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Present investigation is focused on studying the effect of mass diffusion on the quality factor of the micro-
beam resonators. Equation of motion is obtained using Hamilton’s principle and also the equations of
thermo-diffusive elastic damping are established using two dimensional non-Fourier heat conduction
and non-Fickian mass diffusion models. Free vibration of a clamped–clamped micro-beam with isother-
mal boundary conditions at both ends, and also a cantilever micro-beam with adiabatic boundary condi-
tion assumption at the free end, is studied using Galerkin reduced order model formulation for the first
mode of vibration. Mass diffusion effects on the damping ratio are studied for the various micro-beam
thicknesses and temperatures and the obtained results are compared with the results of a model in which
the mass diffusion effect is ignored. In addition to the classic critical thickness of thermoelastic damping,
a new critical thickness concerning mass diffusion is introduced.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Micro-Electro-Mechanical-System (MEMS) is a combination of
mechanical components, electronic sensors and electronic compo-
nents. This mechanical structure is very small in size, and has
grown tremendously in the last decade. This is due to the wide
application of MEMS in different branches of medicine, medical
engineering (analysis and synthesis of DNA and genetic code, drug
delivery, diagnostic and imaging), transportation systems (con-
verters, accelerometers, gyroscopes) and production (intelligent
micro-robots) (Sadeghian and Rezazadeh, 2009).

Micro-mechanical resonator is a category of MEMS devices. To
obtain high performance resonators, it is necessary to build a res-
onator that works with low power dissipation or in other words
with high quality factor (Saeedivahdat et al., 2010). Quality factor
of the resonator is a measure of the amount of energy loss. Air
damping and clamping losses are the major extrinsic mechanisms
of energy dissipation. Energy loss resulting from the thermoelastic
damping (TED) is the main intrinsic mechanism of energy dissipa-
tion factors in micro-beam resonators (Nayfeh and Younis, 2004;
Severine, 2006). TED is an important loss mechanism in high qual-
ity micro-structures, especially in those using flexural vibration
modes (Lifshitz and Roukes, 2000; Duwel et al., 2003; Evoy et al.,
2000; Rozshart, 1990). In precise measurements, TED acts as a
source of mechanical thermal noise and contributes to reduce the
quality factor and this causes an increase in energy consumption.
The extrinsic losses such as air damping, can be minimized by a
proper design and operating conditions. But intrinsic losses such
as TED cannot be controlled as easily as extrinsic losses and they
are almost impossible to eliminate (Nayfeh and Younis, 2004).
Therefore it is important to find a way to reduce intrinsic losses,
as much as possible and this is available by analyzing all factors,
interfering in energy consumption.

Zener (1937) was the first one who explained the mechanism of
TED. He also derived an analytical approximation to relate the
energy dissipation and the material properties of a micro-beam
structure. Copper and Pilkey (2002) demonstrated a thermoelastic
solution method for beams with arbitrary quasi-static temperature
distributions that create large transverse normal and shear stres-
ses. They calculated the stress resultants and mid span displace-
ments along a beam. Guo and Rogerson (2003) studied the
thermoelastic coupling in a clamped–clamped elastic prism beam
and examined its size-dependence. Lifshitz and Roukes (2000)
studied TED of a beam with rectangular cross-sections, and found
that after the Debye peaks, the thermoelastic attenuation will be
weakened as the size increases. Sun et al. (2006) studied and ana-
lyzed the TED of micro-beam resonators by using both the finite
sine Fourier transformation method combined with Laplace trans-
formation and the normal mode analysis. Sun et al. (2008) investi-
gated the vibration phenomenon during pulsed laser heating of a
micro-beam and also they analyzed the size effect and the effect
of different boundary conditions. Rezazadeh et al. (2009) discussed
about the TED in capacitive micro-beam resonators using hyper-
bolic heat conduction model. They compared two dimensional par-
abolic and one dimensional hyperbolic heat conduction model to
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one dimensional parabolic heat conduction model. Their compari-
son illustrated that considering these two cases has a negligible
influence on the quality factor of the resonators. Therefore,
neglecting longitudinal heat conduction and hyperbolic terms of
equation would be proper assumptions. Vahdat and Rezazadeh
(2011) studied the effects of axial and residual stresses on TED in
capacitive micro-beam resonators. Their results showed that axial
stress due to the stretching of the micro-beam decreases the TED
ratio. Indeed, the effect of axial stress on the TED ratio gets impor-
tance when the applied bias DC voltage is near the pull-in voltage.
Vahdat et al. (2012) investigated the TED in a micro-beam resona-
tor tunable with a pair of piezoelectric layers bonded on its upper
and lower surfaces. Their results showed that, increment of the
thickness of piezoelectric layers increases the fundamental
frequency and characteristic time of the resonator thus the TED
critical thickness value of the resonator decreases.

Mass diffusion (MD) defined as the random movement, of an
ensemble of particles, from regions of higher concentration to lower
concentration. Recently there is an increasingly attention on the
study of MD phenomenon because of its applications in electronic
industries. In integrated circuit manufacture, diffusion is used to
introduce dopants in controlled quantity into the semiconductor
substance. Especially, diffusion is used to form the base and emitter
in bipolar transistors, integrated resistors and the source/drain
regions in Metal Oxide Semiconductor (MOS) transistors, and dope
poly-silicon gates in MOS transistors (Sherief et al., 2004).

In most of the previous investigations, the mass concentration
is calculated using a simple law what is known as Fick’s equation.
Until recently, thermodiffusion in solids was considered as a quan-
tity that is independent of the body deformation. Study of the phe-
nomenon of MD shows that the process of thermodiffusion could
have a very important effect upon the deformation of the body.

Nowacki (1974) developed the theory of thermoelastic diffusion
using a coupled thermoelastic model. Dudziak and Kowalski
(1989) and Olesiak and Pyryev (1995) respectively, discussed the
theory of thermodiffusion and coupled quasi-stationary problems
of thermal diffusion in an elastic layer. Sherief et al. (2004) devel-
oped the generalized theory of thermoelastic diffusion with one
relaxation time, which allows the finite speeds of propagation of
waves. Sherief and Saleh (2005) investigated the problem of a ther-
moelastic half-space in the context of the theory of generalized
thermoelastic diffusion with one relaxation time.

The above explanations declare that mass diffusion damping
(MDD) is the other important intrinsic loss mechanism. Unfortu-
nately researchers haven’t attended on the effect of MDD in the
micro-beam resonators. Therefore the aim of the present work is
to examine MDD effect in micro-beam resonators taking into
account the finite speed of heat and mass transfer. The question
arises whether the previous works are still valid for design high
quality factor resonators or the MDD effect has to be taken into
account.

A Galerkin based reduced order model has been used to analysis
the numerical results of coupled equations. Governing equation of
coupled heat conduction has been extracted from the equation of
non-Fourier heat conduction and the principle of energy conserva-
tion by neglecting heat conduction along the width direction and
similar to the previous equation the equation of coupled mass dif-
fusion has been resulted from the equation of non-Fickian mass
diffusion and the principle of mass conservation by neglecting
mass diffusion along the width direction.
2. Model description and assumptions

We consider small deflections of a thin elastic micro-beam with
dimensions of length L ð0 6 x 6 LÞ, width b ð�b=2 6 y 6 b=2Þ and
thickness h ð�h=2 6 z 6 h=2Þ, as is shown in Fig. 1. We define the
x axis along the axis of the beam and also y and z axes correspond
to the width and thickness, respectively.

The usual Euler–Bernoulli assumption is made so that any plane
cross-section, initially perpendicular to the axis of the beam,
remains plane and perpendicular to the neutral surface during
bending. Thus, the displacements can be given by:

u ¼ �z
@w
@x

ð1Þ

T ¼ Tðx; z; tÞ; @T
@x
� @T

@z
ð2Þ

C ¼ Cðx; z; tÞ; @C
@x
� @C

@z
ð3Þ

where u is the displacement of the beam in x direction, T ¼ T � T0, T
is the absolute temperature and T0 is the temperature of the beam
in the natural state assumed to be equal to the ambient tempera-
ture, C is the mass concentration. Following Sherief et al. (2004)
and Sadd (2009) the constitutive equation for an isotropic homoge-
neous elastic solid in terms of mass diffusion and heat conduction
is:

rij ¼ 2leij þ dijðkekk � b1T � b2CÞ

eij ¼
1
2
ðui;j þ uj;iÞ ¼

1þ m
E

rij �
m
E
rkkdij þ atTdij þ acCdij

ð4Þ

where:

b1 ¼
E

ð1� 2mÞat ; b2 ¼
E

ð1� 2mÞac ð5Þ

where l and k are Lame’s constants, at is the coefficient of the linear
thermal expansion, ac is the coefficient of the linear diffusion
expansion rij is the components of the stress tensor, ui is the com-
ponents of the displacement vector, eij is the components of the
strain tensor, m is Poisson ratio and dij is the Kronecker delta.

Following Sadd (2009), Sherief et al. (2004) and Vahdat and
Rezazadeh (2011) when the thickness (in z direction) and the
width (in y direction) of a beam are small enough in comparison
to the length (in x direction) of it, based on plane stress condition
it can be concluded that the stress tensor components in z and y
directions are zero (ryy ¼ rzz ¼ rxz ¼ ryz ¼ rxy ¼ 0). Therefore the
strain components can be simplified as following:

exx ¼ �z
@2w
@x2 ¼

rxx

E
þ atT þ acC ð6Þ

eyy ¼ m z
@2w
@x2

 !
þ ð1þ mÞatT þ ð1þ mÞacC ð7Þ

ezz ¼ m z
@2w
@x2

 !
þ ð1þ mÞatT þ ð1þ mÞacC ð8Þ

exy ¼ exz ¼ eyz ¼ 0 ð9Þ

For a narrow beam based on Euler–Bernoulli beam assumptions the
trace of the strain tensor is as follows:

e ¼ �ð1� 2mÞ z
@2w
@x2

 !
þ 2ð1þ mÞatT þ 2ð1þ mÞacC ð10Þ

and:

rxx ¼ � Ez
@2w
@x2

 !
� EatT � EacC ð11Þ



Fig. 1. Schematic illustration of the micro-beam set-up.
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In contrast to previous case when the thickness of a beam is small
enough in comparison to the length while the width of it is consid-
erable, based on plane strain condition it can be concluded that the
stress components in z direction and strain components in y direc-
tion vanish (rzz ¼ rxz ¼ ryz ¼ 0 and exy ¼ exz ¼ ezy ¼ 0). Therefore
the components of the strain and stress tensors in terms of the
displacement field considering Euler–Bernoulli assumptions can
be expressed as following:

exx ¼ �z
@2w
@x2 ¼

rxx

E
� m

ryy

E
þ atT þ acC ð12Þ

eyy ¼ 0 ð13Þ

ezz ¼
m

ð1� mÞ z
@2w
@x2

 !
þ ð1þ mÞ
ð1� mÞatT þ

ð1þ mÞ
ð1� mÞacC ð14Þ

ryy ¼ mrxx � EatT � EacC ð15Þ

For a wide beam based on Euler–Bernoulli beam assumptions the
trace of the strain tensor is as follows:

e ¼ �ð1� 2mÞ
ð1� mÞ z

@2w
@x2

 !
þ ð1þ mÞ
ð1� mÞatT þ

ð1þ mÞ
ð1� mÞacC ð16Þ

and:

rxx ¼ �
E

ð1� m2Þ z
@2w
@x2

 !
� Eat

ð1� mÞ T �
Eac

ð1� mÞ C ð17Þ

So for both plane stress and plane strain condition we have:

rxx ¼ � ~Ez
@2w
@x2

 !
� btT � bcC ð18Þ

here bt and bc equal to Eat and Eac for a narrow beam (the plane
stress condition) and also respectively equal to Eat=ð1� mÞ and
Eac=ð1� mÞ for a wide beam (the plane strain condition). Note that
for a wide beam, for which b P 5h, the effective modulus ~E can be
approximated by the plate modulus E=ð1� m2Þ; otherwise ~E is
Young’s modulus E.

3. Motion equation of the micro-beam resonator

When a deflection in the micro-beam, take place the mechani-
cal bending strain energy, U of the beam in terms of mass diffusion
and heat conduction is given by:

U ¼
Z L

0

Z
A

1
2

~Ee2
x � btTex � bcCex

� �
dAdx ð19Þ

U ¼ 1
2

Z L

0

~EI
@2w
@x2

 !2

dxþ
Z L

0

@2w
@x2 MT dxþ

Z L

0

@2w
@x2 MCdx ð20Þ

where:

MT ¼
Z h=2

�h=2
bbtTzdz; MC ¼

Z h=2

�h=2
bbcCzdz ð21Þ
where MT and Mc are the thermal moment and the mass diffusive
moment of the micro-beam. I ¼ bh3

=12 is the moment of inertia
of the cross-sectional area A. The kinetic energy of the micro-
beam:

K ¼ 1
2

Z L

0
qA

@w
@t

� �2

dx ð22Þ

By presenting Lagrangian L and extremizing it the equation of
motion will be derived.

L ¼ K � U ¼
Z L

0
Fdx ð23Þ

F ¼ 1
2
qA _w2 � 1

2
~EIw002 � ðMT þMcÞw00

w00 ¼ @
2w
@x2 ; _w ¼ @w

@t

ð24Þ

According to the calculus of variation the following condition
should be satisfied:

d
Z t2

t1

Ldt ¼
Z t2

t1

Z L

0
dFðw00; _w;MT ;MCÞdxdt ¼ 0 ð25Þ

Z t2

t1

Z L

0

@2

@x2

@F
@w00

� �
� @

@t
@F
@ _w

� �" #
dwdxdt �

Z t2

t1

@

@x
@F
@w00

� �
dw
����
L

0
dt

þ
Z t2

t1

@F
@w00

dw0
����

L

0

dt þ
Z L

0

@F
@ _w

� �
dw
����

t2

t1

dx ¼ 0 ð26Þ

The dynamic governing equation of the beam in terms of mass dif-
fusion and heat conduction:

@2

@x2

@F
@w00

� �
� @

@t
@F
@ _w

� �
¼ 0

~EI
@4w
@x4 þ

@2MT

@x2 þ
@2MC

@x2 þ qA
@2w
@t2 ¼ 0

ð27Þ

The initial conditions read:

@F
@ _w

� �
dw
����
t2

t1

¼ 0

_wðx; t2Þdwðx; t2Þ � _wðx; t1Þdwðx; t1Þ ¼ 0

ð28Þ

The other equations resulted from the calculus of variation pre-
scribed at x ¼ 0 and x ¼ L as the boundary conditions:

@F
@w00

dw0
����
L

0
¼ ð~EIw00 þMT þMCÞdw0

�����
L

0

¼ 0 ð29Þ

@

@x
@F
@w00

� �
dw
����

L

0
¼ 0

~EI
@3w
@x3 þ

@MT

@x
þ @MC

@x

 !
dw

�����
L

0

¼ 0

ð30Þ
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4. Equation of thermo-elasticity

4.1. Classical thermoelasticity

According to classical heat conduction, heat flux is directly pro-
portional to the temperature gradient (Fourier’s law) as:

qj ¼ �kT;j ð31Þ

Following Sherief et al. (2004) the equation of energy conservation
in terms of mass diffusion and trace of the strain tensor is as follow:

qj;j ¼ �qCv
_T � b1T0 _e� aT0

_C ð32Þ

where k and q are the thermal conductivity and heat flux vector,
respectively. q is the density, Cv is the specific heat at constant
strain, a is a measure of thermodiffusion effect.

By taking the divergence of both sides of Eq. (31) and using Eq.
(32) and its time derivative, and assuming small deviations of tem-
perature from equilibrium value, the coupled heat conduction
equation for a classical thermoelastic body is given by:

kT;jj ¼ qCv
@T
@t
þ Eat

ð1� m2Þ T0
@e
@t
þ aT0

@C
@t

ð33Þ
4.2. Generalized thermoelasticity

Thermoelasticity equation based on non-Fourier heat conduc-
tion equation has been proposed by Lord and Shulman (1967).
Non-Fourier or hyperbolic heat conduction equation was intro-
duced by Maxwell (1967) to eliminate the paradox of an infinite
velocity peculiar to the classical theory by extension of Fourier
law of heat conduction to the most general case involving heat flux
and its first time derivative:

qj þ s0t _qj ¼ �kT;j ð34Þ

where s0t is thermal relaxation time. The constant s0t has a clear
physical interpretation. It is the time required to establish the
steady state of heat conduction in a volume element suddenly sub-
jected to a temperature gradient. By taking the divergence of both
sides of Eq. (34) and using Eq. (32) and its time derivative, we arrive
at the equation of generalized heat conduction based on continuum
theory frame:

qCvð _T þ s0t
€TÞ þ b1T0ð _eþ s0t€eÞ þ aT0ð _C þ s0t

€CÞ ¼ KT;jj ð35Þ

By substituting the trace of strain tensor the equation of cou-
pled thermoelastic has been extracted:

qCv þ cEa2
t T0

� � @T
@t
þ qCvs0t þ cEa2

t T0s0t
� � @2T

@t2

þ aT0 þ cEatacT0ð Þ @C
@t
þ aT0s0t þ cEatacT0s0tð Þ @

2C
@t2

� ðbtT0Þz
@3w
@x2@t

� ðbtT0s0tÞz
@4w
@x2@t2 � k

@2T
@x2 � k

@2T
@z2 ¼ 0 ð36Þ

where c for the plane stress condition (wide beam) is
2ð1þ mÞ=ð1� 2mÞ and for the plane strain condition c is
ð1þ mÞ=ð1� 2mÞð1� mÞ. As thermal boundary conditions assume
both ends of the clamped–clamped micro-beam are isothermal
and there is no heat flow through the free surfaces of the micro-
beams.
5. Coupled mass diffusion equation with heat transfer

Following Sherief et al. (2004) analogous to Eq. (34) for the heat
flux vector, we assume a similar equation for the mass flux vector
of the form:

vj þ s0c _vj ¼ �DP;j ð37Þ

and similar to the equation of energy conservation we have the
equation of mass conservation:

vj;j ¼ � _C ð38Þ

where:

P ¼ �b2eþ dC � aT ð39Þ

In the above equations, vj denotes the flow of the diffusing mass
vector, P is the chemical potential per unit mass, D is the thermo-
elastic diffusion constant, d is a measure of diffusive effect. s0c is
the diffusion relaxation time and this will ensure that the equation,
satisfied by the concentration, will also predict finite speeds of
propagation of matter. Taking the divergence of both sides of Eq.
(37), and using Eq. (38) we arrive at:

Cj þ s0c
_Cj ¼ DP;jj ð40Þ

substituting Eq. (39) into Eq. (40), we arrive at the equation of mass
diffusion in our case, namely:

Db2e;ii þ DaT ;ii þ ð _C þ s0c
€CÞ � DdC;ii ¼ 0 ð41Þ

The governing equations of coupled mass diffusion based on non-
Fickian two dimensional mass diffusion with one relaxation time
in an elastic solid by neglecting MD along the y direction has been
resulted from Eq. (41):

@C
@t
þ s0c

@2C
@t2 þ ðDaþ cDEatacÞ

@2T
@z2 þ ð�Ddþ cDEa2

c Þ
@2C
@z2

þ ð�Ddþ cDEa2
c Þ
@2C
@x2 þ ðDaþ cDEatacÞ

@2T
@x2 � ðDbcÞz

@4w
@x4

¼ 0 ð42Þ

Boundary conditions which accompanying for the equation of mass
diffusion are in this form that both ends of the clamped–clamped
micro-beam have the same concentration of the clamps and there
is no mass flow through the free surfaces of the micro-beams.

Following dimensionless quantities are defined to transform
Eqs. (27), (36), and (42) into nondimensional forms:

ŵ ¼ w
h

; x̂ ¼ x
L

; ẑ ¼ z
h

; T̂ ¼ T
To

; Ĉ ¼ acC

t̂ ¼ t
t�

; t� ¼ L
ffiffiffiffi
q
~E

r
; M̂T ¼

MT

~Ebh2 ; M̂c ¼
Mc

~Ebh2

ð43Þ

Applying these dimensionless quantities equations will take the fol-
lowing forms:

S1
@4ŵ
@x̂4 þ

@2M̂T

@x̂2 þ
@2M̂c

@x̂2 þ
@2ŵ
@ t̂2
¼ 0 ð44Þ

@2T̂
@x̂2 þ S2

@2T̂
@ẑ2
� S3

@T̂
@t̂
þ S4ẑ

@3ŵ
@x̂2@t̂

� S5
@2T̂
@t̂2
þ S6ẑ

@4ŵ
@x̂2@t̂2

� S7
@Ĉ
@t̂
� S8

@2Ĉ
@t̂2
¼ 0 ð45Þ

S9
@Ĉ
@t̂
þS10

@2Ĉ
@t̂2
þS11

@2T̂
@ẑ2
þS12

@2Ĉ
@ẑ2
þS13

@2Ĉ
@x̂2
þS14

@2T̂
@x̂2
�S15 ẑ

@4ŵ
@x̂4
¼ 0 ð46Þ

in which:
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S1 ¼
h2

12L2 ; S2 ¼
L2

h2 ;

S3 ¼ ðqCv þ cEa2
t T0Þ

L
k

ffiffiffiffi
~E
q

s
; S4 ¼

h2b
kL

ffiffiffiffi
~E
q

s
;

S5 ¼ ðqCvs0t þ cEa2
t T0s0tÞ

~E
q

; S6 ¼
s0tb~Eh2

qkL2 ;

S7 ¼ ðaþ cEatacÞ
L

ack

ffiffiffiffi
~E
q

s
; S8 ¼ ðas0t þ cEatacs0tÞ

~E
ackq

;

S9 ¼
1

acL

ffiffiffiffi
~E
q

s
; S10 ¼

s0c
~E

acqL2 ; S11 ¼ ðDaþ cDEatacÞ
T0

h2 ;

S12 ¼ ð�Ddþ cDEa2
c Þ

1

ach2 ; S13 ¼ ð�Ddþ cDEa2
c Þ

1
acL2 ;

S14 ¼ ðDaþ cDEacatÞ
T0

L2 ; S15 ¼ Dbc
h2

L4

ð47Þ
6. Numerical solution

In order to analyze frequency of the micro-beam free vibration
coupled with thermo-diffusive equations we used a Galerkin based
reduced order model. Based on this model the dynamic deflection,
temperature and concentration changes of the system can be
approximated in terms of linear combinations of finite number of
suitable shape functions with time dependent coefficients:

ŵðx̂; t̂Þ ¼
Xp

k¼1

-kðt̂Þwkðx̂Þ ð48Þ

T̂ðx̂; ẑ; t̂Þ ¼
Xn

i¼1

Xm

j¼1

uij ð̂tÞuiðx̂Þ/jðẑÞ ð49Þ

Ĉðx̂; ẑ; t̂Þ ¼
Xl

e¼1

Xh

d¼1

1edð̂tÞkeðx̂ÞKdðẑÞ ð50Þ

Substituting Eq. (49) into the MT equation, it can be represented in
nondimensional form as follows:

M̂T ¼
MT

~Ebh2¼
T0bt

~E

Z 0:5

�0:5
T̂ẑdẑ¼ T0bt

~E

Xn

i¼1

Xm

j¼1

uij ð̂tÞuiðx̂Þ
Z 0:5

�0:5
ẑ/jðẑÞdẑ ð51Þ

Substituting Eq. (50) into the MC equation, it can be represented
in nondimensional form as follows:

M̂c ¼
Mc

~Ebh2¼
bc

ac
~E

Z 0:5

�0:5
Ĉẑdẑ¼ bc

ac
~E

Xl

e¼1

Xh

d¼1

1ed ð̂tÞkeðx̂Þ
Z 0:5

�0:5
ẑKdðẑÞdẑ ð52Þ

Substituting Eqs. (48)–(52) into Eqs. (44)–(46) leads to follow-
ing equations:

S1

Xp

k¼1

-k ð̂tÞwðIVÞk ðx̂Þþ
T0bt

~E

Xn

i¼1

Xm

j¼1

uij ð̂tÞu00i ðx̂Þ
Z 0:5

�0:5
ẑ/jðẑÞdẑ

þ bc

ac
~E

Xl

e¼1

Xh

d¼1

1ed ð̂tÞk00eðx̂Þ
Z 0:5

�0:5
ẑKdðẑÞdẑþ

Xp

k¼1

€-kðt̂Þwkðx̂Þ¼ �1 ð53Þ

Xn

i¼1

Xm

j¼1

uij ð̂tÞu00i ðx̂Þ/jðẑÞ þ S2

Xn

i¼1

Xm

j¼1

uijð̂tÞuiðx̂Þ/
��
j ðẑÞ

� S3

Xn

i¼1

Xm

j¼1

_uijðt̂Þuiðx̂Þ/jðẑÞ þ S4ẑ
Xp

k¼1

_-k ð̂tÞw00kðx̂Þ

� S5

Xn

i¼1

Xm

j¼1

€uijðt̂Þuiðx̂Þ/jðẑÞ þ S6ẑ
Xp

k¼1

€-k ð̂tÞw00kðx̂Þ

� S7

Xl

e¼1

Xh

d¼1

_1edðt̂Þkeðx̂ÞKdðẑÞ � S8

Xl

e¼1

Xh

d¼1

€1edðt̂Þkeðx̂ÞKdðẑÞ ¼ �2 ð54Þ
S9

Xl

e¼1

Xh

d¼1

_1edð̂tÞkeðx̂ÞKdðẑÞ þ S10

Xl

e¼1

Xh

d¼1

€1edð̂tÞkeðx̂ÞKdðẑÞ

þ S11

Xn

i¼1

Xm

j¼1

uij ð̂tÞuiðx̂Þ/
��
j ðẑÞ þ S12

Xl

e¼1

Xh

d¼1

1edðt̂Þkeðx̂ÞK��d ðẑÞ

þ S13

Xl

e¼1

Xh

d¼1

1edð̂tÞk00eðx̂ÞKdðẑÞ þ S14

Xn

i¼1

Xm

j¼1

uijðt̂Þu00i ðx̂Þ/jðẑÞ

� S15ẑ
Xp

k¼1

-k ð̂tÞwðIVÞk ðx̂Þ ¼ �3 ð55Þ

where /��j ðẑÞ ¼ @
2/j=@ẑ2 and K��d ðẑÞ ¼ @

2Kd=@ẑ2.
According to Galerkin method following conditions should be

satisfied:

Z 1

0
wf ðx̂Þ�1dx̂ ¼ 0 f ¼ 1; . . . ; p ð56Þ

Z 1

0

Z 0:5

�0:5
uqðx̂Þ/gðẑÞ�2dẑdx̂ ¼ 0; q ¼ 1; . . . ;n; g ¼ 1; . . . ;m ð57Þ

Z 1

0

Z 0:5

�0:5
krðx̂ÞKsðẑÞ�3dẑdx̂ ¼ 0; r ¼ 1; . . . ; l; s ¼ 1; . . . ; h ð58Þ

Now applying Eqs. (56)–(58) to Eqs. (53)–(55) leads to following
equations:

S1

Xp

k¼1

-kKð1Þfk þ
T0bt

~E

Xn

i¼1

Xm

j¼1

uijK
ð2Þ
fi Kð3Þj þ

bc

ac
~E

Xl

e¼1

Xh

d¼1

1edKð4Þef Kð5Þd

þ
Xp

k¼1

€-kKð6Þfk ¼ 0 ð59Þ

Xn

i¼1

Xm

j¼1

uijG
ð2Þ
qi Gð4Þgj þ S2

Xn

i¼1

Xm

j¼1

uijG
ð1Þ
qi Gð5Þgj � S3

Xn

i¼1

Xm

j¼1

_uijG
ð1Þ
qi Gð4Þgj

þ S4

Xp

k¼1

_-kGð3Þqk Gð6Þg � S5

Xn

i¼1

Xm

j¼1

€uijG
ð1Þ
qi Gð4Þgj þ S6

Xp

k¼1

€-kGð3Þqk Gð6Þg

� S7

Xl

e¼1

Xh

d¼1

_1edGð7Þeq Gð8Þgd � S8

Xl

e¼1

Xh

d¼1

€1edGð7Þeq Gð8Þgd ¼ 0 ð60Þ

S9

Xl

e¼1

Xh

d¼1

_1edQ ð1Þre Q ð2Þsd þ S10

Xl

e¼1

Xh

d¼1

€1edQ ð1Þre Q ð2Þsd þ S11

Xn

i¼1

Xm

j¼1

uijQ
ð3Þ
ri Q ð4Þjs

þ S12

Xl

e¼1

Xh

d¼1

1edQ ð1Þre Q ð5Þsd þ S13

Xl

e¼1

Xh

d¼1

1edQ ð6Þre Q ð2Þsd

þ S14

Xn

i¼1

Xm

j¼1

uijQ
ð7Þ
ri Q ð8Þjs � S15

Xp

k¼1

-kQ ð9Þrk Q ð10Þ
s ¼ 0 ð61Þ

in which:

Kð1Þfk ¼
Z 1

0
wf ðx̂Þw

ðIVÞ
k ðx̂Þdx̂; Kð2Þfi ¼

Z 1

0
wf ðx̂Þu00i ðx̂Þdx̂;

Kð3Þj ¼
Z 0:5

�0:5
ẑ/jðẑÞdẑ; Kð4Þef ¼

Z 1

0
wf ðx̂Þk00eðx̂Þdx̂;

Kð5Þd ¼
Z 0:5

�0:5
ẑKdðẑÞdẑ; Kð6Þfk ¼

Z 1

0
wf ðx̂Þwkðx̂Þdx̂ ð62Þ

For the second coupled equation:



Table 1
Geometrical and material properties of micro-beam resonator.

Symbols Parameters Values

L Length 2000 lm
b Width 20 lm
E Young’s modulus 120 GPa
m Poisson’s ratio 0.34
K Thermal conductivity 383 W m�1 K�1

D Thermo-elastic diffusion constant 0.85 � 10�8 kg s m�3

q Density 8954 kg m�3

Cv Specific heat at constant volume 383.1 J kg�1 K�1

at Coefficient of linear thermal expansion 1.78 � 10�5 K�1

ac Coefficient of linear diffusion expansion 1.98 � 10�4 kg�1 m3

T0 Ambient Temperature 293 K
a A measure of thermodiffusion effect 1.2 � 104 m2 s�2 K�1

d A measure of diffusive effect 9 � 105 kg�1 m5 s�2

Fig. 2. Damping ratio versus beam thicknesses for the cantilever micro-beam.

Fig. 3. Damping ratio versus beam thickness for the clamped–clamped micro-
beam.
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Gð1Þqi ¼
Z 1

0
uqðx̂Þuiðx̂Þdx̂; Gð2Þqi ¼

Z 1

0
uqðx̂Þu00i ðx̂Þdx̂;

Gð3Þqk ¼
Z 1

0
uqðx̂Þw

00
kðx̂Þdx̂; Gð4Þgj ¼

Z 0:5

�0:5
/gðẑÞ/jðẑÞdẑ;

Gð5Þgj ¼
Z 0:5

�0:5
/gðẑÞ/��j ðẑÞdẑ; Gð6Þg ¼

Z 0:5

�0:5
ẑ/gðẑÞdẑ;

Gð7Þeq ¼
Z 1

0
keðx̂Þuqðx̂Þdx̂; Gð8Þgd ¼

Z 0:5

�0:5
/gðẑÞKdðẑÞdẑ ð63Þ

And for the last coupled equation:

Q ð1Þre ¼
Z 1

0
krðx̂Þkeðx̂Þdx̂; Q ð2Þsd ¼

Z 0:5

�0:5
KsðẑÞKdðẑÞdẑ;

Q ð3Þri ¼
Z 1

0
krðx̂Þuiðx̂Þdx̂; Q ð4Þsj ¼

Z 0:5

�0:5
KsðẑÞ/��j ðẑÞdẑ;

Q ð5Þsd ¼
Z 0:5

�0:5
KsðẑÞK��d ðẑÞdẑ; Q ð6Þre ¼

Z 1

0
krðx̂Þk00eðx̂Þdx̂

Q ð7Þri ¼
Z 1

0
krðx̂Þu00i ðx̂Þdx̂; Q ð8Þsj ¼

Z 0:5

�0:5
KsðẑÞ/jðẑÞdẑ;

Q ð9Þrk ¼
Z 1

0
krðx̂ÞwðIVÞk ðx̂Þdx̂; Q ð10Þ

s ¼
Z 0:5

�0:5
ẑKsðẑÞdẑ; ð64Þ

Choosing suitable shape functions, which satisfy the boundary
conditions, and solving Eqs. (59)–(61) concurrently in which:

-k ¼ �-keiXks; uij ¼ �uijeiXijs; 1ed ¼ �1edeiXeds; ð65Þ

complex frequencies are obtained.
Note that T̂; Ĉ and ŵ vibrate at the same frequency, therefore,

Xk ¼ Xij ¼ Xed ¼ X (Sun et al., 2006). According to complex
frequency approach the TED ratio (f) can be calculated as

f ¼ IðXÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðXÞ þ I2ðXÞ

q
�������

������� ð66Þ

where RðXÞ is the real part of the complex frequency and IðXÞ is its
imaginary part.

7. Numerical results

The proposed micro-beam is a wide beam and has the following
material and geometrical properties as shown in Table 1. Assume
coefficient of linear thermal expansion, coefficient of linear diffu-
sion expansion and thermal conductivity are constant. Following
Sherief and Saleh (2005) we take the following values of related
parameters for Copper:

The theoretical results obtained in the previous section are
employed in this part to investigate the influence of the mass dif-
fusion effect on the damping ratio. When an elastic solid is set in
motion, it is taken out of equilibrium, having an excess of kinetic
and potential energy. The coupling of the strain field to a temper-
ature field provides an energy dissipation mechanism that allows
the system to relax back to equilibrium. This process of energy dis-
sipation called thermoelastic damping (Sun et al., 2006). Similarly,
the coupling of the strain and temperature field to a concentration
field provides another energy dissipation mechanism that this pro-
cess of energy dissipation, called thermo-diffusive elastic damping
(TDED) is what we will discuss in this paper.

The bending of the beam causes dilations of opposite signs to
exist on the upper and lower halves. One side of the beam is com-
pressed and heated, while the other side is stretched and cooled.
Thus, in the presence of finite thermal expansion, a transverse tem-
perature gradient and concentration gradient are produced. These
phenomena are couple and a temperature gradient can also works
as a driving force for mass diffusion, in a phenomenon which is
called thermodiffusion and vice versa concentration gradient can
works as a driving force for heat flux. The temperature gradient
generates local heat currents, and also the concentration gradients
generates local mass currents, which cause increase of the entropy
of the beam and lead to energy dissipation and this is the thermo-
diffusive elastic damping effect. TED critical thickness takes place
when the thermal characteristic time (the time necessary for tem-
perature gradients to relax) is equal to the inverse of the beam fun-
damental frequency (Vahdat et al., 2012).

Figs. 2 and 3 show that as the thickness increases the damping
ratio first increases to attain its maximum value and the related
thickness to this value can be known as TDED critical thickness
and after this critical thickness damping ratio weakens as the beam



Fig. 6. Damping ratio versus ambient temperature for the cantilever micro-beam
with thickness (h ¼ 50 lm).

A. Khanchehgardan et al. / International Journal of Solids and Structures 51 (2014) 3147–3155 3153
thickness increases. By considering the mass diffusion effect the
value of the critical thickness does not change significantly and
TDED and TED critical thicknesses are approximately equal.

Figs. 4 and 5 show that damping ratio of the beam changes con-
siderably with changing in thickness or ambient temperature.
Therefore in designing process of resonators with high quality fac-
tor the beam thickness and working temperature play important
role.

From the above discussion we can conclude that damping ratio
is sum of thermoelastic and mass diffusion damping. Figs. 2–13
show that influence of mass diffusion on damping ratio is much
smaller than thermoelastic. Since the coefficients and constants
related to the mass diffusion equation for materials (such silicon)
which used in manufacturing of resonators are small therefore
the thermoelastic is dominant damping and mass diffusion is
negligible.

We have plotted damping ratio, in Figs. 6 and 7 respectively as a
function of ambient temperatures for constant thickness
(h ¼ 50 lm) and (h ¼ 150 lm) for the cantilever micro-beam and
in Figs. 8 and 9 respectively we have plotted damping ratio as a
function of ambient temperatures for constant thickness
(h ¼ 30 lm) and (h ¼ 100 lm) for clamped–clamped micro-beam.
The most important observation from the figures is that we can
neglect the mass diffusion effect almost before the TED critical
thickness but when the thickness of the micro-beam is larger than
the critical thickness for high precision and low energy consump-
tion applications it is important to consider the mass diffusion
effect.

TR ratio can be defined as the quotient of the damping ratio
with considering MDD (f1) with respect to the damping ratio with
neglecting MDD (f2):
Fig. 4. Damping ratio versus beam thickness for different ambient temperatures for
the cantilever micro-beam.

Fig. 5. Damping ratio versus beam thickness for different ambient temperatures for
the clamped–clamped micro-beam.
TR ¼ f1

f2
ð67Þ

Figs. 10 and 11, are the graphical results of the TR ratio versus
beam thicknesses respectively for the cantilever micro-beam and
clamped–clamped micro-beam and according to these figures the
thermo-diffusive elastic damping is equal to thermoelastic damp-
ing almost before the critical thickness but after critical thickness
the TR ratio increases up to a specific thickness and after that the
TR ratio has no considerable increase.
Fig. 7. Damping ratio versus ambient temperature for the cantilever micro-beam
with thickness (h ¼ 150 lm).

Fig. 8. Damping ratio versus ambient temperature for the clamped–clamped
micro-beam with thickness (h ¼ 30 lm).



Fig. 9. Damping ratio versus ambient temperature for the clamped–clamped
micro-beam with thickness (h ¼ 100 lm).

Fig. 10. TR ratio versus micro-beam thicknesses for the cantilever micro-beam.

Fig. 11. TR ratio versus micro-beam thickness for the clamped–clamped micro-
beam.

Fig. 12. Differences of damping ratios versus beam thickness for the cantilever
micro-beam.

Fig. 13. Differences of damping ratios versus beam thickness for the clamped–
clamped micro-beam.
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Considering the coupled linear differential equations (44)–(46)
and accepting the superposition principal, RD ¼ f1 � f2 is intro-
duced as the difference of TDED and TED which is capable to show
successively the mass diffusion effects on the damping ratio. In
Figs. 12 and 13, the values of RD are shown as a function of beam
thickness for the cantilever and fixed–fixed micro-beams respec-
tively. The maximum values of RD occur in a specific thickness
other than critical thicknesses of TDED and TED. The critical
thickness shown in Figs. 12 and 13 can be introduced as the
MDD critical thickness in which the diffusion characteristic time
(The time necessary for density gradients to relax) is equal to the
inverse of the beam fundamental frequency and MDD effects is
the maximum. It must be noted that as results show the effects
of mass diffusion damping is small in comparison to the
thermoelastic damping; therefore in the critical thickness of TDED,
the effect of the TED is dominant.

8. Conclusion

In this paper the resonator was modeled as a thin isotropic
homogeneous thermoelastic Euler–Bernoulli beam and the effect
of mass diffusion on the damping ratios of the different types of
micro-beams with different boundary conditions was investigated.
The generalized theory of heat conduction and non-Fickian mass
diffusion equations coupled with transversal motion of a micro-
beam resonator were employed to evaluate TDED.

The results from numerical analysis showed that with increas-
ing the thickness until to the TDED critical thickness the effect of
mass diffusion on the damping ratio increases and this effect
exposed itself on the quality factor of the micro-beam resonators.
The mass diffusion effect almost after the TED critical thickness
is considerable and also this effect for the cantilever micro-beam
is more sensible than the clamped–clamped micro-beam. The crit-
ical thickness of the TDED was found and shown that approxi-
mately is equal to TED critical thickness and also the MDD
critical thickness was introduced in which the effect of the mass
diffusion is the greatest.

In addition was shown that by increasing the ambient temper-
ature of the micro-beam the damping ratio increases and almost
after the TED critical thickness damping ratio with considering
MD increases faster than that with neglecting mass diffusion. As
results showed for designing resonators with high quality factor
and consequently minimizing energy consumption the effect of
MDD in micro-beams with thickness greater than the TED critical
thickness must be taken into account.
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