Journal of Combinatorial Theory, Series B 73, 130-145 (1998)
Article No. TB981817

An Efficient Algorithm for Minimum-Weight Bibranching
J. Keijsper and R. Pendavingh

Faculteit der Wiskunde, Informatica, Natuurkunde en Sterrenkunde,
Universiteit van Amsterdam, The Netherlands

Received August 16, 1996

Given a directed graph D= (V, A) and a set S < V, a bibranching is a set of arcs

B< A that contains a v— (V\S) path for every ve S and an S— v path for every

ve V\S. In this paper, we describe a primal-dual algorithm that determines a

minimum weight bibranching in a weighted digraph. It has running time

_ O(n'(m +nlogn)). where m=14l. n=1V| and n'=min{|S|. [V\S|}. Thus. our
{ CORE

rovided by Elsevier - Publisher Connector

1. INTRODUCTION

Let D=(V, A) be a directed graph, S a subset of its vertices, and 7 the
complement of S in V. A bibranching in D (with respect to S) is a set B of
arcs such that

for each ve S, B contains a directed path from v to a vertex in 7,

for each ve T, B contains a directed path from a vertex in S to v.

Bibranchings were introduced in [11].

There are two well-known special cases. First, for S={r}, a minimal
bibranching is exactly an r-branching, ie., a directed tree rooted at r.
Second, if S is one of the colour classes of a bipartite graph, and all the
edges are given an orientation away from S, then a bibranching in the
resulting digraph corresponds to an edge cover in the original graph. The
way bibranchings generalize branchings and bipartite edge covers may be
compared to the way matching forests in mixed graphs (cf. [7, 8, 9])
generalize branchings in directed and matchings in undirected graphs.
However, there does not seem to exist a direct reduction of one structure
to the other.

It is not difficult to see that the following algorithm finds a minimum
cardinality bibranching in a digraph: Determine a minimum edge cover on
the bipartite subgraph induced by all S— T arcs, add a branching of the
subgraph induced by 7 (where the “root” is the set of vertices in 7 that

130

0095-8956/98 $25.00

Copyright © 1998 by Academic Press
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82590867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BIBRANCHING ALGORITHM 131

have a neighbor in S and are therefore already reached by the edge cover),
and similarly add an “upside-down branching” of the subgraph induced by S.

In, this paper, we consider the more general minimum-weight bibranching
problem:

Given: D=(V, A), S<V, and a weight function w: 4 - Z
Find: a bibranching B < 4 of minimum weight w(B) =, .z w(b).

The special case where either S or 7T is a singleton will be referred to as the
minimum-weight branching problem; if D is bipartite with bipartition (S, 7')
the problem is called the minimum-weight edge cover problem.

Let n and m denote the number of vertices and the number of arcs
of D, respectively. For the minimum-weight branching problem, a polyno-
mial-time algorithm was first described in [1] and [2]. Presently, an
O(m + n log n)-algorithm is known (cf. [5]).

The minimum-weight edge cover problem can be reduced to the maxi-
mum-weight matching problem in O(m) time as follows [ 6]. For every ver-
tex v, let x(v) :=min{w(a) | a incident with v}, and let a, be an arc incident
with v for which w(a,)=u(v). Now, define a new weight function w by
w(a) =pu(u) + u(v) —w(a), where a=(u, v)e A. If M is a maximum-weight
matching with respect to W, then M U {a, | v not covered by M} is a mini-
mum-weight edge cover with respect to w. The maximum-weight matching
problem in a bipartite graph can be solved by the Hungarian method [ 10].
The performance is O(n'(m+nlogn)), where n' =min{|S|, |T|}, since it
suffices to do n' shortest-path searches in a graph with nonnegative weights
(cf. [3, 12]), while Dijkstra’s shortest path algorithm sped up with
Fibonacci heaps (cf. [4]) takes O(m + nlogn) time.

Schrijver [ 11] showed that the minimum-weight bibranching problem is
solvable in polynomial time, using the ellipsoid method. A purely com-
binatorial algorithm for this problem is given in Section 2. It consists of
three phases. The first phase together with the third phase is essentially a
minimum-weight branching algorithm, while the second phase (after a
simplified first phase) can be regarded as an extension of a direct bipartite
edge cover algorithm. In Section 3 we argue that our algorithm can be
implemented so that it runs in O(n'(m+nlogn)) time, generalizing the
complexity bounds mentioned for the special cases.

Some preliminaries are necessary before we can proceed to the descrip-
tion of the algorithm. Let ¢ :=({U|U=S} u{U|U=T})\{}. For
ae A and Ue ¥, we say that a covers U if and only if U< S and « leaves
U, or U= T and a enters U. Let M be the 4 x A matrix with (M), ,=1
if a covers U, and 0 otherwise. Consider the linear programming duality
equation

min{wx | x>0, Mx>1} =max{yl|y>0, yM <w}. (1)



132 KEIJSPER AND PENDAVINGH

It is easily verified that an integral optimal solution to the minimization
problem in (1) is the characteristic vector of a bibranching of minimum
weight. It was proved in [11] that both optima in (1) have integral
optimal solutions for an integral weight function w. The correctness of our
algorithm yields an alternative proof of this fact.

By complementary slackness, a feasible primal solution x and a feasible
dual solution y are optimal solutions if and only if the following conditions
are satisfied.

1. ify(U)>0, we have equality in Mx > 1 at the row indexed by U and
2. if x(a) >0, we have equality in yM < w at the column indexed by a.

Define the function w': 4 - Z , as follows:
w'(a) :==w(a)— y({U|Ue %, acovers U}),

where for Xe®, y(X) denotes > ,.xy(U). One verifies that for a
bibranching B and a feasible dual solution y the above conditions translate
to (taking for x the incidence vector of B):

1. if y(U)>0 then U is covered by exactly one arc of B, and
2. if ae B then w'(a)=0.

Note that “y is feasible” is equivalent to “y >0 and w' >0.”

For V"<V and A" < A4, let D(V', A") denote the subgraph of D with
vertex set ¥’ and arc set {a € A’ |a has both endpoints in V'}.

Finally, let ¥ be a collection of sets. . is said to be laminar if U W
or W Uor Un W= for any U, We &. Let & be laminar. Then Ue &
is called the parent of U' e ¥ (and U’ is called a child of U) if U’ is
properly contained in U and is maximal in % with respect to that property.

2. ALGORITHM

We will now describe an algorithm for the minimum-weight bibranching
problem, assuming that the given digraph D =(V, 4) contains at least one
bibranching (with respect to the given subset S < V).

As variables we use the set B< A, a laminar collection ¥ =%, and the
function y: ¥ — Z, . (Note that y can be extended to a function ¥ — Z ,
by defining y(U) =0 for Ue¥\%.) The function w' is defined in terms of
y and we will assume that all operations on y affect w' instantly.

Starting with the initial values B= &, y=0 and & :={{v} |ve V}, the
values of the variables are adjusted in the course of the algorithm in such



BIBRANCHING ALGORITHM 133

a way that B develops into a bibranching, while the following properties
are preserved:

(P0O) y is feasible.

(P1) (a) If Uis maximal in % then U is covered by at most one arc
of B, or U is a singleton with y(U) =0, covered by S— T
arcs of B only.

(b) If Ue¥ is not maximal, then there is a unique be B
covering U but not its parent.
(c) If UeZ, then D(U, B) is strongly connected.
(P2) if ae B then w'(a)=0.

In the first part of the algorithm, called Phase 1, B is augmented so that
it covers all nonempty subsets of S. In Phase 2, B is improved in such a
way that all nonempty subsets of 7" are covered by B-arcs, while all subsets
of S remain covered. So after Phase 2, B is a bibranching. It may contain
redundant arcs, though. These redundant arcs are removed in Phase 3 in
such a way that for the feasible B and y the above conditions transform
into the complementary slackness conditions.

Let D.=(V,, A.) be the digraph that is obtained from D by contracting
the (inclusionwise) maximal sets in ¥ and removing loops. Vertices of D,
correspond to sets in .#, so it makes sense to speak of y(u) and of “cover-
ing u by B” for a vertex u € V,. Since ¥ contains only S-subsets and 7-sub-
sets, it is clear how to partition V_ into S, and T,. The set A4, is viewed as
a subset of A: it is the set of elements of 4 with head and tail in distinct
maximal elements of #. Let B, denote BN A4,.

All additions to and deletions from . in the course of the algorithm
correspond exactly to contractions and decontractions in D,. In fact, &
can be seen as a way to record the “contraction history” of D,. We will
often discuss the operations on % in terms of contraction and decontrac-
tion in D.. Decontraction of ue V, is the removal of the corresponding
maximal element U of ¥ from . After this operation, the new vertices u’
appearing in V, (corresponding to the children U’ of U) are referred to as
the children of u. Contraction is adding the union of a selection of maximal
sets of ¥ to &. Clearly, ¥ remains laminar after every such operation.

Now, starting with the initial values B=#, y=0and % :={{v} |ve V'}
(so w'=w and D_.= D), the first phase is as follows.

Phase 1.
Repeat the following until every vertex of S, is covered by B:
Loop 1
1. Find a vertex u € S, that is not yet covered by B, and an arc ae€ 4,
covering u of minimal weight w'(a).
2. Increase y(u) by w'(a).



134 KEIJSPER AND PENDAVINGH

3. Add a to B.
4. 1If D, now contains a directed cycle with arcs in B, contract this
cycle in D,.

Note that a cycle arising in step 4 is always contained in S, for only arcs
with tail in S are added to B in step 3.

CLAamM 1. After every iteration of Loop 1, B covers an extra element of
& and the properties (P0), (P1), and (P2) hold. Phase 1 terminates after at
most 2 |S| — 1 iterations of Loop 1, and then B covers all nonempty subsets
of S.

Proof. Properties (P0), (P1), and (P2) obviously hold for the initial
values of B, y and .. Now assume that they are satisfied before a pass of
Loop 1. We show that they still hold after the pass.

In step 1, we select a vertex u of S, corresponding to a maximal element
Ue %, and an arc a covering U. In step 2, feasibility of y is preserved, since
y and w' remain nonnegative: w' is decreased by w'(a)=min{w'(a)|a
covers U} on each arc covering U. In particular, for the arc a that is
inserted in B in step 3, w'(a) has become zero, so (P2) also remains valid.
Moreover, if adding « to B causes a vertex of D, to get covered by more
than one arc of B, then that must be a vertex in 7, (since u was uncovered
before adding «a). Vertices in 7. all correspond to singletons, have y-value
zero and are only covered by S — T arcs throughout Phase 1. In step 4, a
union of maximal elements U; of ¥ is only added to ¥ when each of the
U, is covered by B. The (by assumption unique) B-arcs covering the U, do
not cover the union, since they form a cycle in D,. Since the U, are strongly
connected by assumption, the union is also strongly connected because of
this cycle. It follows by induction that (P0), (P1), and (P2) hold after every
iteration.

Clearly, after every iteration in Phase 1, B covers an extra element of ¥
that is a subset of S. Because ¢ is laminar, it can contain at most 2 |S| — 1
subsets of S. Therefore, Phase 1 terminates after at most 2 |S| — 1 iterations.
Suppose that some nonempty subset W of S is not covered by B when
Phase 1 terminates. Then for every maximal U in % either WnU=U
or Wn U=, since every such U is strongly connected by B-arcs (by
(P1)(c)). So W is a union of maximal elements from ¥ and hence
corresponds to a subset of the current S,.. But when Phase 1 terminates,
every vertex of S, is covered by B. So since W is uncovered, the B-arcs
covering the vertices of S, “contained” in W must form at least one cycle
in D,. This contradicts the fact that in the last step of Phase 1 (step 4) any
remaining cycle was contracted. It follows that when Phase 1 terminates,
every nonempty subset of S is covered. |



BIBRANCHING ALGORITHM 135

Phase 2 of the algorithm is similar to the first, in the sense that in every
iteration a current B is improved to cover one more vertex of D, while the
vertices covered before remain covered. Let P < 4, be an undirected path
in D, (that is, P may traverse arcs of D, backwards) with arcs alternatingly
in B, and in 4,\B.. Suppose that the symmetric difference B A P covers
all vertices of D, covered by B-arcs, and in addition covers one vertex of
D, not covered by B. Then replacing B by B A P is an improvement of B
in the above sense. To find such “improving paths” P in D_, we will use an
auxiliary digraph H=(V(H), A(H)) with vertex set V,u {r,s} and the
following arcs corresponding to arcs of D,:

for every arc ae A, from ue S, to ve T, there is an arc (u, v) of length
lu, v)=w'(a) in H,

for every arc be B, from ue S, to ve T, there is an arc (v, u) of length
l(v,u)=—w'(b) in H,

for every arc ae A, from ue T, to ve T. there is an arc (r, v) of length
I(r,v)=w'(a) in H, unless v is covered by more than one arc of B,

for every arc be B, from ue S, to ve S, there is an arc (r, u) of length
I(r,u)=—w'(b) in H.

In addition, there are arcs representing the status of vertices of D,:

for every vertex v e T, covered by more than one arc of B, there is an
arc (r, v) of length /(r,v)=0 in H,

for every vertex ve S, corresponding to a singleton in . there is an
arc (r, v) of length /(r, v) = y(v) in H, unless v is covered by an S.— S
arc in B,

finally, for every vertex ve T, not yet covered by B, there is an arc
(v, s) of length /(v, s)=0 in H.

For a path P in H, let A(P) denote the set of arcs in A, corresponding to
(as defined above) the arcs of P.

Lemma 1. If P is a directed r — s path in H, then B A\ A(P) covers every
vertex of D, that is covered by B, and in addition covers one vertex of D, not
covered by B. Moreover, if [(P)=0 and the properties (P0), (P1), and (P2)
hold for (B, y, &), then they also hold for (B A\ A(P), y, &).

Proof. Inspection of possible » —s paths shows that A(P) is a path in
D, starting either with a T.— T, arc (traversed in forward direction) in
A\B,, or with an S,— S, arc (traversed in backward direction) in B,, or
in a vertex ve T, covered by at least two S— T arcs of B,, or in a vertex
ve S, corresponding to a singleton in %, then traversing a sequence of

S — T arcs alternatingly in B, (backward) and in A, \B, (forward), and



136 KEIJSPER AND PENDAVINGH

finally ending in an uncovered vertex v € T.. But then all B-covered vertices
of V_ are also (B A A(P))-covered while the end-vertex in T, is covered by
B A A(P) but not by B. In fact, no vertex covered by a unique B-arc is
covered by more than one arc of B A A(P), except that ve S, correspond-
ing to a singleton might be covered by two S— T arcs in B A A(P) if P
starts with an arc (r, v) representing the y-value of v.

By feasibility of y (w'>0), (P2) (—w'(b) =0 for b€ B) and the definition
of I, we have />0, so /(P)=0 implies that every arc of P has length zero.
Hence, every arc b of B A A(P) has weight w'(b) = 0. In particular, the first
arc (r, v) of P has length zero, so if a singleton-vertex ve S, covered by a
unique B-arc is covered by two arcs of (B A A(P)), then y(v)=0. This
proves (P2) and (P1)(a).

Clearly, (P0) and (P1)(b), (c) are not violated when B is replaced by
(BAAP)). 1

In Phase 2 of the algorithm, we repeatedly search for a shortest r—s
path in H, adjust the dual variable y so that the new length of the path
becomes zero, and improve B using this zero-length path. Note that H is
defined in terms of ¥ (through D,.), B and y (also through w'), so changes
in any of the variables affect H.

When an r—s path in H starts with an arc corresponding to a 7.— T,
arc, and B is improved using this path, then a 7— T arc is inserted in B.
So cycles of B-arcs may arise in 7. in Phase 2. As in Phase 1, such cycles
are contracted in D,.. Cycles of B-arcs in S, do not arise in Phase 2, for no
S — S arcs are inserted in B during this phase.

Starting with B, y and % obtained in Phase 1, the description of Phase 2
of the algorithm is as follows.

Phase 2.
Repeat the following until every vertex of T, is covered by B:
Loop 2
I. Find a shortest r—s path P in H and compute d(v) for each
veV,, where d(v) denotes the distance from r to v in H with
respect to the length function /.
2. For all veS,: subtract d(v) from y(v). For all ve T,: add d(v) to
y(w).
3. Replace B by B A A(P).
4. If D, now contains a cycle with arcs in B, contract this cycle in D,.

Step 1 of Loop 2 needs a more detailed description. To find a shortest
path from r to s in H with respect to the length function /, Dijkstra’s algo-
rithm is used. This shortest path algorithm in fact determines the distance
from r to every vertex of H.



BIBRANCHING ALGORITHM 137

While executing Loop 2 we want to preserve feasibility of y. In step 2,
y-values of vertices in S, are decreased. To retain y >0 anyway, we decon-
tract vertices during the execution of the shortest path routine in step 1.
Vertices in S, are decontracted when it is certain that their distance from
r will be greater than their current y value. This also deals with the
possibility that although not all vertices in 7', are covered by B, no r—s
path exists in the current H: then vertices are decontracted until such a
path appears.

Dijkstra’s algorithm uses a tentative distance function d: V,u {r, s} —
Z . v {o} and a tentative predecessor function p : V,u {s} — A(H). In the
following complete description of step 1, the steps marked by e ensure that
vertices are decontracted when necessary; the other steps are the same as
in the usual Dijkstra algorithm.

Step 1 (Shortest Path).
Set d(r)=0 and d(v) = oo for all vertices v #r.

Repeat the following loop until every vertex of H is scanned:

(i) find an unscanned vertex v € V(H) with d(v) minimum;
o(ii) find an unscanned vertex u €S, with y(iz) minimum,;
(i) if d(0) < y(u):
for each arc (0, w)eA(H): if d(v)+ (v, w)<d(w), put
d(w)=d(0) + (0, w) and p(w) = (7, w),
mark v scanned;
eclse:
put y = y(&) and then y(u) =0,
Expand(u),
for every child u' of &
add y to y(u'),
if ' is covered by the B-arc that covered u then set
d(u")= y(u') if u' corresponds to a singleton of .Z,
and
d(u') = oo otherwise,
else set d(u') = y;
Expansion of a vertex ue V, covered by a unique B-arc is the following.
Expand(u).
Decontract wu.

The B-arc covering u now covers one of its children, say u'; remove the
unique B-arc covering u’' but not u from B.



138 KEIJSPER AND PENDAVINGH

Note that Expand(u) presumes that (P1) is valid and that u is covered
by a (unique) B-arc and has children. In Claim 2, we will establish that,
throughout Phase 2, (P1) holds, and all vertices of S, are covered by B.
Furthermore, in the execution of the shortest path routine, Expand is only
applied to vertices #e S, with children (so, by (P1), # is covered by a
unique B-arc). For suppose u corresponds to a singleton in . If no S— S
arc of B covers u, the arc (r, #) of length y(u) exists in H. If on the other
hand an S—S arc beB covers u, the arc (r,u#) of length —w'(b)=
—w(b) + y(ur) < y(it) exists in H. In both cases we have d(v) <d(i) < y(ir)
for such a vertex as soon as r is scanned and i is not yet scanned. Hence
u does not satisfy y(ir) <d(v). These observations show that expansion is
well-defined for our purposes.

We need to verify that expanding vertices does not interfere with
Dijkstra’s shortest path algorithm.

LEMMA 2. After every iteration of the loop in the shortest path algo-
rithm,

(A) all arcs of H have nonnegative length,

(B) scanned vertices v have d(v) equal to the length of a shortest path
from r to v in H,

(C) unscanned vertices have d(v)=min{d(x)+ I(x, v) | x scanned}.

Proof. Obviously, (A), (B), and (C) are valid when the shortest path
routine is initiated. Now suppose that (A), (B), and (C) hold at the start
of a loop. Then the vertex v selected in step (i) has d(v) equal to the length
of a shortest path from r to v in H, by (A), (B), and (C). If there is no
expansion in step (iii), (B), and (C) are maintained as usual, and lengths
in H are unaffected. In an expansion step, only arcs with length at least
y(u) are introduced, and scanned vertices x have d(x) < y(it), since & was
not expanded earlier. Therefore (A) and (B) are still valid at the end of the
loop.

It remains to show that the value d(u’') assigned to a child u' of &
after expansion of u satisfies d(u') =min{d(x)+ I(x,u’) | x scanned}. After
expansion, (r, ') may be an arc of H. If not, the assigned distance d(u') is
o0. We claim that if x is a scanned vertex such that (x, «’) is an arc of H
after expansion, then x =r. Suppose not, then x is a scanned vertex not
equal to r. Then inspection of the definition of H shows that xe 7, and
that there exists an arc from ' to x in B,. But then there was an arc from
u to x in B, before expansion, and hence an arc (x, i) of length 0 in H.
Because x is scanned, # was an unscanned vertex with d(i) =d(x) < y(u) <
d(v), contradicting the minimality of d(¥). So, if (r, u') is an arc of H after
expansion, then min{d(x)+/(x,u’)|x scanned} =d(r)+I(r,u')=1(r, u').



BIBRANCHING ALGORITHM 139

Moreover, the assigned distance d(u') is then equal to the length of (r, u').
This proves (C). |

In step 2 of Loop 2, we need the distances d(v) for ve V, to be finite. But
this is the case after the execution of the shortest path algorithm in step 1.
For suppose that the shortest path routine returns d(v)= oo for some
ve V... Then necessarily every vertex in S, is either scanned or entirely
decontracted, so in H there is a path from r to every vertex in S,. Since
d(v)= o0, vis in T, and is reached by no arc of H and hence by no arc of
D,.. This means that there is no bibranching at all in D, contrary to our
assumption. By the same argument, there exists an r —s path in H by the
time step 1 is done: as long as d(s) = oo, unscanned vertices are decon-
tracted. The shortest r —s path P is found by tracing the predecessor func-
tion back from s.

CLAM 2. After every iteration of Loop 2, B covers an extra element of
£ and the properties (P0), (P1), and (P2) hold. Phase 2 terminates after at
most 2 |T| — 1 iterations of Loop 2, and then B covers all nonempty subsets
of Sand T.

Proof. By Claim 1, the properties (P0), (P1), and (P2) hold after
Phase 1. We assume that they hold before a pass of Loop 2 and prove that
they still hold after the pass.

In step 1, expansion is such that property (P1) remains valid and S-sub-
sets in . remain covered. In step 2, property (P1) is also preserved, since
any vertex v of T, that is covered by more than one arc of B has distance
d(v) =0, so adding d(v) to y(v) does not make y(v) positive (note that by
assumption v is a singleton-vertex with y(v) =0).

Next, we verify that (PO) and (P2) hold after steps 1 and 2. (P0) is
equivalent to “y >0 and w’' >0,” and negative y-values do not occur after
step 2 because of the expansion steps. For S—S arcs ae 4., w'(a) may
become negative in expansion steps since we increase y(u') for u'€S..
However, d(u') exceeds the increment of y(u’) when the shortest path
routine is done, so in step 2, w'(a) becomes nonnegative again. Any
remaining arc a of A, is represented in H by an arc (u,v) of length
l(u, v) =w'(a). Since d is a distance function, we have d(u) + /(u, v) = d(v)
after step 1, and hence w'(a) = l(u, v) + d(u) — d(v) = 0 after step 2. Equality
holds for arcs on a shortest path from r to any vertex. So after step 2, w'(a)
is nonnegative, and w'(b) =0 for b€ B,, since all arcs of B, correspond to
an arc on a shortest path from r in H. Hence (P0O) and (P2) hold, and
I(P)=0.

Lemma 1 shows that after step 3, B covers an extra vertex of 7. and
hence an extra element of %, while every covered vertex remains covered.
So after at most 2 |T| — 1 iterations Phase 2 terminates. Also by Lemma 1,



140 KEIJSPER AND PENDAVINGH

step 3 does not interfere with the properties (P0), (P1), and (P2). Step 4
is identical to step 4 of Phase 1. The proof that B covers all nonempty
subsets of S and T (or equivalently, that B is a bibranching) when Phase 2
terminates is also similar to the proof for Phase 1. |i

So we have that after Phase 2:

(PO*) y is feasible and B is a bibranching.
(P1*) (a) if y(U)>0 then U is covered by exactly one arc of B, or
Ue ¥ is not maximal in .
(b) If UeZ is not maximal in &, then there is a unique
b e B covering U but not its parent.
(c) if UeZ then D(U, B) is strongly connected.
(P2) if ae B then w'(a)=0.
The properties (P0*), (P1*), and (P2) form our induction hypothesis in
Phase 3. In this phase, elements of ¥ are deleted. However, we do not
mean to make their y-value equal to zero (y is feasible and need not be

changed anymore). Therefore, from now on, we view y as a function
defined on ¥ instead of .#, and keep it fixed.

Phase 3.
Repeat the following until & = {{v} |ve V'}:
Loop 3
Select a vertex u € V, not corresponding to a singleton in %.
Expand(u).

CLAM 3. After every iteration of Loop 3, one element of ¥ is removed,
and the properties (P0*), (P1*), and (P2) hold. Phase 3 terminates after at
most | V| —1 iterations of Loop 3, and then & consists of singletons. ||

When the algorithm terminates, all elements of ¥ are maximal since ¥
consists of singletons. Now (P1*) and (P2) imply that the feasible B and
y satisfy complementary slackness. Hence, B is optimal.

3. COMPLEXITY

In this section, we show that by using techniques and data structures
from [4] and [5], the running time of the algorithm described in the
previous section can be bounded by O(n'(m+nlogn)), where n=|V]|,
m=|A|, and " =min{|S|, | T|}. The roles of S and T can be exchanged by
reversing all arcs in D, so we may assume n' = |T|. Since we demand that
D contains at least one bibranching, » is bounded by O(m).



BIBRANCHING ALGORITHM 141

We store . by means of a contraction forest. The node set of this directed
forest is (indexed by) ., and there are arcs (U, U’) whenever U’ is a child
of U. So the leaves of the contraction forest are singletons, and the roots
are the maximal sets of #. It takes O(k) time to add the union of k
maximal elements of # to % or to remove a maximal element of ¥ having
k children. We can list the vertices in in a given set Ue ¥ by finding all
leaves of the forest reachable from U by a directed path, taking O(|U]|)
time.

At each node U of the contraction forest, y(U) is stored. Also, b(U) is
kept at each node U, where h(U) is the set of arcs of B covering U but not
a possible parent of U. At each arc a e A, we store membership of 4, and
B, and w'(a).

Phase 1 of our algorithm is essentially equal to the first phase of the
branching algorithm, for which an implementation is given in [5]. If we
view T as a single prescribed root node and reverse all arcs in D, the
algorithm in [5] can be applied to compute B as in Phase 1, taking
O(m + nlog n) time. Since we want the data structures described above for
use in Phase 2, we build the contraction forest (ignoring contractions
involving T') while the branching algorithm runs. This takes no extra time.

Having thus built the contraction forest, computing w' is not time-
consuming, since we can discard all S— S arcs not in B after Phase 1. So
we only need to compute w'(u, v) for ue S and v e T, which is at this point
equal to w(u, v) — X y5. Y(U). It takes O(n) time to compute > ., ¥(U)
for all ue S by using the contraction forest containing y(U) at each node
U. Thus, Phase 1 can be done in O(m +nlogn) time.

In Phase 2, Loop 2 is repeated until all subsets of T are covered. Since
in each iteration an extra subset of 7 in .# is covered by B, and since ¥
is laminar, there are at most O(n') iterations. We will argue that each itera-
tion of Loop 2 takes at most O(m + n log n) time.

Steps 2, 3 and 4 take O(m) time. The remaining part is step 1: finding a
shortest path in H, and performing expansion steps.

When we want to apply the shortest path algorithm to the graph H,
there are two main difficulties. First, D, is coded in D and %, ie., it
is given as a contracted graph. Second, to transform D, into H requires
reversing arcs, relocating arcs, etcetera.

First, we focus on applying the shortest path algorithm to a contraction
of a general digraph I'=(WV(I"), A(I')) with nonnegative length function
A A(I') —> Z ., the contraction given by a partition £ of the vertices.

We will modify the implementation of Dijkstra’s algorithm given in [4]
to meet our purpose. A Fibonacci heap or F-heap is a data structure to
manipulate a number of items, each having a real number as its key.
Manipulating at most ¢ items, and under the condition that one starts and
ends with empty F-heaps it takes



142 KEIJSPER AND PENDAVINGH

O(1) time to create an empty F-heap, insert an item with given key,
decrease the key of an item in a heap, or find the item of minimum
key.

O(log 1) to delete an item of minimum key from the heap and return it.

Let vy € V(I') be given. The routine Shortest Path(I, vy, 2, A) below com-
putes shortest paths in the contracted graph determined by /" and # from
the vertex U, with v,e Uy,e 2 to all other vertices. It uses an F-heap with
vertices v € V(I) as its items. The key of a vertex v is d(v), the tentative dis-
tance from v, to v. The distance function is defined on original vertices, not
on contracted ones. When the routine terminates, d(v) = d(u) for any u and
v in the same element U of the partition #. Vertices are inserted into the
F-heap when a value is assigned to d(v) for the first time. After that, each
time a value is assigned to d(v) a “decrease key” operation is performed.
Once a vertex v is removed from the heap by a “delete min” operation, no
more assignments are made to d(v). The vertex is then marked scanned.
Besides the function d, a predecessor function p: V(I')— A(I') is com-
puted. When the routine terminates, p(u«) is an arc by which a shortest path
enters U with ue Ue Z. So a shortest path in the contracted graph is
obtained by tracing the function p back in O(|V(I")]) time.

Shortest Path(I, vy, 2, ).
Mark all vertices “not scanned.”
Create an empty F-heap F.
Set d(v,) =0.
While the F-heap is not empty:
delete a vertex v of minimum key d(v) from F;
if v is not scanned:
* compute the set U such that ve Ue Z;
for each ue U:
put d(u) = d(v) and p(u) = p(v);
*% for all (u,x)e A(I): if du)+ A(u, x) <d(x), put d(x)=
d(u) + A(u, x) and p(x) = (u, x);
mark u “scanned.”

There is at most one “delete min” operation for each element of V(I7),
and at most one “insert” or “decrease key” for each element of A(7"). This
gives a bound of O(|A(I)|+ |V(I')|log |V(I')|) for the time taken by
operations on the F-heap F.

Now we want to apply the routine Shortest Path to the graph H defined
in the previous section. This can be done by taking VU {r, s} for the vertex
set of I, the set of maximal elements of % (together with the singletons {r}



BIBRANCHING ALGORITHM 143

and {s}) for the partition 2 and the length function / for 1. The arc set of
I' is in one-to-one correspondence with the arc set of H, except that I” may
have more arcs entering s. Thus, /" has O(m) arcs. It follows from the above
analysis that operations involving the F-heap F take time O(m + n log n).

Given our coding of %, in the step marked by %, it takes O(|U|) to find
all elements of the maximal Ue % that contains a given v. One simply finds
all leaves in the same tree of the contraction forest as node {v}.

In the step marked by %%, we need to enumerate the arcs leaving u in
I If u=r, we need to list all the S— S arcs of B,, T— T arcs of 4., the
maximal sets of % in S that are singletons, and the maximal sets of ¥ in
T covered by more than one B-arc. This takes O(m) time, since mem-
bership of B and A, is stored at each arc and b(U) is stored at each Ue &.
If ue S, the arcs leaving u are exactly the arcs (v, t)e A with teT. IfueT,
there is an arc to s if U is not covered (where U is the maximal element
of % containing «) and an arc to x € S if there is an arc (x, ) € B. Running
through all arcs leaving vertices of S, and all arcs entering vertices of T
takes O(m) time. It takes O(n) time to find for all u € T the maximal Ue ¥
containing u, and to check whether H(U)= J. No arc leaves s.

So we have a bound of O(m) for operations not involving the F-heap,
giving a total time bound of O(m + n log n) for one run of the shortest path
routine in step 1 of Loop 2.

During the execution of the shortest path routine, expansion steps are
performed. The minimum d(v) must be compared with the minimum y(U),
where U ranges over the maximal sets of . that are subsets of S. To find
the latter minimum, we use a second F-heap F’ that has nodes U of the
contraction forest as its entries, each with key y(U). Before the shortest
path algorithm starts, F’ is created and the root nodes U with U< S are
inserted. It then takes O(1) time to compare the minimum key y(U) of F’
with the minimum key d(v) of F in the shortest path routine. When
y(U) <d(v), the following heap operations on F’ are performed:

delete the node U of minimum key y(U) from F’;
for each child U’ of U: add y(U) to y(U’) and insert U’ in F' with key
wu).

Next, the algorithm performs Expand(U):

suppose b(U) = {b}; select the child U’ of U that is covered by b;
delete the elements of H(U’) from B; put b(U’) = {b};

delete U from the contraction forest.

And finally values of d (and p) are defined (requiring “insert” in F'), but not
more than once for each child, so not more than 2 |S| — 1 times.



144 KEIJSPER AND PENDAVINGH

At most 2 | S| — 1 items are inserted in F’, and each of them is deleted as
the minimum once (including emptying F’ by deletemins at the end of
step 1). So the operations on F and F’ in expansion steps take only
O(nlog n) time for one iteration of Loop 2.

Phase 3 just consists of the application of Expand(U) on maximal sets
Ue % that are not singletons, until none are left. We will obtain a bound
for the time taken by Expand in Phase 2 and 3 together. Note that b(U)
always contains a single arc, because we never apply Expand(U) to a
singleton U. The proper subsets U’ € ¥ of U that are covered by b, when
b(U) = {b}, are called the heirs of U. To be able to select the child that is
heir in constant time in expansion steps, we prepare the contraction forest
before each application of the shortest path algorithm and before Phase 3,
by simply indicating whether a node U is heir. This takes O(n) time by
applying the following recursive routine Heir(U) to each root U of the
contraction forest.

Heir(U).
Unmark U.

If b(U)={b}, and u is the endvertex of b in U, walk from {u} to U in
the contraction forest marking each node, until a child U’ of U is
reached.

For each child U” of U not equal to the heir U’, do heir(U").

When Expand(U) is applied, the heir U’ of U becomes a root of the con-
traction forest and is hence not an heir anymore, but nothing else changes
about heirness. We can simply unmark U’. Now, Expand(U) takes O(k)
time, where k is the number of children of U. A node of the contraction
forest meets Expand(U) as a child of U at most once. There are at most
2 |S| —1 nodes in the contraction forest for subsets of S, and 2 |T|—1
nodes for subsets of 7. Hence, there are at most O(n) possible children. So the
applications of Expand in Phases 2 and 3 together take at most O(n) time.

Thus, all operations in the three phases together can be performed in at
most O(n'(m+nlogn)) time.

ACKNOWLEDGMENT

We thank Lex Schrijver for introducing us to the subject and for carefully reading the
manuscript.

REFERENCES

1. Y. J. Chu and T. H. Liu, On the shortest arborescence of a directed graph, Sci. Sinica 14
(1965), 1396-1400.
2. J. Edmonds, Optimum branchings, J. Res. Nat. Bur. Standards T1B (1967), 233-240.



3

BIBRANCHING ALGORITHM 145

. J. Edmonds and R. M. Karp, Theoretical improvements in algorithmic efficiency for
network flow problems, J. Assoc. Comput. Mach. 19 (1972), 248-264.

. M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network
optimization algorithms, J. Assoc. Comput. Mach. 34 (1987), 596-615.

. H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan, Efficient algorithms for finding mini-
mum spanning trees in undirected and directed graphs, Combinatorica 6(2) (1986),
109-122.

. J. F. Geelen, personal communication.

. R. Giles, Optimum matching forests I: Special weights, Math. Programming 22 (1982),
1-11.

. R. Giles, Optimum matching forests II: General weights, Math. Programming 22 (1982),
12-38.

. R. Giles, Optimum matching forests III: Facets of matching forest polyhedra, Math.
Programming 22 (1982), 39-51.

. H. W. Kuhn, The Hungarian method for the assignment problem, Naval Res. Logist. 2
(1955), 83-97.

. A. Schrijver, Min-max relations for directed graphs, Ann. Discrete Math. 16 (1982),
261-280.

. N. Tomizawa, On some techniques useful for solution of transportation network
problems, Networks 1 (1972), 173-194.



