
Journal of King Saud University – Computer and Information Sciences (2014) 26, 441–449

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
An Arabic CCG approach for determining

constituent types from Arabic Treebank
* Corresponding author at: Houd-Nagih, Hehia, Asharkia gover-

nerate, Egypt. Tel.: +20 1115739309.

E-mail address: aieltaher@yahoo.com (A.I. El-taher).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2014.06.005

1319-1578 � 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
Ahmed I. El-taher a,*, Hitahm M. Abo Bakr a, Ibrahim Zidan a, Khaled Shaalan b
aDerpartment of Computer and System Engineering, Faculty of Engineering, Zagazig University, Zagazig, Asharkia, Egypt
bThe British University, Dubai, United Arab Emirates

Available online 28 September 2014
KEYWORDS

Arabic;

CCGbank;

Treebank
Abstract Converting a treebank into a CCGbank opens the respective language to the sophisti-

cated tools developed for Combinatory Categorial Grammar (CCG) and enriches cross-linguistic

development. The conversion is primarily a three-step process: determining constituents’ types,

binarization, and category conversion. Usually, this process involves a preprocessing step to the

Treebank of choice for correcting brackets and normalizing tags for any changes that were intro-

duced during the manual annotation, as well as extracting morpho-syntactic information that is

necessary for determining constituents’ types. In this article, we describe the required preprocessing

step on the Arabic Treebank, as well as how to determine Arabic constituents’ types. We conducted

an experiment on parts 1 and 2 of the Penn Arabic Treebank (PATB) aimed at converting the

PATB into an Arabic CCGbank. The performance of our algorithm when applied to ATB1v2.0

& ATB2v2.0 was 99% identification of head nodes and 100% coverage over the Treebank data.
� 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Recently, there has been an immense increase in natural lan-

guage processing of Arabic, especially since the terrorist
attacks on the US on 11 September 2001 (known as 9/11).

Studies on Arabic NLP have been challenged by peculiari-

ties of the language’s properties, including highly ambiguous
Arabic words, highly complex morpho-syntactic characteris-
tics, the absence of rigorous standards of written text, and
the current state-of-the-art in Arabic NLP resources and tools

(Shaalan, 2014). Moreover, large collections of tagged docu-
ments, corpora and Treebanks, are excellent sources that are
needed when developing and testing the performance of an
Arabic NLP tool or system. For these linguistic resources to

be useful, they should include unbiased distribution and repre-
sentative numbers of linguistic expressions that do not suffer
from sparseness. Unfortunately, the available Arabic linguistic

resources for conducting reliable Arabic NLP research often
are expensive to create or license. The reason for this is that
they require significant human annotation and verification.

Few of these corpora have been made freely and publicly avail-
able for research purposes, whereas others, such as Treebanks,
are available but under license agreements.

A Treebank is a linguistic resource that is composed of
large collections of manually annotated and verified syntactic

https://core.ac.uk/display/82590768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2014.06.005&domain=pdf
mailto:aieltaher@yahoo.com
http://dx.doi.org/10.1016/j.jksuci.2014.06.005
http://dx.doi.org/10.1016/j.jksuci.2014.06.005
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2014.06.005

Figure 1 POS tags versus Super tags.

442 A.I. El-taher et al.
analyses of sentences that are carefully and accurately anno-
tated. These annotations are highly useful for the development
of a variety of applications, such as tokenization, diacritiza-

tion, part-of-speech (POS) tagging, morphological disambigu-
ation, base phrase chunking, named entity recognition, and
semantic role labeling (Othman et al., 2004).

A highly expressive formalism such as Combinatory
Categorial Grammar (CCG) can capture many grammatical
phenomena, such as long-range dependencies, where simpler

formalisms cannot, as demonstrated by Hassan (2009) and
Steedman (1996, 2000). Furthermore, a wide variety of high-
quality NLP tools exist for CCG, and an Arabic CCGbank
would make this technology available to Arabic for the first

time. The Arabic CCGbank will be a transformation of the
Penn Arabic Treebank into a corpus of CCG derivations.
Hence, a CCGbank of Arabic would be a very beneficial lin-

guistic resource that lends itself to the inherent characteristics
of Arabic.

In regard to Arabic, there are two important treebanking

efforts: the Penn Arabic Treebank (PATB) (Maamouri et al.,
2004) and the Prague Arabic Dependency Treebank (PADT)
(Smrž et al., 2008). Both of these efforts employ complex

and very rich linguistic representations that require significant
human training. The amount of details specified in the repre-
sentations is impressive. The PATB not only provides tokeni-
zation, complex POS tags, and syntactic structure but also

provides empty categories, diacritizations, lemma choices and
various semantic tags. This information allows for important
research in Arabic NLP applications. Consequently, we

decided to use PATB1in our approach for building an Arabic
CCGbank.

In this article, we describe our attempt at creating the Ara-

bic CCGbank using the rules devised by Hockenmaier and
Steedman (2005, 2007) for creating the English CCGbank.
This research is focused on determining Arabic constituents’

types and the necessary preprocessing step. This step is found
useful for handling the Arabic Treebank of choice to correct
brackets and normalize tags for any changes that were intro-
duced during the manual annotation, during the creation of

PATB, as well as for extracting useful information for deter-
mining constituents’ types.

Section 2 describes related work done to create CCGbanks

for languages other than English. Section 3 gives a brief over-
view of CCG. Section 4 presents the preprocessing of the Ara-
bic Treebank. Section 5 introduces the process of determining

Arabic constituents’ types. Section 6 describes the experiments
applied on PATB and discusses the obtained results. Section 7
provides the conclusions and directions for future work.

2. Related work

After the successful development of the English CCGbank2,
various efforts were made to convert treebanks of other lan-

guages into CCGbanks. One example is the conversion of
the German Tiger3 corpus into a German CCGbank
(Hockenmaier, 2006). Another example is the conversion of
1 http://catalog.ldc.upenn.edu/LDC2003T06.
2 http://catalog.ldc.upenn.edu/LDC2005T13.
3 http://www.ims.unistuttgart.de/forschung/ressourcen/korpora/

tiger.html.
the Turkish dependency Treebank into a Turkish CCGbank
(Çakıcı, 2005).

Recently, Tse and Curran (2010) devised a Chinese CCG-
bank from the Penn Chinese Treebank.

Bos et al. (2009) derived an Italian CCGbank4 from the

Turin University Treebank, while Sandillon-Rezer and Moot
(2011) devised a French CCGbank from the Paris VII anno-
tated treebank.

As far as Arabic is concerned, it is worth noting that the
only attempt was made by Boxwell and Brew (2010) in their
pilot project aiming at converting the PATB into an Arabic

CCGbank. The final project achievements included determin-
ing 97.99% of the head nodes and 95.06% of the arguments
and complement nodes, with 100% coverage on 52.7% of
the trees in the Treebank. We will show that the performance

of our Arabic CCG algorithm outperforms the performance of
Boxwel and Brew’s Arabic CCG algorithm.

3. Combinatory Categorial Grammar (CCG)

Combinatory Categorial Grammar5 (CCG) is a lexicalized
grammar that directly captures the non-local dependencies

involved in treebank construction, including control and rais-
ing; see Steedman (1996, 2000), Hockenmaier and Steedman
(2005,2007), and Hassan (2009). A category encodes not only

information about syntactic, phonological and semantic
aspects of a given word but also information about categories
with which it can be combined and the result of the combina-

tion. CCG has a transparent interface between the surface
syntax and the underlying semantic representation.

Categories, sometimes referred to as types, have two forms:
Primitive (atomic) and complex. Primitive types include con-

stituents, such as N, NP, PP, and S, and they can further be
distinguished by features. A complex type denotes a function
type, which is a combination of primitive categories, more spe-

cifically a function from one category (primitive or function) to
another, e.g., S/NP and (S/NP)/(S/NP). Functions specify the
type and directionality of their arguments and the type of their

results. A forward slash denotes that the argument should
appear to the right, while a backslash denotes that the argu-
ment should appear on the left. For example, SnNP is an
intransitive verb, e.g., ‘‘run”, because it is looking for an NP

(to the left) to form an S. In these notations, the transitive
verb, e.g., ‘‘fixed”, is denoted by (SnNP)/NP, whereas the
ditransitive verb, e.g., ‘‘gave”, is denoted by ((SnNP)/NP)/

NP. Thus, complex categories are able to encode sub-categori-
zation information (cf. Steedman, 2000).

CCG uses new syntactic types called Supertags, which can

capture the extended lexical information from the grammar
onto the lexicon, unlike the part-of-speech tags (POS tags)
used in Treebanks. For comparison, Fig. 1 shows the sentence

‘‘I fixed my car, yesterday” along with its tagging with Super
4 http://www.di.unito.it/~tutreeb/CCG-TUT/.
5 http://groups.inf.ed.ac.uk/ccg/.

http://www.catalog.ldc.upenn.edu/LDC2003T06
http://www.catalog.ldc.upenn.edu/LDC2005T13
http://www.ims.unistuttgart.de/forschung/ressourcen/korpora/tiger.html
http://www.ims.unistuttgart.de/forschung/ressourcen/korpora/tiger.html
http://www.di.unito.it/~tutreeb/CCG-TUT/
http://www.groups.inf.ed.ac.uk/ccg/

Figure 2 A simple CCG derivation.

6 http://ilk.uvt.nl/team/sabine/.

Arabic CCG approach for determining constituent types 443
tags and POS tags. Super types indicate types of these lexical

items, where the transitive verb ‘‘fixed” is given the complex
category (S[dcl]nNP)/NP, which could be described as ‘‘the
category that, when followed by a noun-phrase NP, results

in a verb-phrase (S[dcl]nNP), which, when introduced to an
NP to its left, results in a declarative sentence S[dcl]”.

A combinatory operator describes the rules applied to com-

bine categories with their arguments to produce the resultant
derivations, as follows:

Forward Application: X=YY) Xð>Þ
Backward Application YX nY) Xð<Þ

The Forward Application (FA) operator performs the for-

ward combination, where, if a constituent with category X/Y is
immediately followed by a constituent with category Y, the
operator can be used to combine them to construct a new

constituent with category X.
Super tags, when combined with CCG’s combinatory oper-

ators, compose CCG derivations (proof). A CCG derivation
for the sentence in Fig. 1 is shown in Fig. 2. Note the direct

correspondence to an upside-down constituency tree. As a sim-
ple example, the forward application ‘‘>” rule combines the
CCG-tags of the words ‘‘car” and ‘‘yesterday”, which are

‘‘N/N” & ‘‘N”, respectively, resulting in the CCG-tag ‘‘N”.
For the backward application rule ‘‘<”, it combines the
phrase ‘‘S[dcl]nNP” with the word ‘‘I”, resulting in the CCG-

tag ‘‘S[dcl]”.
CCG has several powerful properties that PATB does not

support, including:

� CCG imposes that lexical heads of each constituent are
identified.

� Complements & adjuncts are clearly distinguished; PATB

uses functional tags (e.g., SBJ, CLR, . . .) to support this
property, but many nodes are unmarked.

� CCG requires binary branching, while PATB uses a multi-

branching structure where any non-terminal node could
have any number of children at the same level.

4. Arabic treebank preprocessing

The preprocessing step stated by Hockenmaier and Steedman

(2005) was essentially to correct tagging and bracketing errors
found in the Penn English treebank, which are largely avoided
in the Arabic treebank because PATB is much newer (PATB

was first released in 2003, while English Treebank-3 was
released in 1999).

As a member of the Semitic languages, Arabic is based on a
root-and-template morphology with abundant bound
morphemes. These morphemes include possessives, pronouns,
and discourse connectives (Zitouni, 2014). PATB introduced
problems related to Arabic word segmentation. Segmenting

bound morphemes reduces lexical sparsity and simplifies
syntactic analysis. Word segmentation is a necessary step for
Natural Language Processing (NLP) of morphologically rich

languages, such as Arabic. It helps improve the quality of Ara-
bic NLP applications, such as machine translation where some
English words correspond to only a morpheme (substring) in

Arabic words (Abdel Monem et al., 2008). For example,
consider the English sentence ‘‘The child is playing with the
car” which consists of seven words. Its Arabic translation
‘‘ ةرايسلاببعليلفطلا ” consists of three words that correspond to

the following segments: ‘‘The-child”, ‘‘is-playing” and ‘‘with-
the-car”. Words of the English sentence correlate with the
Arabic morphemes (segments). PATB annotators add mor-

phological analysis tags in addition to the part-of-speech
(POS) tag that incorporates new tags that are not dealt with
in the standard Penn Treebank tagging. These tags need to

be normalized to conform to the CCG analysis.
In the following subsections, we describe our efforts to pre-

process PATB using techniques derived from Kulick et al.

(2006), namely Improved Handling of Punctuation, and those
specified by Maamouri et al. (2008) such that the conversion
process could be commenced.

4.1. Tree analysis

Traditionally, Penn Treebanks’ files are presented as text files
with a tree-per-line format with parentheses delimiting tree

segments. However, PATB does not strictly follow the tree-
per-line rule, which could lead to spurious analysis if the line
was taken as a whole. Therefore, we devised a preprocessing

step that analyzes each line based on the brackets’ balance
and then returns subtrees. In this step, we handle the case
where a parenthesis is missing instead of discarding the entire

tree. This step has a significant impact on the quality of the
analysis process. For example, Part 1 of PATB consists of
4519 lines (presumably with 4519 trees). However, when we
check and correct the missing brackets, it results in 5845

individual trees.
Once individual trees are identified, an analysis of each tree

is performed to extract from each node the following

information:

� Node’s features: tag, word (for the terminal node), trace (e.

g., *T*), co-reference (e.g., �1) and gap-reference (e.g.,
=1).

� Node’s relation: its parent node and, for non-terminal
nodes, its children nodes.

During this step, we identified nodes’ tags by applying the
heuristics presented by Sang and Buchholz (2000)6 to Part 1

of PATB, but we found cases where some nodes are untagged,
i.e., they are given the temporary tag ‘‘NOTAG”. For exam-
ple, consider the Noun Phrase ‘‘ ناريزح)وينوي)” (June), which

appears in PATB as follows: ‘‘(NP (NOUN_PROP Huzayo-
rAn) (_) (NOUN_PROP yuwniyuw))”, where the node ‘‘(_)”
is changed to ‘‘(NOTAG _)”.

http://www.ilk.uvt.nl/team/sabine/

S

VP PUNC

.
VERB_PERFECT+P
VSUFF_SUBJ:3FS

NP-SBJ NP-OBJ PP

0

2
1

3

4 5 6

Figure 3 Partial tree analysis and its implementation.

8

444 A.I. El-taher et al.
We implemented our software in Perl, and we used hash
objects to store different nodes’ features. We used hashes

because they are efficient in storing and retrieving data in the
form of ‘‘key-value” pairs, where each key is unique in the
hash and its corresponding value can be accessed directly when

its key is known (i.e., without searching).
During the analysis step, our implementation gives

each node an identifying number (starting from zero
at the root node) as a key. Fig. 3 shows the results

of analyzing the upper three levels of the sentence7:
امهبرحىفةديدجةوطخايناطيربوةدحتملاتايلاولاتطخ,”xaT + atAl

+ wilAy + At + uAl + mut�aHid + ap + uwa--briyTAniy

AxaTow + ap + Fjadiyd + ap + FfiyHarob + i- -himA....”
(The United States and Britain took a new step in their
war . . .).

This figure shows the analysis tree and key assignment for
each node. In our implementation, this tree is represented by
two tables: Tags and Parents. The entry of the Tags table is

the assigned key along with its node. The entry of the Parents
table is the key along with its parent node. For example, the
key ‘‘1” in the Tags table points to ‘‘VP”, which has the parent
‘‘S” in the Parents table. The full tree analysis is shown in

Fig. 4.

4.2. Tag conversion and correction

Arabic annotators have augmented morphological analysis
information into PATB’s tags, but these tags were different
from the tag-set commonly used in annotating the Penn Tree-

bank. As a consequence, PATB tags should be normalized.
However, it is problematic to map hundreds of tags (reaching
7 The sentence is extracted from the file: ‘‘UMAAH_UM.

ARB_20020120-a.0006.tree” in Part 2 of PATB.
its maximum of 668 tags in version 3.1 of PATB) to the 48 in
the standard tag-set of Penn Treebank. Fortunately, PATB
documents include mapping guidelines.

We used the methods described by Ann Bies8, Bikel (2002,
2004)9 and Habash et al. (2009a) to construct lookup tables
that cover all parts of PATB and that implement unique map-

pings. There are two tables in particular: one for version 3.0
and earlier versions and another table for version 3.1 and later
versions.

The unmapped tags are mainly punctuations indicated by
the tag ‘‘PUNC” in PATB, which is too general as it covers
all punctuations. The standard Penn Treebank tag-set has 12
different tags for punctuation in addition to the SYM tag that

indicates symbolic tags (‘‘ + ”, ‘‘ = ”, ‘‘&”, . . ., etc.).
Therefore, we followed the standard punctuation tagging

practice and used the genuine word (token) at each node when

mapping punctuations.
Table 1 shows the mapping of punctuations to each of the

12 tags. For example, the question mark, ‘‘?”, maps to the tag

‘‘.”.
We found cases where the preposition ‘‘ نع ” ‘‘Ean” (from) is

erroneously tagged as ‘‘PUNC”, which we corrected to the

intended preposition tag ‘‘IN”.
Nevertheless, the following tags need special handling:

� The NEG_PART + PVSUFF_SUBJ:3MS tag pattern is

mapped to the VBP (imperfect verb) tag if its parent is
the VP tag. Otherwise, it is mapped to the RP tag (Adverb).

� The NO_FUNC tag is mapped to the CC (Coordination

Conjunction) tag if the current word is ”و‘‘ (w) when it
functions as a clitic attached to the following word. Other-
wise, we check whether the tag functions as a punctuation

tag to perform the punctuation mapping; if not, it is
mapped to the NNP (Proper noun) tag.

� Both NON_ALPHABETIC and NON_ARABIC tags are

checked as to whether the tag functions as a punctuation
tag to perform the punctuation mapping. If not, we check
whether they are numbers to map to the CD (Cardinal
Number) tag. Otherwise, they map to the Foreign Word

(FW) tag.
� The temporary NOTAG tag discussed earlier in Section 4.1
is mapped to one of the 12 punctuation tags.

The application of tag normalization on the tree shown in
Fig. 4 is illustrated in Fig. 5. For example, the verb ‘‘ تطخ ”
‘‘xaT + at” (took) is tagged as ‘‘VERB_PERFECT
+ PVSUFF_SUBJ:3FS” (perfect verb with third person
singular feminine subject suffix) in PATB. This tag is con-
verted to ‘‘VBD” (Perfect verb). This figure also shows the

punctuation mapping for ‘‘.”.

4.3. Segmenting determiners

In PATB, determiners (tagged as DET or DEM) attached to
words are not cliticized (takes spate token) from their respec-
tive words because they do not affect the structure of the ana-

lyzed sentence. However, this is not applicable to CCGbank
Bies’s mapping: http://www.ldc.upenn.edu/Catalog/docs/

LDC2003T06/arabic-POS tags-collapse-to-PennPOS tags.txt.
9 Bikel’s mapping: http://www.ldc.upenn.edu/Catalog/docs/

LDC2005T02/taglist-conversion-to-PennPOS.lisp.

http://www.ldc.upenn.edu/Catalog/docs/LDC2003T06/arabic-POS%20tags-collapse-to-PennPOS%20tags.txt
http://www.ldc.upenn.edu/Catalog/docs/LDC2003T06/arabic-POS%20tags-collapse-to-PennPOS%20tags.txt
http://www.ldc.upenn.edu/Catalog/docs/LDC2005T02/taglist-conversion-to-PennPOS.lisp
http://www.ldc.upenn.edu/Catalog/docs/LDC2005T02/taglist-conversion-to-PennPOS.lisp

Figure 4 Full tree analysis extracted from PATB.

Table 1 Punctuation mapping to the Penn Treebank tag set.

Tag Punctuations

SYM & @= -PLUS- *

-LRB- -LRB- -LCB- (Left Paren)

-RRB- -RRB- -RCB- (Right Paren)

(the pound sign)

$ $ (the dollar sign)

. .? ! (Sent final punct)

, (comma)

: ;: _ . . . (mid sent punc)
00 ‘‘ ‘ (left quote)
00 ” ’ (right quote)

NN %

CD Numbers (e.g., 910, 192, 2)

Arabic CCG approach for determining constituent types 445
because determiners are considered functions from Noun
Phrases to Nouns. Hence, to capture this relation, we should

cliticize determiners. This also has the advantage of reducing
data sparseness. For the purpose of accuracy in segmenting
determiners from their attached words, we relied on the diacr-

itized Treebank version of PATB, as word syllables are explic-
itly delimited by the ‘‘ + ” symbol. To properly handle words
tagged ‘‘NNP” or ‘‘NNPS”, we decided not to cliticize their

attached determiners provided the word under consideration
is any of the following:
� It is part of a name; its adjacent words are tagged ‘‘NNP”

or ‘‘NNPS”,
� It is the only child, or
� Its adjacent words are punctuation.

Splitting the determiner from the attached word (the leaf/
terminal node in the parse tree) is replaced by a new sub-tree.
Its children are the determiner (with the tag DT) and the seg-

ment that remains after splitting the determiner (the sibling
node with the tag of the original node). The tag of the root
of the new sub-tree is determined by the tag of the original

word, as shown in Table 2. For instance, if the original word
tag is JJ (adjective), then the tag of the sub-tree root is ADJP

(adjective phrase).

Fig. 6 illustrates the effect of separating determiners on the
structure shown in Fig. 5.

4.4. Removing vowels

PATB uses ‘‘a, i, o & u” vowel letters and the ‘‘�” to denote
diacritization of Arabic. Our objective is to handle Modern
Standard Arabic (MSA). The orthography of conventional

written MSA does not require the inclusion of short vowels;
see (Abo Bakr et al., 2008) (Shaalan et al., 2009). Hence, we
decided to discard the vowel letters. The only exception made

is in the case of non-Arabic (foreign) words, which are anno-
tated with either FW or Latin tags.

Figure 5 Tag conversion.

Table 2 Assignment of the parent node’s tag.

Original word tag Parent’s tag (sub-tree root)

JJ, JJR ADJP

RB ADVP

UH INTJ

NN, NNS, NNP, NNPS NP

IN PP

RP PRT

CD QP

446 A.I. El-taher et al.
5. Determining constituents’ types

This step identifies the type of each node within a segment of

the tree. The constituents’ types handled in this stage are head,
complement, and adjunct nodes for each nonterminal node.

5.1. Head node identification

For each non-terminal node, the head node is identified using
heuristics derived from rules described in Hockenmaier and
Steedman (2005). We successfully achieved 99% for identifying

head nodes of the non-terminal nodes of PATB. The remain-
ing nodes failed to comply with the devised heuristics, mainly
because PATB annotators applied co-indexing on non-termi-

nal nodes in contrast to the convention of applying the co-
indexing on terminals.

This co-indexing scheme resulted in constituents having a

trace of only one child or an unconventional constituent
structure of two or more children, which could not be handled
by normal heuristics. Therefore, we dealt with this case by
deriving new heuristics where the head node is determined

using its location within the constituent; see also Magerman
(1994) and Collins (1999).
5.2. Identification of complement and adjunct Nodes

After determining head nodes, the remaining nodes are either
complements or adjuncts. Complement nodes, when combined

with the head node, comprise a complete CCG analysis, while
adjunct nodes do not affect the analysis. One of the following
heuristics would determine the types:

� Check explicitly whether the node functions as a comple-
ment tag (e.g., SBJ or OBJ) or an adjunct tag (e.g., ADV
or LOC),

� Check for exceptions (e.g., NP-TPC is a complement if it
was co-indexed), and determine type,

� For any other nodes, use the heuristics of their constituent

phrase to determine their complements, or
� Consider the remaining nodes as adjuncts.

The heuristics in Hockenmaier and Steedman (2005) failed
to address verbs having two objects because PATB denotes
one of the objects with the adverbial tag ‘‘BNF”, resulting in
an adjunct analysis. However, using heuristics from Bies

et al. (1995), we successfully gave the object a complement
analysis.

Fig. 7 illustrates the results of applying our heuristics on the

tree shown in Fig. 6 to determine the constituents’ types. In
this figure, the verb تطخ ‘‘xT + t” (took) that is tagged with
VBD is the head node (h) of the verb phrase (VP), while the

preposition phrase (PP) is an adjunct (a).

Figure 6 Separating determiners.

Figure 7 Determining types (h: head, c: complements and a: adjuncts).

Arabic CCG approach for determining constituent types 447

Table 3 Results.

PATB1v2.0 PATB2v2.0

Number of lines 4519 2591

Number of trees 5845 4302

Non-terminal nodes 198,849 214,470

Undefined heads 1668 1930

Heads found (%) 99.16 99.1

Complements & Adjuncts All complements and adjuncts were

determined, provided their head

nodes were identified

448 A.I. El-taher et al.
6. Experiments and results

We tested our algorithm on Parts 1 & 2 of version 2.0 (denoted
ATB1v2.0 & ATB2v2.0), where they had the following
characteristics:

� ATB1v2.0 (LDC2003T06). It includes 734 stories from the
Agency France Press (AFP) newswire, representing
140,265 words.

� ATB2v2.0 (LDC2004T02). It includes 501 stories from the
Ummah Arabic News Text, representing 144,199 words.

Each Treebank’s vowel part was merged to facilitate pro-
cessing. The results are presented in Table 3.

For the unidentified head nodes, we adapted rules from

Magerman (1994) and Collins (1999) such that we could cap-
ture those heads and, consequently, their complements &
adjuncts.

7. Conclusions and future work

This paper reports an ongoing research project that aims to

develop a new Arabic CCGbank that would introduce Arabic
NLP for the first time to the sophisticated tools developed for
CCG.

We decided to use PATB, which has become a de facto

standard linguistic resource widely used in Arabic NLP tasks.
Characteristics and peculiarities of Arabic usually necessitate a
preprocessing step. This is required for normalizing PATB and

making it suitable and accurate for the conversion to CCG-
bank. Furthermore, during the preprocessing step, we success-
fully enriched the lexicon of PATB through cliticizing

determiners, which introduced new words that were not avail-
able in the lexicon such that it fully captured the effect of deter-
miners on the lexicon. We developed a complete stage for
determining constituents’ types, which is considered a building

block for producing the Arabic CCGbank; the remaining steps
of creating a CCGbank rely heavily on the performance of
determining the constituents’ types stage to the extent that

the binarization step solely depends on this stage.
The performance of our algorithm when applied to

ATB1v2.0 and ATB2v2.0 was 99% identification of head

nodes and 100% coverage over the treebank data.
We are working on completing the remaining stages of cre-

ating an Arabic CCGbank, namely binarization and category

conversion. Ultimately, we will make our CCGbank tool freely
available for the Arabic NLP research community.

After fully developing the Arabic CCGbank, we will use it
to train an English-to-Arabic translation system. We plan to
benefit from the Arabic NLP tools devised in Habash et al.
(2009b), Diab (2009), Clark and Curran (2007) and Curran
et al. (2007) to process the Arabic side of the translation

system’s training data. Additionally, we plan to use tools
devised in Koehn et al. (2007) to train the translation system
using techniques from Hassan (2009), Koehn and Hoang

(2007) and Birch et al. (2007).

References

Abdel Monem, Azza, Shaalan, Khaled, Rafea, Ahmed, Baraka, Huda,

2008. Generating Arabic text in multilingual speech-to-speech

machine translation framework. Mach. Transl. 20 (4), 205–258,

Springer, Netherlands.

Abo Bakr, Hitham, Shaalan, Khaled, Ziedan, Ibrahim, 2008. A hybrid

approach for converting written Egyptian colloquial dialect into

diacritized Arabic. In: Proceedings of INFOS2008, the special track

on Natural Language Processing, 27–29 March, Cairo, Egypt.

Bies, Ann, Ferguson, Mark, Katz, Karen, MacIntyre, Robert, 1995.

Bracketing Guidelines for Treebank II StylePenn Treebank Project.

Technical Report, LDC.

Bikel, Daniel M., 2002. Design of a multi-lingual, parallel-processing

statistical parsing engine. In: Proceedings of HLT2002, San Diego,

CA.

Bikel, Daniel M., 2004. Intricacies of Collins’ parsing model. Comput.

Ling. 30 (4), 479–511.

Birch, Alexandra, Osborne, Miles, Koehn, Philipp, 2007. CCG Super

tags in Factored Statistical Machine Translation. In: Proceedings

of ACL.

Bos, Johan, Bosco, Cristina, Mazzei, Alessandro, 2009. Converting a

dependency Treebank to a categorial grammar Treebank for

Italian. In: Proceedings of TLT 8, Milano, Italy.

Boxwell, Stephen A., Brew, Chris, 2010. A pilot Arabic CCGbank. In:

Proceedings of LREC-10, Valleta, Malta.

Çakıcı, Ruken, 2005. Automatic induction of a CCG grammar for

Turkish. In: Proceedings of ACL Student Research Workshop. pp.

73–78.

Clark, Stephen, Curran, James R., 2007. Wide-coverage efficient

statistical parsing with CCG and log-linear models. Comput. Ling.

33 (4).

Collins, Michael, 1999. Head-Driven Statistical Models for Natural

Language Parsing (Ph.D. thesis). Computer and Information

Science, University of Pennsylvania.

Curran, James R., Clark, Stephen, Bos, Johan, 2007. Linguistically

motivated large-scale NLP with C&C and boxer. In: Proceedings of

ACL demo. pp. 33–36.

Diab, Mona T., 2009. Second generation AMIRA tools for Arabic

processing: fast and robust tokenization, POS tagging, and base

phrase chunking. In: Proceedings of 2nd International Conference

on Arabic Language Resources and Tools.

Habash, Nizar, Faraj, Reem, Roth, Ryan, 2009. Syntactic annotation

in the Columbia Arabic Treebank. In: Proceedings of MEDAR,

Cairo, Egypt.

Habash, Nizar, Rambow, Owen, Roth, Ryan, 2009. MADA

+ TOKAN: a toolkit for Arabic tokenization, diacritization,

morphological disambiguation, POS tagging, stemming and lem-

matization. In: Proceedings of MEDAR, Cairo, Egypt.

Hassan, Hany, 2009. Lexical Syntax for Statistical Machine Transla-

tion (Ph.D. thesis). Dublin City University.

Hockenmaier, Julia, 2006. Creating a CCGbank and a wide coverage

CCG lexicon forGerman. In: Proceedings of theACL, vol. 44. p. 505.

Hockenmaier, Julia, Steedman, Mark, 2005. CCGbank: User’s Man-

ual. Technical Report MS-CIS-05-09. Department of Computer

and Information Science, University of Pennsylvania.

Hockenmaier, Julia., Steedman, Mark., 2007. CCGbank: a corpus of

CCG derivations and dependency structures extracted from the

Penn Treebank. Comput. Ling. 33 (3), 355–396.

http://refhub.elsevier.com/S1319-1578(14)00029-9/h0195
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0195
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0195
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0195
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0025
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0025
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0165
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0165
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0165
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0085
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0085
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0085

Arabic CCG approach for determining constituent types 449
Koehn, Philipp, Hoang, Hieu, 2007. Factored translation models. In:

Proceedings of EMNLP, Prague, Czech Republic.

Koehn, Philipp, Hoang, Hieu, Birch, Alexandra, Callison-Burch,

Chris, Federico, Marcello, Bertoldi, Nicola, Cowan, Brooke, Shen,

Wade, Moran, Christine, Zens, Richard, Dyer, Chris, Bojar,

Ondrej, Constantin, Alexandra, Herbst, Evan, 2007. Moses: open

source toolkit for statistical machine translation. In: Proceedings of

ACL, Demonstration Session, Prague, Czech Republic.

Kulick, Seth, Gabbard, Ryan, Marcus, Mitchell, 2006. Parsing the

Arabic Treebank: analysis and improvements. In: Proceedings of

TLT 6, Prague, Czech Republic.

Maamouri, Mohamed, Bies, Ann, Buckwalter, Tim, Mekki, Wigdan,

2004a. The Penn Arabic Treebank: building a large-scale annotated

Arabic corpus. In: Proceedings of NEMLAR. pp. 102–109.

Maamouri, Mohamed, Bies, Ann, Kulick, Seth, 2008. Enhancing the

Arabic treebank: a collaborative effort toward new annotation

guidelines. In: Proceedings of LREC’08, Marrakech, Morocco.

Magerman, David M., 1994. Natural Language Parsing as Statistical

Pattern Recognition (Ph.D. thesis). Department of Computer

Science, Stanford University.

Othman, Eman, Shaalan, Khaled, Rafea, Ahmed, 2004. Towards

resolving ambiguity in understanding Arabic sentence. In: Pro-

ceedings of the International Conference on Arabic Language

Resources and Tools, NEMLAR, 22nd–23rd Sept., 2004, Egypt.

pp. 118–122.

Sandillon-Rezer, Noémie-Fleur, Moot, Richard, 2011. Using tree

transducers for grammatical inference. LACL 2011. LNAI 6736,

235–250.
Sang, Erik Tjong Kim, Buchholz, Sabine, 2000. Introduction to the

CoNLL-2000 shared task: Chunking. In: Proceedings of the

CoNLL, pp. 127–132.

Shaalan, Khaled, 2014. A survey of Arabic named entity recognition

and classification. Comput. Ling. 40, 2, MIT Press.

Shaalan, Khaled, Abo Bakr, Hitham, Ziedan, Ibrahim, 2009. A hybrid

approach for building Arabic diacritizer. In: Proceedings of EACL

2009, Workshop on Computational Approaches to Semitic Lan-

guages, Association for Computational Linguistics, Athens,

Greece, 31 March, 2009. pp. 27–35.

Smrž, Otakar, Bielický, Viktor, Kouřilová, Iveta, Kráčmar, Jakub,

Hajič, Jan, Zemánek, Petr, 2008. Prague Arabic dependency

treebank: a word on the million words. In Proceedings of LREC

2008, Marrakech, Morocco. pp. 16–23

Steedman, Mark, 1996. Surface Structure and Interpretation. MIT

Press, Cambridge, MA.

Steedman, Mark, 2000. The Syntactic Process. MIT Press, Cambridge,

MA.

Tse Daniel, Curran, James R., 2010. Chinese CCGbank: extracting

CCG derivations from the Penn Chinese Treebank. In: Proceedings

of Coling 2010. pp. 1083–1091.

Zitouni, Imed, 2014. Natural language processing of Semitic lan-

guages. In: Theory and Applications of Natural Language

Processing. Springer, Heidelberg.

http://refhub.elsevier.com/S1319-1578(14)00029-9/h0145
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0145
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0145
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0220
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0220
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0105
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0105
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0225
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0225
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0210
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0210
http://refhub.elsevier.com/S1319-1578(14)00029-9/h0210

	An Arabic CCG approach for determining consti
	1 Introduction
	2 Related work
	3 Combinatory Categorial Grammar \(CCG\)
	4 Arabic treebank preprocessing
	4.1 Tree analysis
	4.2 Tag conversion and correction
	4.3 Segmenting determiners
	4.4 Removing vowels

	5 Determining constituents’ types
	5.1 Head node identification
	5.2 Identification of complement and adjunct

	6 Experiments and results
	7 Conclusions and future work
	References

