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A geometric reformulation of variational problems with differential constraints 
leads to a characterization of the constaints in terms of a closed differential ideal W 
of the exterior algebra of differential forms on an appropriately chosen manifold. 
The collection of all vertical isovector fields of the ideal C is shown to provide a 
continuous parameterization of all solutions of the constraints through imbedding 
in a maximal Lie group of point transformations that preserves the constraints. 
This parameterization provides direct access to necessary and sufficient conditions 
for stationarity of an action or penalty integral in the presence of the given con- 
straints. Specific examples of control problems with second-order partial differential 
constraints are given. The penalty functional is allowed to depend on the state 
variables, the control variables and their first partial derivatives, through both 
volume integrals and boundary integrals. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

The classical approach to variational problems with differential con- 
straints is through the use of Lagrange multipliers. Thus, if there are m 
state variables and I < m differential constraints, r Lagrange multipliers are 
introduced so that the constrained variational problem with m state 
variables is converted into an unconstrained variational problem with 
m + r state variables. Solutions of the resulting system of m + r 
Euler-Lagrange equations must then be obtained followed by an 
elimination of the r Lagrange multipliers, to obtain solutions of the original 
constrained variational problem. For m and r of moderate size, putting in 
and then taking out the r Lagrange multipliers is a formidable task that is 
often compounded by the nonlinear manner in which the Lagrange mul- 
tipliers and their derivatives enter into the system of m + r Euler-Lagrange 
equations. 
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The Lagrange multiplier method works because the multipliers become 
new variables whose introduction allows a relaxion of the differential con- 
straints during the variation process. Solution of the m + r Euler-Lagrange 
equations followed by an elimination of the Lagrange multipliers then 
reimposes the constraints and solves the constrained problem. 

An exception to this involved process occurs when the differential con- 
straints are completely integrable. In this case, the r constraints can be 
solved explicitly for r of the state variables in terms of the remaining m - r 
state variables. The r explicit solutions of the differential constraints can 
then be used to obtain a new free variational problem that involves only 
m-r unconstrained state variables. Solution of the new unconstrained 
variational problem in m-r state variables is equivalent to solving the 
original constrained variational problem because the m-r new state 
variables provide a complete parameterization of the set of all solutions of 
the completely integrable differential constraints. 

The case of completely integrable differential constraints points up a par- 
ticularly important, but often overlooked aspect of constrained variational 
problems. Suppose that a complete parameterization of the set of all 
solutions of the differential constraints can be obtained. In this event, all 
variations of the state variables that preserve the differential constraints can 
be computed directly by considering variations of the state variables that 
are induced by variation of the parameters of the solutions to the con- 
straints. This is the approach taken in this paper. 

Complete parameterization of the solution set of the constraints is 
obtained as follows. The works of Cartan [l] show that any finite system 
of differential constraints gives rise to a finitely generated closed ideal Q? of 
the algebra of exterior differential forms over an appropriately chosen 
manifold K, such that % is the maximal closed ideal that is annihilated by 
all solutions of the differential constraints. Accordingly, deformations that 
carry %’ into V are deformations that preserve the constraints. 

A fundamental paper by Harrison and Estabrook [2] introduced the 
concept of an isovector field of an ideal; namely, a vector on the manifold K 
whose flow transports any element of the ideal into an element of the ideal. 
Now, the collection of all isovector fields of the ideal V forms a Lie group 
of automorphisms of K (the isogroup of %) that is the maximal Lie group of 
automorphisms that transports elements of % into elements of 5%. This 
implies that composition of any solution S of the constraints with all 
elements of the isogroup of V generates all solutions of the constraints that 
are continuously connected to S [3]. Accordingly, the isogroup of %? serves 
to parameterize the solution set of the differential constraints and thus 
determines the connectivity of this solution set. Further, and of greater 
importance, the parameterization obtains without actually solving the 
system of constraints. This follows from the fact that the isovectors of an 
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ideal are determined solely by the structure of the ideal and do not depend 
in any way on whether the ideal has or has not been “solved.” 

The geometric ideas just set forth provide a direct method of approach 
to variational problems with differential constraints. Once the isogroup of 
the constraint ideal % has been computed, questions of stationarity or 
optimality of an action or penelty functional become accessible through 
study of the deformations (variations) that are generated by the isogroup 
of $5’; that is, the action functional is varied within the set of solutions of the 
differential constraints. 

An analysis of questions of stationarity of variational problems with dif- 
ferential constraints is given for an arbitrary but smooth action functional 
that includes boundary terms. As it turns out, the resulting conditions for 
stationarity are uniquely determined by the structure of the isogroup of the 
constrained ideal. We take particular note of the fact that an isogroup of 
finite dimension leads to finitely many integral conditions rather than the 
usual system of Euler-Lagrange field equations. Examples of the various 
possibilities are given and the paper concludes with two examples of con- 
trol problems for fields that satisfy second order partial differential 
equations. 

2. GEOMETRIC FORMULATION OF THE PROBLEM 

Let M, be the n-dimensional manifold of independent variables. We 
assume that M, is orientable and is referred to a system of local coor- 
dinates {xi1 1 < i < n}. The tangent space of M, is denoted by T(M,) and 
the algebra of exterior differential forms on M, is denoted by n(M,). 

The volume element of M, is 

p = dx’ A dx2 A . . . A dx” (2.1) 

and constitutes a basis for n”(M,). Since (8; = 8/&$I 1 6 i < IZ } is a basis 
for T(M,), {pi=aiJpl 1 <i<n) is a conjugate basis for A”-‘(M,) and 
{pji = 8, J pi 11 < j < i < n} is a conjugate basis for /i”- ‘(M,). Here, J 
denotes the operation of inner multiplication and we have [3] 

dpi = 0, dx’ A pi = 8jp, 

dpij = 0, dxk A /.+=b;pj-8;pi, 
(2.2) 

where A denotes the exterior product. 
Suppose that there are m state variables (@(xi) 11 < CI < m) and that the 

problem involves only first and second partial derivatives of these state 
variables. The appropriate underlying space for the problem is then an 
(n + m + nm)-dimensional kinematic space K [3, Chap. 2; 6, Chaps. 6, 71 
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with local coordinate functions {xi, q*, y; 11 < i < n, 1 < M. < m} and con- 
tact l-forms 

C” = dq” - y; dx’, l<crdm. (2.3) 

Let B be an arcwise connected, simply connected subset of M, with non- 
zero volume measure (jB p # 0) and smooth boundary, 8B. The collection 
of regular maps of B into K is defined by 

R(B)= {Q: B+K~Q*~z~, @*C=O, 1 <adm}. (2.4) 

The condition @*I” # 0 shows that we may choose a representation for any 
regular map @ of the form 

CD 1 x’ = xi, 

without loss of generality. 

4% = 4”(x’), y; = qq(x’) 

The relations (2.3) then show that satisfaction of the conditions 
@*Ca = 0, 1 < tl< m, gives @*yT = i3i@*qa = ai@. Thus, any regular map @ 
has a representation of the form 

qxr=xi, q= = f$“(x’), y;” = i3,qqx’). (2.5) 

The space K is thus the space of graphs of the state variables and their first 
partial derivatives that are realized by regular maps Cp: B -+ K. 

We assume that functions I and {ri 1 1 < i < n} are given and that the 
action or penelty functional is given by 

a[@] = .F, 1(x’, d”(x’), 8i$“(x’)) P 

+ Id, lk(X’, d”(x’), ~,d”(x’)) pk. (2.6) 

Functions L and L’ may be defined on K by 

Ux’, qa, Yg) = 4x’, qm, vg, 

Lk(X’, qa, yg) = P(X’, qX, yg), 
(2.7) 

in which case (2.5) shows that 

AC@1 = i, @*C&L) + S,, @*W%J = a[@1 (2.8) 

for any regular map Qi. Now A [. ] may be viewed as a map from the class 
of regular maps R(B) into R. Thus, since (2.8) gives A [@I = a[@] for any 
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regular map @, the action functional a[#“] may be replaced by the map A: 
R(B) + R. 

Let (oO)l <a 6 r} be a given system of r exterior differential forms on 
K. These serve to define a system of differential constraints under satisfac- 
tion of the conditions 

@*w, = 0, l<abr, 0 E R(B). (2.9) 

For example, suppose that we have the system of second-order constraints 

W&(Xk, 4’9 dk4’) aidjda + W,(Xk, 4”, dkd’) = 0, 

1 <a<r. (2.10) 

If we define the functions W& and W, on K by 

w’i = w’i (xk, qp, yf), cm aa w = w (xk, 9? Yf,, u ll 

then 

w,= WiEdyy A/L~+ W,p (2.11) 

are n-forms on K. When the relations dxj A pLi = Sj,u are used (see (2.2)), it 
follows that 

for any @E R(B), and hence @*w, = 0, 1 <a < r, reproduces the con- 
straints (2.10). 

We started these considerations with the class of regular maps R(B), and 
hence all such maps satisfy the constraints @*p # 0, @*C’ = 0, 1 < a < m. 
Thus, the given constraints @*w, = 0, will be satisfied only for the class of 
constraint maps 

R,(B)= {@ER(B)I@*w,=O, 1 <a<r). (2.13) 

It is explicitly assumed that the class R,(B) of constraint maps is non- 
vacuous; that is, the system of constraints @*w, = 0, @*C” = 0, @*p # 0 is 
consistent. 

If @ is any constraint map, the action map A [@I is well defined and 
takes its value in IR. Thus, as @ ranges over R,(B), A[@] ranges over some 
subset of R. The variational problem that we wish to solve may now be 
stated as follows. Find all critical points of the action map A[. 1: R,(B) -+ [w. 
It should be carefully noted that we require the critical points of the action 
map A[. ] as a map from R,(B) into R rather than as a map from R(B) 
into R. Thus, the action map is to be scrutinized only on the set R,(B). It is 
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thus essential that any element of R,(B) belong to at least a l-parameter 
family of elements of R,(B). If this were not the case, the constraints would 
be satisfied only for a disconnected set of regular maps and questions of 
stationarity of the action map become mute. As it turns out, the method to 
be developed in this paper provides a simple and direct test for this 
possibility. The method will also provide means for handling situations in 
which the connectivity of R,.(B) is that of a finitely generated group, in 
which case the stationarity conditions are expressed by a finite system of 
integral conditions as opposed to a system of Euler-Lagrange partial dif- 
ferential equations. 

3. ISOVECTOR FIELDS AND VARIATIONS 

The problem at hand is that of characterizing the connectivity of the 
class of constraint maps R,.(B). Since each CD E R,.(B) has B as domain and 
an n-dimensional subset of K as range, the connectivity of R,(B) becomes 
accessible by study of smooth deformations of K that carry elements of 
R,.(B) into elements of R,.(B). Now, smooth deformations of K may be 
thought of as arising from the action of a continuous family of 
automorphisms of K that contains the identity map, and these in turn may 
be realized in terms of transport along orbits of vector fields on K. 

A general vector field VE T(K) on K has the representation 

V=u~ai+uMa,+u~a:,, (3.1) 

where {u’, ua, UT} is a system of smooth functions on K and 8, = a/aq’, a; = 
ajay;. Let T,(s): K + K denote the l-parameter family of automorphisms of 
K that is generated by transport along the orbits of VE T(K); that is, 

T,(s): K + K 1 'xi = exp (s V) x’, 
(3.2) 

‘q” = exp(s V) q’, ‘y; = exp(sV) y;. 

If @ is any map of B into K, then T,(s) can be composed with CD to yield 
the l-parameter family of maps 

CD.(s) = T,(s) 0 @ (3.3) 

of B into K. It then follows from (3.2) that rP,(s) has the realization 

hi= xi + S~(XJ, @(x'), a,@(xj)) + O(S), 

yyxj) = ptxj) + suyxj, @(x'), a,@(d)) + O(S), 

'yg(x~) = y;(xj) + ~;(~j, @(x'), a,@(d)) + O(S). 
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It is clear from this realization that we must set u’(x~, q’, yp) = 0, for 
otherwise the automorphisms T,,(S) of K will generate deformations of the 
manifold M, of independent variables. (For problems in the calculus of 
variations in the large with constraints, we would have u’#O because the 
domain B would also be subject to variation and the nonzero u’ would lead 
in a natural manner to transversality conditions for the constrained 
problem.) We therefore restrict attention to the collection of vertical vector 
fields (V J a = 0, Vcc E n(M,)), 

TV(K) = ( VE T(K) ( I/= ua a, + u; a;}. (3.4) 

If @ is a map from M, to K and VE TV(K), then Q,,(s) = TV(s) 0 @ is a 
map from M, to K that induces the pullback map 

Q,,(s)*: A(K) -+ A(M,). (3.5) 

However, @&)* = (T,(s) 0 @)* = @* 0 T,,(s)* and [IS] T,(s)*cr = 
exp(s&.) c1 for any GI E A(K), where & ,,fi is the Lie derivative of fl with 
respective to the vector field I/. We therefore have 

@,,(s)*c( = @* exp(s&.) ~1 Va E A(K). (3.6) 

By definition, a map @: M, -+ K belongs to the class of constraint maps 
R,(K) if and only if 

c#j*w, = 0, @)*c*=O, @*p # 0. (3.7) 

Thus, when (3.6) is used, @ E R,(B) will imply Q,,(s) E R,(B) if and only if 

@* exp(s& V) 0, = 0, @* exp(s& y) Ca = 0, 

@* exp(s& V) p# 0. 
(3.8) 

Now, @* exp(s&,,) p # 0 for all s in a neighborhood of s = 0 if @*p # 0, 
so we may disregard the condition @* exp(s&.) p # 0 provided we restrict s 
to a sufficiently small neighborhood of s = 0. 

Any @E R,(B) is such that @* annihilates each c* and each w,. Thus, 
since @* commutes with exterior differentiation, @* also annihilates each 
dC” and each do,. Accordingly, @* annihilates the constraint ideal 

V=Z{C*,w,,dC’,do,(l~a~m, 16a<r} (3.9) 

of the exterior algebra A(K) for any @ E R,(B). Conversely, the ideal V is 
the largest ideal of ,4(K) with generators of degree not exceeding n that is 
annihilated by R,(B)*. The conditions (3.8) will thus be satisfied for s in a 
sufficiently small neighborhood of s = 0 if 

exp(sf “) C” = 0 mod %, exp(s& ,,) o, = 0 mod %?; (3.10) 
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S.C”rOmodg, &,,w,EOmod%. (3.11) 

Now, Lie differentiation and exterior differentiation commute, and hence 
(3.11) imply Ey dC” = 0 mod V, EV do, = 0 mod %. Thus, (3.8) will be 
satisfied if and only if & VV c V; that is, if and only if VE TV(K) is an 
isovector [2, 31 of the constraint ideal. The collection of all vertical isovec- 
tors of the constraint ideal is denoted by T,,(K), 

T,(K)={VETV(K)(E~%A?}. (3.12) 

If@ E R,(K), then G”(s) = T,(s) 0 @E R,.(K) for any VE T,.(K) and all s in 
a neighborhood of s = 0, @ “(0) = @, and T,(K) is the largest subset of 
TV(K) for which Gy(s) E R,(B) f or all s in a neighborhood of s = 0. 

This result shows that the connectiviety of R,(B) is exactly that 
generated by the flows {T,(s)} for all vertical isovector fields V of the con- 
straint ideal. Thus, if the constraints are to remain satisfied, the only 
changes that are permitted in any @ E R,.(B) are those that are generated by 
composition with T”(S) for some VE T,.(K). This, however, exactly serves 
our purposes, for we now know the most general change in a @ E R,(B) for 
which the constraints will remain satisfied. Accordingly variations that are 
generated by flows of isovector fields of the constraint ideal will not require 
the use of Lagrange multipliers in order to accomodate the constraints! To 
see this directly, simply note that @ E R,(B) implies Q, Js) E R,(B) for V E 
T,.(K), and hence A [@I and A [@ V(s)] are the values of the action 
functional for states that satisfy the constraints. Accordingly, 

~.(s)ACQil=AC~v(s)l-AC~l (3.13) 

is the finite variation of the action functional in the presence of the con- 
straints that is generated by V E T,(K). The (infinitesimal) variation of the 
action functional in the presence of constraints, that is generated by 
VE T,.(K), is defined by 

6J[@]=~ii* 
( 
+)ACII . 

> 
(3.14) 

S,A[@] is easily computed, for QV(s) = TV(s) 0 @ gives @,,.(~)*a = 
@* 0 T,(s)*a = @* exp(sE.) CL. Thus, for the action functional (2.8), (3.13). 
and (3.14) yield 

6 VA [@I = j, @*jZ IALP) + S,, @*E dLzPi). (3.15) 
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These considerations lead directly to the following definitions of con- 
strained stationarity. A map @: M, + K is said to render the action 
functional A [ -1 stationary in the presence of constraints if and only if 
@E R,(B) and 

S,A[@] =o (3.16) 

for all VE T,(K). Thus, @ renders the action functional (2.8) stationary in 
the presence of constraints if and only if 

@*c” = 0, @*co, = 0, @*p # 0, (3.17) 

and 

1 @*&&/(Lp) + 1‘ @*&JL’pJ = 0 (3.18) 
B as 

for all V E T,(K). 

4. CHARACTERIZATION OF T,(K) 

It is clear from the results of the previous section that everything 
depends on the structure of the collection T,(K) of all vertical isovectors of 
the constraint ideal. By definition (see (3.12)), V E T,(K) if and only if 
VE TV(K) and & .%? c %?. Thus, since [3,4] 

& fu+gv~=j.EuW+gg&v~+df rt U J%‘+dg A V-J%, 

T,(K) is a vector subspace of TV(K) over !R but not a submodule. Further, 
E cU,V,%?= (f.U&V-f.VSU)%, and hence T,(K) is a Lie subalgebra of TV(K) 
over IR with the Lie product [U, V] f = U( Vf) - V( Uf ). 

The constraint ideal, 59, is generated by { Ca, o,, dC”, da,); and hence 
VET,(K) if and only if &,C”-0 modg, Eyo,=O mod%?, E.dC”rO 
mod %, E,dw, E 0 mod V. Thus, since % is a closed ideal and E y and d 
commute, EyCa E 0 mod %, EVo, E 0 mod W imply 5” dCa = 0 mod %, 
.E y do, E 0 mod %?. A vector field V E TV(K) is an isovector of %? if and only 
$ (see [ 6, Lemma 4-6.21) 

EyCa=O modW, 1 <crdm, 

Lvw,-O mod%, l<a<r. 

Next, we note that (2.3) gives dq” = yg dx’ + C” and hence 

dq” = yg dx’ mod %?, 1 da<m. 

(4.1) 

(4.2) 

(4.3) 
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Thus, since the c*‘s and the w,‘s may be assumed to be independent 
without loss of generality, we may use (4.3) to eliminate all dqE’s from the 
w,‘s. Accordingly, the 0,‘s may be written in such a way that they do not 
contain terms with dq*-factors. Finally, if any of the w,‘s are of degree zero, 
say g, ,..., g,, then they may be replaced by the equivalent n-forms 
g, p ,..., g,p. We may accordingly assume that deg(o,) > 1, 1 d a 6 Y. 

If V is an arbitrary element of TV(K), we have 

and hence (2.3) gives .f “CX = du” - us dx’. Noting that deg( Ca) = 1 for all SI 
and deg(o,) > 1 for all a, (4.1) and (4.2) will be satisfied if and only if 
(A!, B”“, Fa,s, G,,, He, Ki)e/I(K) can be found such that (see [6, 
Lemma 4-6.31) 

dv” - v; dx’ = A;@ + Ba%,, l<a<m, 

(4.4) 

&.o,=F~8~CB+GaP~dCP+H5:~~b+K5:~d~b, 1 <a<r. 

(4.5) 

Here, it is understood that B”“= 0 if deg(co,) # 1 and that Fup, G,,, Hf,, Ki 
are such that the degree of each term on the right-hand side of (4.5) is the 
same as the degree of the term on the left-hand side of (4.5). The Lie 
Algebra T,.(K) is then determined by resolving (4.4), (4.5) on the basis 
elements of A(K), solving for and then eliminating the quantities (A;, B”“, 
F Gup 4, Hi, Kt), and then securing satisfaction of the remaining 
equations. Although the resulting equations will always be linear, the 
calculations are often of monumental proportions. For example, if we have 
4 independent and 4 state variables, then dim(K) = 24. Thus, with one con- 
straint form of degree 4 (a second order partial differential equation), the 
underlying vector space is A4(K) and dim(n4(K)) = (“,“) = 10,626. Programs 
for direct computer assistence with such computations, available in the 
REDUCE-2 symbolic language environment [3, 51, reduce computation of 
the generating equations for the isovectors to a morning’s work at a com- 
puter terminal. Determinations of the isovector fields of a constraint ideal 
thus falls within the realm of the possible even for “large” problems. 

The solution procedure described above is critically dependent upon the 
structure of the constraint forms {w,}. Thus, each problem must be 
worked out anew. There are, however, situations in which a partial 
solution may be obtained. If all of the constraint forms o, are of degree 
greater then 1, then all of the Baors vanish in (4.4); 

dv” - v; dx’ = A; Co = (dq8 - yf dx’). (4.6) 
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The general solution of (4.6) is a special case of the general solution of 
&,Ca= A;CB with the conditions ui=O, that is given elsewhere [3], 

ua = fyx’, qy, II; = (ai + yQ a,) f”(x’, qY). (4.7) 

Accordingly, when (4.7) is substituted into (4.5), we obtain a system of 
equations for the determination of the remaining free functions {Ja(xi, qy) 1 
1 G a <m}. Now, this determination may result in V= 0’ a, + u; a, that is a 
finite dimensional subspace of TV(K) over R, or in a infinite dimensional 
subspace of TV(K) over R. In the latter case, there will be arbitrary 
functions that occur in the specification of (ua, u:}, while in the former 
there will be only scalar multiples of fixed functions of {x, q’, y;“}: 

The number of arbitrary functions and the number of arbitrary constants 
that occur in the general solution of (4.4) (4.5) will turn out to be highly 
significant in the process of securing stationarization of the action 
functional. We therefore give the following definitions. The finite dimension, 
dim(T,(K)), of the Lie algebra T,(K) is the number of arbitrary scalar 
parameters that occurs in the specification of an element of T,(K) in 
general position. The transfinite dimension, Dim,( T,(K)), of T,(K) is the 
number of arbitrary functions that occurs in the specification of an element 
of T,.(K) in general position. For example, if there are no constraint forms 
{We}, (4.7) shows that there are m arbitrary functions {f ‘(xi, qp) 1 
l<a<m} that occur in VE T,(K) and hence dim( T,(K)) = 0, 
Dim,( T,(K)) = m. This is the case of problems in the calculus of variations 
without imposed constraints (Ok}. On the other hand, suppose that we 
find that the general element of T,.(K) looks like 

v= aqlx3 aql + f aq2 + b a,; - (a,, f) a+ 

where a and b are arbitrary scalar parameters and f is an arbitrary function 
of the x’s. We would then have dim(T,(K)) = 2, Dim,(T,(K)) = 1. 

There is one very important point that should be noted at this juncture. 
If T,(K) consists only of the zero vector, dim( T,(K)) = 0, Dim,( T,(K)) = 0, 
then R,(B) consists solely of isolated elements. Stationarization of the action 
functional in the presence of constraints is thus impossible; the action 
functional has whatever value it assumes at the isolated map R,(K). 

5. STATIONARITY CONDITIONS 

We saw at the end of Section 3 that a map @: M, + K renders the action 
functional stationary in the pressure of constraints if and only if @*C” = 0, 
@*o, = 0, @*,u # 0, and 

6,A[@]=J ~*~.(L~)+Jljg~*~v(lipi)=O (5.0) 
B 
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for all VE T,(K). The necessary and sufficient conditions for satisfaction of 
(5.0) for all I/E T,(K) are referred to as the stationary conditions and are 
the subject of this section. 

It is clear from (5.0) that everything hinges on obtaining explicit 
evaluations off y(Lp) and f .(L’P~). Since the latter is the simpler, it will be 
taken up first. By definition, f yc( = P’J dcc + d( V J a), and hence 

f ,,(Lip;) = I’ J d(L’& + d( V J Lipi). (5.1) 

However, any VE T,(K) belongs to TV(K) so that 

V J dx’= 0, VJp=O, v JpLi=O. (5.2) 

Thus, (5.1) gives 

f&i/AI) = (LP a&Y’+ u; a$!,I) pj. (5.3) 

The computation of f y(Lp) is equally direct, but not of particular use in 
its raw form. We therefore note that any VE T,.(K) is a vertical isovector 
field of the constraint ideal while any Q, E R,(B) is such that @* annihilates 
the constraint ideal V. We therefore have @*f ,,(L/A) = @*f ,(Lp + p) for 
any n-form p that belongs to the constraint ideal and for any VE T,.(K). 
Now, 

J=c” A a;LpiEv (5.4) 

and a straightforward calculation shows that 

d(Lp + J) = C” A E,, (5.5) 

where 

E, = a,Lp - d(a;Lpi), lda<m (5.6) 

are the Euler-Lagrange n-forms. In fact, @*E, = 0 are the Euler-Lagrange 
equations if there are no constraints. These considerations allow us to 
replace Lp by the Cartan n-form Lp + J in the computations which will 
avoid the usual problem of having to perform integrations by parts of a 
number of terms. 

Direct application of the definition of f V gives 

f&++J)= V~d(Lp+J)+d(VJ(Lp+J)). (5.7) 

Use of (5.2) (5.4) and (5.5) thus gives 

f,,(Lp+J)=(V__ICOL)E,+d((V JC~)a~Lpi}modV. (5.8) 
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However, V J c” = uoL for any VE TV(K) and hence 

& ,,(Lp + J) = uaE, + d{ Y” tJ$pi} mod %‘. (5.9) 

Noting that @*%?=O for any @E R,(B), a substitution of (5.3) and (5.9) 
into (5.1) and use of Stokes’ theorem shows that 

&A[@]=[ @*(u”E,)+[ @*{oya;L+a,L’) 
B dB 

+ vi” a; L’} pj. (5.10) 

A map @E R,(K) renders A[@] stationary in the presence of constraints if 
and only if 

j @*(u”E,)+j ~*{ua(a:,L+a,Li)+ui”a~L’}~i=O (5.11) 
B ae 

is satisfied for all V E T,(K). 
Particular note should be made of the fact that aiLi#O implies 

requirements on the boundary values of the functions u; that determine the 
variations of the derivatives. On the other hand, if ai,Li = 0, evaluation of 
(5.11) will only require knowledge of the functions ua(xi, q8, y,“) that 
appear in 

v= u= a, + q a;. 

We therefore confine our attention, from now on, to problems for which 
aLi = 0; that is L’= Li( xj, qP). Accordingly, it is sufficient to give only the 
part 

v, = ua a, 

of any V E T,(K) in order to evaluate the stationarity conditions (5.11). 
Incidentally, if deg(w,) > 1, 1 <ad r, then V, determines V by [6, 
Chap. 63, 

v=vq+zi(vq JC”)a;, zi=ai+ yfv,. 

Progress past this point is inseparably linked to complete specification of 
T,(K), and hence a general procedure can not be given. Each problem must 
be analyzed in its own right. We therefore give three examples in the case 
m = 2 that are, to a certain extent, typical. 

The first example is that for which T,(K) is specified by 

(5.12) 
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where f(x’) is an arbitrary function. Thus, Dim,( T,(K)) = 1, 
dim( T,(K)) = 0. When (5.12) is substituted into (5.11), we have 

s .f@*(E, + t4* -x2) E2) 
B 

=- s r?B 
f~*{(alL+d,,L’)+(q2-x2)(a;L+a,,Li)}~j (5.13) 

for allf(xj). In order that this shall hold for alIf( it must hold for those 
f(x’) that vat-$h pn the boundary. In this event, (5.13) reduces to 
id&Y;; +& - x ) E2) = 0 and th e un f d amental lemma of the calculus of 

@*(El + (42 -x2) E*) = 0. (5.14) 

When @E R,.(K) is such that (5.14) is satisfied, (5.13) reduces to 

s f@*{(a;L+a,~L’)+(q*-x*)(a:L+a,2L’)} pj=o. (5.15) 
SB 

Thus, the stationarity conditions are (5.14) subject to any boundary data 
that satisfied (5.15). 

For the second example, 7’,.(K) is specified by 

I’, = aF(x’, q”, ye) ~3~’ + aG(x’, q”, y;) Q, (5.16) 

where F and G are given specific functions of their indicated arguments. 
Thus, Dim,(T,.(K)) = 0, dim( T,.(K)) = 1. We now substitute (5.16) into 
(5.11) to obtain 

a @*(FE, + GE,) 

=---a s @*{F(~;L+&,IL’)+G(~Y;L+~,,L’)} pi. (5.17) 
3B 

In order that (5.17) hold for all values of a, it is necessary and sufficient 
that @E R,.(K) satisfy the single integral condition 

s @*(FE, + GE,) 
B 

= -j @*{F(al,L+a,,L’)+G(a;L+a,2L’)}p,. (5.18) 
aa 
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In fact, a little reflection will show that Dim,(T,(K)) =0 will result in 
dim(T,(K)) integral conditions rather than a system of Euler-Lagrange 
equations. 

The third example is where T,(K) is specified by 

vq = f(xj)(ql - y;) aqt + a~(~l, q", ~,a) a,, , (5.19) 

where f(xj) is an arbitrary function of the xi’s and F is a given specific 
function of its indicated arguments. An analysis similar to that given above 
shows that the stationarity conditions are 

@*{k7’-Y:w,}=o, (5.20) 

jB @*{FE,} = - j?, Q*{F(a;L-a,L)) pi, (5.21) 

subject to any system of boundary conditions for which 

I fv{(q+:)(a;~- a,d,')) p,=o. 
iiB 

(5.22) 

6. APPLICATIONS TO CONTROL PROBLEMS 

Application to control problems with differential constraints is 
immediate. All that is required is to take the realization of @: M, + K so 
that @*qa=@(xj) for l<a<m,<m, @*(qml+B)=up for 1 </?-cm-m,, 
where {@(xj)} are the state variables and { up(xi)} are the control 
variables. The constraints {o,I 1 d a < r } then describe the evolution of the 
state in the presence of control and A[@] is the penalty functional for the 
control process. The admissible set of control laws for the process is 
obtained by solving the conditions of stationarity of A[@] in the presence 
of constraints. If this is done in the manner discussed above, there are no 
Lagrange multipliers and the equations governing the admissible set of 
control laws are directly obtained without having to solve for and then 
eliminate the Lagrange multipliers. 

The simplest way of seeing what is involved is to look at specific exam- 
ples. We therefore consider problems with two independent variables 
(n = 2), one state variable 4, and one control variable u (m = 2 with 
@*q’ = 4, @*q* = u). In such cases, it is simplest to use the variables (4, U) 
rather than (ql, 4’). Thus, (y:, yi) represent the first derivatives of 4 when 
@* acts, while (y:, yz) represent the first derivatives of the control 
variable U. 
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A reasonable control problem is that for which the constraint, 
@*(o,)=O, is 

24 au a4 au a4 -=----- 
ax2 atax axat> (6.1) 

that is, 

w, =du A db-dt A dy;. (6.2) 

A specific physical realization of (6.1) obtains when 4 undergoes l-dimen- 
sional convective diffusion in a compressible fluid medium with density p, 
l-dimensional fluid velocity v,, and 

p = -au/ax, pi, = au/at 

so that the continuity equation arP + a&v,) = 0 is satisfied. The control u 
is thus realizable through appropriate realizations of the l-dimensional 
compressible fluid flow. 

The first thing we note is that the constraint form o, is a 2-form. Accor- 
dingly, (4.6) and (4.7) show that V= v’ a, + v; 8: must be such that v;” = 
(a, + y” a,) u’(x, t, 4, U) to secure satisfaction of &,C” c %. Here, C’ = db - 
yf dx- yidt, C2=du- yfdx- yidt and p=dx A dt, pl=dt, p2= -dx. 
Straightforward but lengthy calculation shows that & Vw, c V if and only if 

v, = w + 6) a, +fm a,, (6.3) 

where (a, 6) are arbitrary constants andf(4) is an arbitrary function of the 
variable 4. Thus dim( T,(K)) = 2 and Dim,( T,(K)) = 1. 

It is now simply a matter of substituting (6.3) into (5.11) and recall that 
(L’} are assumed such that aiLi= 0, to obtain the following stationary 
conditions: 

j $Q*E,+ j ~~*(ap.+a,Lijpi=o (6.4) 
B as 

from the parameter a, 

s @*E, + s @*(a; L + a&) pi = 0 (6.5) 
B as 

from the parameter h, and 
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for all smooth functions f(d). Thus, if we set f(4) = C c,@, (6.6) gives 

n = 0, 1, 2 ).... (6.7) 

Here L and L’ are the functions that serve to determine the penalty 
functional A [@I = JB @*(Lp) + jaB @*(Lipi) and (E,, E,) are the 
Euler-Lagrange 2-forms for the pair (4, u), respectively (see (5.6)). The 
problem of stationarizing A[@] in the presence of the constraint (6.1) is thus 
sofved by finding all pairs (4(x, t), u(x, t)) that satisfy the constraint (6.1) 
and the integral conditions (6.4), (6.5), and (6.7). It is interesting to note in 
this regard that (6.7) will be identically satisfied if (L, L’) do not depend 
explicitly on the control variable, as is often the case. In this event, we 
would then have only the constraint (6.1) and the two integral conditions 
(6.4) and (6.5). 

The reason why such direct results obtain is that we have been able to 
characterize all continuous deformations of K that preserve satisfaction of 
the constraint equation (6.1), even though explicit solution of the con- 
straint equation has not been obtained. Comparison for purposes of 
stationarization of A[@] then occurs only in this class of deformations, for 
only this class guarantees that the constraints will be satisfied for QV(s) if 
they are satisfied for @JO) = @. Accordingly, since (6.3) shows that all 
such deformations are generated by da,, a,, and f(4) a, for all smooth 
functions f(d), integral conditions rather than field equations result; there 
are no arbitrary functions of (x, t) for which the fundamental lemma of the 
calculus of variations may be used. 

For a second example, consider the situation in which the constraint 
equation is 

(q=d(uy;dt-uy;dx)-dx A dt) (6.8) 

subject to the Dirichlet boundary data 

4las=O. (6.9) 

Here, 4 is the state variable, u is the control variable, and the notation is 
the same as that in the previous example. Disregarding for the moment the 
boundary data (6.9), a lengthy but straighforward calculation shows that 

409/117/2-I7 
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V, = R(x, t, 4, U) 8, + S(x, t, 4, U) 8, generates an element of T,(K) if and 
only if 

t3,R=a,R=a,R=O, a,s+ua,a,R=o, 

ua,s-s=o, a,s+2ua,a,R=o, 

a,s+2ua,a,R=o, u a,R + d(a, a, + a, a,) R + s = 0. 

Thus, all elements of 7’,.(K) are generated by 

V,=fw,-u- 'f(4), 
dd u' 

(6.10) 

where f(4) is an arbitrary smooth (P) function of its indicated argument. 
We therefore have dim(T,.(K)) = 0, Dim,(T,.(K)) = 1. Indeed, (6.10) 
defines an infinite dimensional Lie algebra, for 

where X(f) is the continuum of operators 

The deformations generated by (6.10) are all deformations of K that 
preserve satisfaction of the differential constraint (6.8). Accordingly, if we 
require 

f(O)=& (6.11) 

then all such deformations will also preserve satisfaction of the Dirichlet 
boundary data (6.9). Thus, (6.10) and (6.11) define all deformations that 
preserve the constraints (6.8) and (6.9). 

The stationarity conditions now follow directly from (5.11) for any 
A[@] for which ahLj=O: 

o=j {f(()@*E,-Uy@*E,} 
B 

+ s ~B {f(w*(ai,L+a6u 

df(4) (6.12) 
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If we formally writef(#) = 1;” Cn@, in view of (6.1 l), then (6.12) and the 
boundary conditions (6.9) give 

o=[ {@D*~~-~ddj*E,)-j u~*(a;L+a,Li)pi (6.13) 
B 3B 

for C, and 

0 = (qY@*E, - nu&‘- ‘@*E,}, n = 2, 3,..., (6.14) 

for Cz, C3,.... Again, we obtain an infinite system of integral conditions 
rather than Euler-Lagrange field equations with Lagrange multipliers. 

In addition to providing access to the stationarity conditions, knowledge 
of T,(K) provides a significant amount of information about the nature of 
solutions of the constraint equations. If we take f(4) = 4” + ’ for n a positive 
integer, an isovector field of the constraints (6.8), (6.9) is generated by 

Vq++l a,-(n+i)ufa,. 

The flow of this isovector field is obtained by solving d@(s)/& = Q(S)“+‘, 
&J(s)/& = -(n + 1) U(S) D(s)” subject to the initial data Q(O) = 4, 
U(0) = u; 

@ = fj( 1 - ns@) - “n, TJ = UI 1 - nqs”l (n + ‘J/n. (6.15) 

Thus, if (4(x, t), u(x, t)) is a solution of (6.8) subject to the Dirichlet data 
(6.9), then (6.15) defines a l-parameter family of solutions (@(x, t; s), 
U(x, t; s)) of (6.8), (6.9). The pathology inherent in solutions of the con- 
straints is in clear evidence from the first of (6.15), although the second 
shows that U(x, t; S) remains bounded for bounded (4(x, t), u(x, t)). 
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