besides the primary one. 

Definition. For a positive integer n, a string w in X’, is said to be (n, c)-cyclic 

(Occ<n) if WEE, or w=a,+... a, (~22, a,~& for 1sic.s) such that ai+c= 

ai+, (mod n) for 1 s i < s. A DOL system G = (&, h, wO) is said to be (n, c)-cyclic if 

every string in E(G) is (n, c)-cyclic. 

Lemma 3.1 (Seki [5]). Let G be the primary L system of a standard l.c. L scheme 

S(n, 6) = (E,,, h). Then the following two conditions are equivalent. 

(1) 6 is (n, c)-cyclic, and 6 starts and ends with 0. 

(2) G is (n, c)-cyclic. 

Proof. (l)+(2): Let E(G) be 0, 1, . . . , n - 1, w,, w,+,, . . . . We will show that if 

w,, is (n, c)-cyclic, then w,+, is also (n, c)-cyclic for p 2 n. Let w,, = a, . . . a, where 

ai + c = uj+, (mod n). If none of the ai’s is equal to n-l, then w,+, = 

(ui+l)... (a, + 1) is also (n, c)-cyclic. Assume that tr = n - 1 (1 Gj s s). Then 

uj_r = n - 1 -c and ai+, =n-l+c(modn). Since h(u,_,)=n-c, h(u,+,)=c, and 

h(u,) = S starts and ends with 0, w,+, is also (n, c)-cyclic. 

(2)+(l): Obvious. 0 

In this section, we consider standard l.c. L schemes S(n, 6) of this type. That is, 

6 always satisfies condition (1) in Lemma 3.1 and h denotes the generation mapping 

of S. Then 6 has the following property. 

Lemma 3.2. Let 6 E _X’, be (n, c)-cyclic and assume that it starts and ends with 0. 

Then the following holds, where m = GCD( n, c). If an integer I is a multiple of m in 

I,,, then I occurs in 6, and vice versa. 

Proof. Let c = mc’ and n = mn’. Then c’ and n’ are relatively prime. There exist 

integers x and y such that XC’+ yn’= 1. So xmc’+ ymn’= m, that is, xc+ yn = m. Let 

I = im for 0 < i < n’. I = ixc + iyn, that is, I = ixc (mod n) so I occurs in 6. Conversely, 

if I appears in 6, then it is a multiple of c with mod n. Thus it is a multiple of m. 0 

From the discussion above, there are n’ distinct integers that occur in 6. Thus the 

structure of 6 is 

o*c*2c.... . o~c~2c~...~...~o~c~2c~...~o. 
Me 

n’ n’ n’ 

And the length of 6 can be written as rn’+ 1 for some r 3 1. 

Now, we have the main theorem for this section as follows. 
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Theorem 3.3. Let S(n, 6) = (X,, h) b e a standard l.c. L scheme such that 6 is (n, c)- 

cyclic, starting and ending with 0. Then a DOL system G’ = (Z,,, h, w,,) is l.c. if w0 is 

( n, c) -cyclic. 

To prove the theorem, we need the following lemma. 

Lemma 3.4. Consider S(n, 6) = (Z,,, h) as in Theorem 3.3. Let x E I’, contain 0 and 

be (n, c)-cyclic. Assume that the length 1x1 is a multiple of n’ which is dejned by 

n = mn’ and m = GCD(n, c). Then Ih'"'(x)l = (r+ l)‘lxl for any j>O where ISI = 

rn’+ 1. 

Proof. LetIxl=tn’.Whenj=O,Ih’“(x)(=I 1 d x an we are done. As any n’ consecutive 

symbols in x contain all the multiples of m in Z,, and nothing else, in m steps, 

exactly one symbol in it expands to 6. If lh'"(x)l = (r+ l)‘(xl, there are (r+ 1)‘t 

strings of length n’ without overlapping. Then I h(it’)m(x)l = I h’“(x)1 + (r + 1)jtrn’ = 

(r-t l)j+llxI. 0 

Proof of Theorem 3.3. Let w0 = b, b, . . . b,(biEE‘,for14iss)andE(G’)=w,,w,, 

Wz,.... Without loss of generality, we can assume that w0 contains 0. This means 

that all hi’s are multiples of m (OS b, < n’m). With the same argument as that in 

the proof of Lemma 3.1, G’ is (n, c)-cyclic since w0 is (n, c)-cyclic. Notice that, for 

0 <j < n, all wj’s start with distinct n elements in S,. Notice also that w, starts with 

b, and ends with b,. We will prove that G’ is l.c. with cut n; that is, w, can be 

written as a concatenation of strings in {w,, w,, . . . , w,_~}. The first component of 

w, is wO. As w0 ends with b, = b,+ (s - 1)c (mod n), the second component of w, 

must start with b,+sc (mod n). It must be wq, where q = SC (mod n). The third 

component must start with b, f2sc (mod n) and must be wq, where q = 2sc (mod n). 

Let GCD(s, n’) = g, s = gs’, and n’= gn”. Then n”sc = 0 (mod n) and the (n”+ 1)-st 

component of w, must be wO. The components may repeat the same sequence of 

strings. To construct w,, we need only n”strings w,,, w,,, wZgm, . . . , w~,,~~_~)~,,,. (Note 

that gm = GCD(sc, n).) The initial segment of w, is (Y which is a concatenation of 

all these n” strings in the proper order starting with w,,. That is, I aI = 

I%l+lwgml+. . ~+t(~~,+,~~,,,l, and (Y starts with b, and ends with b, -c (mod n). We 

would like to show that w, = a’w,, for some I 2 1. As we know about (n, c)-cyclic 

property of (Y, what we have to examine is about its length. We will prove that 

I w,I - I w,,I is a multiple of Icz I. Note that the primary L system G of S is 

(n, n - c, n -2c, . . . , n, n - c, . . . , n, . . . , n)l.c. 
P UW 

n’ n’ 

r times 

Let Gi = (I,,, h, bi) for 1 c is s. Then Gi satisfies the same l.c. formula as G. Every 

string in E( G’) is a concatenation of strings of E( G’) for 1s i s s at the same level. 
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Hence 

That is, 

lw,I=l%I+Iw~I+~ . .+lW(~,_,)ml+~WOI+. . .+lw(,,_,,,l+. * *+lwol+. . ~+l%-~~~~+lw~l 
\ 

rtimes 

We will show that Iw,l+lw,I+*. .+lw~,,_,),l is a multiple of lal= 

Iwol+lwsmI+~ . . + I w~,,~~_,~,,,I. Remember that LY is (n, c)-cyclic and that (Y starts with 

b, and ends with b, - c (mod n). This means that Icz is a multiple of n’. For 0~ i < n” 

and Osj<g, w~~,,,+~~=~‘~(w~~~). So, for Osj<g, 

IW~mI+IWgm+jml+t ” + lW(n”-l)gm+jml = lhj”(a)l. 

By Lemma 3.4, Ih’“‘(a)l= (r+l)‘lal. Then 

g-1 

Iwol+l%l+~ . .+lW~na_l)ml= C (IWjmI+lwWgm+jmI+’ “+IW~n”~~km+jml) 
,=o 

That is, Iw,I=lal((r+l)“-l)+lw,I, which means w,=~((~~‘)“-‘)w~. 

If s is a multiple of n’, then g = rr’ and n” = 1. In this particular case, we have 

(Y = w 0 and G’ is 

(n, n, . . . ) n) l.c. 0 
x_ ” 
(rt,)” times 

Example. Consider the standard l.c. L scheme S(8,02460) = (&, h). Then the DOL 

system G’ = (&, h, 024) is also l.c. 

0 024 

1 135 

2 246 

3 357 

4 4602460 

5 5713571 

6 602460246024602 

7 713571357135713 

02460 0246024602460246024602460246024 

the primary L system of S 

(8,6,4,2, 8) l.c. 
E(G’) 
(8,2,4,6, 8) l.c. 
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4. Semicyclic L systems 

In Sections 2 and 3, we have presented two sufficient conditions for a standard 

l.c. L scheme to have other l.c. L systems than its primary L system. They look very 

natural for the l.c. property [2]. At first, we thought those two conditions also make 

necessary conditions. But it turned out that this is not the case. Here we give another 

sufficient condition which is rather complicated and looks slightly odd. 

Theorem 4.1 (Seki et al. [6]). For a standard (b,, b,, b, + c, . . . , b, + rc, b2, b,+ 

C ,..., b2+rc ,..., b,, b,+c ,..., b,+rc) l.c. L scheme S=(Z,, h), where rz 1 and 

there exist t,,, t, , . . . . , tp (20) such that 

b,-b,+c= t,b,, 

bi-b,+,+(r+l)c= tibo for lsisp-1, and 

b,+rc= t,b,, 

the L system G=(&, h, (rc). (r-l)c. * * * * c.0) is l.c. 

Let E(G) = wO, wl,. . . . For the sake of simplicity, we denote 6 by (n - b,.,)6’ and 

also denote (n - bi)( n - bi - C) . . . (n - bi - rc) by n - bi for 1 s i c p. With this nota- 

tion, we can write 

h(n-l)=(n-b,)#=(n-b,)(n-b,)(n-b,)...(n-b,). 

This L scheme has the properties found in the following lemmas. 

Lemma 4.2 (Seki et al. [6]). For an integer q 2 n - 1, 

w 
4 

= h¶-n+l+rC(n _ l)hV’+l++l)c(n _ 1) . . . hq--n+l+c(n _ l)hq-“+‘(n _ 1). 

Lemma 4.3 (Seki et al. [6]). For i (1~ i < p) and m (3 bi + rc), 

h”(n-b,)=h m-%+‘(n _ l)h+‘,+‘-‘(n _ 1). . . h”-bs+l-rc(n _ 1). 

We will call a string w in E’, decomposable (in G) if w = wj,wj* . . _ wj, for some 

I (~1) and jr, jz,.. . , j, (2 0). Thus “w is decomposable” means that w is a 

concatenation of strings in E(G). Lemma 4.3 says that h”( n - bi) and hence h”‘(6’) 

for a large m’ are decomposable by Lemma 4.2. The generation mapping h has the 

following property. 

Lemma 4.4 (Seki et al. [6]). For t (30) and s (0~s~ b,), 

h’bo+s(n _ 1) = h”(n _ l)hb,+sp1(~r)h2bu+s-‘(fj~). . . h’bo+S-l(S’). 
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Proof 

h’bof~ _ 1) = h%+s-‘((n _ b,)q 

= /+-‘W-l((n _ b,)#)h%+‘-‘(6’) 

= /+-l)bo+yn _ l)h’b0+.~-1(6!) 

= h”(n _ l)hb,+s-l(q . . . h(‘--l)bo+~-l(~r)hrbo+p--1(81). q 

Lemma 4.5 (Seki et al. [6]). Consider a string hml(n - l)hm2(n - 1) . . . hmr+l(n - 1) 

where there exist ti’s (~0) such that mi+, - mi + c= tibo for 1 s i G r. Then it is 

decomposable. 

Proof. First we will show that hml(n - l)hmlP’(n - 1) . . . hmlp(rpl)c(n - l)h”,+l(n - 1) 

is decomposable. There exists t (2 0) such that m,,, - ml + rc = tbo; 

h”l(n - l)h”l-‘(n - 1). . . h m,P(rP1)c(n _ l)hm,+,(n _ 1) 

= h”l(n - l)hmlp’(n - 1). . . h m,p(rpl)c(n _ l)h*,?‘(n - 1) 

hbo+m,~rc~l(~r)h*bo+m,rc-l(S,). . . h”r+,-l(#). 

By Lemmas 4.2 and 4.3, this is decomposable. Now we will show that for r’ 

(ldr’<r), 

hml(n - l)h ,I-‘( n - 1) . . . h m,-(r’-l)c( n _ l)h”++,( n _ 1) 

hmr,+z(n - 1) . . . hmr+l(n - 1) 

is decomposable assuming that h”l(n - l)hmlPc(n - 1). . . hml-r’c(n - l)hmr’+z(n - 

1) . . . h”,+I (n - 1) is decomposable. There exists t’ (2 0) such that m,,+l - ml + r’c = 

t’b,. 

h”l(n - l)h*l+(n - 1) . . . h m,-(r’-‘),(n _ l)hm++,(n _ 1). . . hmr+,(n _ 1) 

= hm,(n _ l)hm,-c(n _ 1). . . hm,c(r’pl)c(n - l)hm,P’c(n - 1) 

hbo+m,-r’c-l(~~)h*b~+m,~r’cl(S,)~~~ hmrw-l(#)hmr.+,(n _ 1). . . hmv+,(n _ 1) 

= hml(n _ l)hml-c(n _ 1) . . . hm,-(r’-l)c(n - l)hmt-r’c(n - 1) 

hbo+m,-r’c-‘(n _b,) . . . hbo+ml--r’c-l(n _ b,) . _. 

hmr+-‘(n - b,) . . . hmr,+lP1(n - b,) 

hmr,+2(n - 1) . . . hmr+l(n - 1) 

= hml(n - l)hml-c(n - 1). . . hmlPrc( ’ n - 1) 

h%,+m,-r’c-b,(n _ l)h%+m,~r’c~b,e(n _ 1) . . . 

hbo+m,-r’c-b,-rc(n _ l)hb,+m,-r’c-bqn _ 1) 

. . . hbo+m,-r’c-bp(n _ l)hbo+m,-r’c-bp-c(n _ 1). . . hbO+m,-r’c-bp-rc(n _ 1) 

h 2b,+m,-r’c-b I(n - 1). . . h 2bo+m,p+bl~rc(n _ 1) . . . 

hmrw-bp(n _ l)hm,++-yn _ 1) . . . hmrw-bp-rc(n _ l)hmr.+qn - 1) 

. . . hmv+l(n - 1). 
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By the hypothesis and bo- b, + c = tobo, the initial segment from h”‘l(n - 1) 

through h bo+m~~r’c-b~~‘r~r’-“c(n - 1) is decomposable. For i (1s i <p) and j 

(lsjst’), by the hypothesis and bi-bi+,+(r+l)c=tibo, a segment from 
hjbo+m,-r’c-b,-(r~r’)c( n _ I) through hjb~+m,-r’c-b,+,-(r-r’l)c(n _ 1) is decomposable~ 

For j (1 <j < t’), by bo- b, + c = tobo and the hypothesis, a segment from 
hib,+m,~r’c~$~(r-r’)c(n _ I) through h(j+l)bo+ml-r’c-b,-(r-r’-l)c(n _ 1) is decomposable~ 

By rnrrt2 - m,,+, + c = r:r+r b ,,, bp + rc = t,b,, and the hypothesis, the last segment from 

h “bo+m,-r’c-$-(r~r’)c( n _ 1) through h”,+,( n _ 1) is decomposable. Thus the whole 

string is decomposable. 0 

Proof of Theorem 4.1. For a large enough q, 

wy = h ¶pn+l+rc(n _ l)h4-n+l+(rplk(n _ 1). . . hq-n+l(n _ 1) 

= h9-n+l+rc-b 
‘(; ~;;;,;;+Yy-f.;, hqpntrc(n -b,) 

hq--n+l+(r~lk n 

= hqV+l+rc-bo( n _ l)h9--n+l+rc-b,( n _ 1) . . . hqV+l+( n _ 1) 

hq-“+l+rcpb,@ _ 1). . . hq-n+‘-b,(n _ 1). . . 

hq--n+l+rcpb+ _ 1) _. . hq-n+‘-b,,(n _ 1) 

hq~~+~+(r~l)c(n _ 1). . . h9V’+‘(n _ 1) 

= hq~nfltrc-b o(n _ l)h9-“+‘+rc-b,(n _ 1). . . hq-“+l+cpb,(n _ 1) 

hq--n+lpb,( n _ l)hq-n+l+rcpb,( n _ 1) . . . h9-“++bz( n _ 1) 

. . . 

hq-“+‘-bpqn _ l)h9-"+l+rc-b,,(n _ 1) . . . h9-fl+l+c-+ _ 1) 

hq-n+l-b,,(n _ l)hW’+l+(r-l)c(n _ 1). . . h9-n+1(n _ 1). 

By Lemma 4.5, a segment on each line of the last expression is decomposable. 

This means that wq satisfies some l.c. formula, and thus G is l.c. 0 

Example. Consider the standard l.c. L scheme S(3,2210) = (&, h). Then the DOL 

system G’= (&, h, 210) is (1, 3, 3, 5, 4, 3, 3, 5, 5, 7, 6, 5, 4, 4, 6, 5, 4, 3, 3, 5, 4, 3) 

l.c. with cut 7. 

In Theorem 4.1, the condition b, + rc = tpbo is unnecessary when r = 1. 

Theorem 4.6 (Seki et al. [6]). For a standard (b,, b, , b, + c, b2, bZ+ c, . . . , b,, b,, + C) 
l.c. L scheme S = (E,,, h), where there exist to, t, , _ . . , tp-, (2 0) such that 

b,-b,+c= tobo and 

bi-b,+,+2c= tibo for lsicp-1, 

the L system G = (TX,,, h, c. 0) is 1,~. 
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We present a substitute for Lemma 4.5. 

Lemma 4.7 (Seki et al. [6]). A string hml(n - l)h”z(n - 1) is decomposable if there 

exists t (~0) such that m,-m,+c= tb,. 

Proof. h”l(n-l)h”z(n-1)= h”~(n-1)h”~-‘(n-1)h bo+m~PcP1(n -b,) . . . 

hbotmlPrP1(n -b,) . . . hm,-‘(n -b,) . . . hmz-‘(n - b,,). 0 

Proof of Theorem 4.6. By Lemmas 4.3 and 4.4, for a large enough m, 

hm(n-l)=h”-b~(n-l)hm-1(6’) 

=hm-b~(n-l)h”~l(n-bl)...hm~l(n-bP) 

= hm-bo(. - 1)h m-b,(n _ l)hm~-b,?‘(n _ l)hm-bz(, _ 1) . . . 

hmpb,,~l-‘( n - l)hmmbp( n - l)hmpbT( n - 1). 

By Lemma 4.7, h”(n - 1) can be written as ~hmP”(b~+c)(n - 1) where t’* 1 and (Y is 

decomposable. 

For a large enough q, 

w, = h q-n+‘+c( n _ l)hF+‘( n _ 1) 

= hq-n+l+cPb,,(n _ l)hF’+c(#)hq-n+l(n _ 1) 

= hqW+l++,(n _ l)hqF’+l+c-b,(n _ 1) 

hq~ntl-b 
~(n - 1)h qpn+l+c-b 

2(n - 1) 

. . . 

hq-n+‘-bp_,(n _ l)hq-“+‘++,(n _ 1) 

hq-“+‘-bp(n _ l)hY-“+l(n _ 1). 

By Lemma 4.7, each line except the last one of the last expression is decomposable. 

And the last line can be written as Cyh”~n+l~“‘+“b~-“c(n - l)h’-“+‘(n - 1). If we 

choose t’ properly such that (t’+ l)(b,, + c) is a multiple of bO, then the last line is 

also decomposable. Thus G is l.c. 0 

The DOL scheme in the following example satisfies the condition of Theorem 4.6 

but not that of Theorem 4.1. 

Example. Consider the standard l.c. L scheme S(5,210) = (E,, h). Then the DOL 

system G’=(&, h, 10) is (3, 8, 13, 15, 17, 14, 11, 8, 5) l.c. with cut 17. 

5. Concluding remarks 

We have presented three sufficient conditions for a standard l.c. L scheme to have 

multiple l.c. L systems. In the case of parallel decomposable L schemes and cyclic 
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L schemes, the l.c. formula and cut of a new l.c. L system are predictable. But for 

semicyclic L schemes the l.c. formula is complicated and the smallest cut can be 

very large. In all the cases, if the axiom of a new l.c. L system is a substring of 

some element w of the primary L system, w is a concatenation of axioms of l.c. L 

systems, not all of which are the primary L systems. Regarding semicyclic schemes, 

we have presented Theorem 4.6 which does not require one condition in Theorem 

4.1 for r = 1. This condition may be eliminated for any r. Furthermore, conditions 

in Theorem 3.3 and Theorem 4.1 are satisfied by many common L schemes. Combin- 

ing these theorems may lead to a sufficient and necessary condition. 
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