by other substructures. The potential clinical benefits still need to be demonstrated in expanded cohorts, with prolonged life-long follow-up.

PO-0850
Interplay effect quantification of PBS lung tumour proton therapy with various fractionation schemes
Y. Zhang1, I. Huth1, M. Wegner1, D. Weber1, A. Lomax1
1Paul Scherrer Institut, Center for Proton Therapy, Villigen PSI, Switzerland
2Varian Medical Systems, Particle Therapy, Troisdorf, Germany

Purpose or Objective: This study aims to investigate how much fractionation, and the different delivery dynamics of higher dose-per-fraction deliveries, can influence the impact of interplay effects for PBS-based lung tumour treatments.

Material and Methods: For two example lung tumour cases (I and II), three-field 3D plans were calculated on a patient specific range-adapted ITV (rITV) using a spot spacing of 4mm orthogonal to the beam directions. 4D dose calculations were performed, simulating three different fractionation treatments with schemes of (A)2.5Gy×35fx, (B)5Gy×10fx and (C)13.5Gy×3fx, based on machine and delivery parameters of the Varian ProBeam system (lateral scanning speed of 5/20 mm/ms and energy switching time of 700 ms with layer-wise optimized dose rates). 1x- to 10x- layered and volumetric rescanning was simulated to mitigate residual motion effects. The final dose distributions for fractioned treatments were obtained by superposition and normalization of the 4D dose distributions of each field and each fraction with random starting phases sampled from 4DCT (10 different phases with 100 random starts). We used homogeneity index (HI:D5-D95) minus CTV), V20, mean lung dose (MLD) and D2 were measured by Gafchromic EBT2 film.

Results: For single fraction only delivery (shown by error bars with hollow markers in figure a), the normalized HIs are similar for the different fraction doses for both patients, with HI being typically 14/15% higher than the static for case I and II respectively. For the full treatments (solid markers), the normalized HIs of plans under scheme A and B are equal or better than for the static plan, with only ±1.2% variations as a function of starting phase. In addition, whereas for scheme C, HI is 2.5±2.0/4.8±2.3% (Case I/II) higher than the static case once combined with moderate rescanning (~5x). Variability is also reduced to within 1%, independent of the rescanning technique used. Concerning treatment time, for single fractions, nearly no difference can be seen among the different schemes when no rescanning is applied, due to the layer-wise optimized dose rate used by the ProBeam system. For 5x LS or VS, treatment time is increased by 100% and 37% respectively for scheme C in comparison to scheme A, although the absolute treatment time for LS is always less than half that of VS for all schemes. For the whole treatment, more than 75% reduction of time cost can be obtained once fractionation scheme (C) is used.

PO-0851
Development of a postoperative image-based treatment planning system for breast IOERT
H.R. Baghani1, M.E. Akbar1, S.R. Mahdavi1, S.M.R. Aghamiri2, H.R. Mirzadeh2, M. Robatjazi3, N. Naffisi1
1Hakim Sabzevari university, Applied Physics, Sabzevar, Iran Islamic Republic of
2Shahid Beheshti University of Medical Science, Cancer Research Center, Tehran, Iran Islamic Republic of
3Iran University of Medical Science, Medical Physics, Tehran, Iran Islamic Republic of

Purpose or Objective: One of the major limitations of IOERT is the lack of a postoperative image based treatment planning, in order to optimize the radiotherapy procedure. The aim of this study is to develop and introduce a postoperative image based treatment planning system for breast cancer IOERT.

Material and Methods; to obtain a postoperative image based treatment planning software, it is necessary to have a postoperative image which includes the anatomical modifications of the tumor bed after the surgery. To this end, a C-arm fluoroscopy system (Zeihm Vision-8000) was employed to obtain a series of 2D images which include the tumor bed together with the IORT applicator and protection disk.In addition to the postoperative images, it is mandatory to have the complete isodose distributions for different combinations of applicator size/energy. To obtain this data, Monte Carlo simulation was employed. The LIAC IORT accelerator was simulated by MCNPX code and then, isodose distributions were extracted using mesh tally inside a water phantom. To develop a graphical treatment planning software, a graphical user interface (GUI) was prepared by an in house program written with MATLAB. At first, the postoperative image is imported to the program. Then, the corresponding isodose distribution file is loaded to the program. Then, the user will specify the applicator edge and program registers the isodose curves to the postoperative image. In order to evaluate the performance accuracy of the implemented postoperative image based treatment plans and delivered dose to the patient, in vivo dosimetry was used. To this end, the delivered dose to the surface of tumor bed was measured by Gaefchromic EBT2 film.

Results: The result of intraoperative imaging and corresponding treatment planning is shown in Fig. 1.
cervical and endometrial cancer. The dose in marrow of iliac plates during radiotherapy of PO-0852 planning system during breast cancer IOERT was investigated development of a postoperative image based treatment Conclusion: The feasibility of intraoperative imaging and development of a postoperative image based treatment planning system during breast cancer IOERT was investigated in this study. The results of in vivo dosimetry confirm the validity of the developed treatment planning system for clinical applications.

PO-0852 The dose in marrow of iliac plates during radiotherapy of cervical and endometrial cancer

A. Jodda1, T. Piotrowski2, B. Urbanik3, A. Roszak2, J. Malicki2 1Greater Poland Cancer Centre, Medical Physics, Poznan, Poland
2Poznan University of Medical Sciences, Electroradiology, Poznan, Poland
3Greater Poland Cancer Centre, Gynaecological Radiotherapy Ward, Poznan, Poland

Purpose or Objective: To compare the differences between average doses cumulated in the marrow of iliac plates (PBM), obtained for five different radiotherapy strategies of cervical and endometrial cancer.

Material and Methods: A total of 150 treatment plans were calculated retrospectively for 30 patients with cervical and endometrial cancer. For each case, 3 different dose delivery techniques were used. It were respectively: (i) 4-field, X15MV, 3DCRT; (ii) 7-field, X6MV, IMRT; and (iii) 2-arc, X6MV, VMAT. Two strategies were used during preparation of the IMRT and VMAT plans. The first take into account (+) PBM during optimization of the dose distribution and the second, do not take it into account (-).

All plans were normalized on the median dose in PTV. The same calculation algorithm (AAA) was used for calculation of the dose for each of plan. The total dose was 50.4 Gy (1.8 Gy in 28 fractions). Average doses cumulated in PTV, PBM, bladder, rectum, and femoral heads obtained from the evaluated plans were compared. In addition, the doses accumulated in PBM were analyzed in the light of the volume of PTV and/or PBM.

The average dose in PTV for evaluated plans was similar. The worst doses in organs at risk were obtained for 3DCRT. Using the PBM during optimization of IMRT and VMAT reduces the average dose in PBM without increasing the doses in bladder, rectum and bowels. Differences between doses in PBM for IMRT and VMAT plans, where PBM was used during optimization, were not statistically significant. The correlation between mean dose in PBM and the volume ratio of PBM and PTV was found for each technique (Figure 1).

PO-0853 Impact of CT modality used for treatment planning of lung SBRT

A. Vicedo-Gonzalez1, T. Garcia-Hernandez1, L. Brualla-Gonzalez2, A. Hernandez-Machancoses2, D. Granero-Cabañero1, J. Roselló-Ferrando1 1Eresa Valencia, Medical Physics, Valencia, Spain
2Eresa Valencia, Radiotherapy, Valencia, Spain

Purpose or Objective: The introduction of lung stereotactic body radiation therapy (SBRT) requires images that allow a more precise delineation of the tumor and its movement. The free breathing CT does not contain information on the variable electron density over time. The objective of this study is to analyze the CT mode that provides the best estimation of the tumor movement and the most appropriate image set for the calculation of the dose distribution image.

Material and Methods: 10 patients were retrospectively investigated. For each patient, a retrospective 4DCT scan was acquired using a Brilliance 16-slice scanner. From the 4DCT study, 10 respiratory phases, an average CT and a maximum intensity projection (MIP) were reconstructed. The gross tumor volumes (GTV) were delineated in each image set of the 4DCT using a Mimvi 6.4 software. Three internal target volumes (ITV) were obtained, one from the union of GTVs delineated in each phase, another from the average CT and the last from the MIP reconstruction. Special care was taken with the window level selection when contouring. The size of the three ITVs was compared. The planning target volume

Results: Table 1 shows the result of the comparison of the average dose in the light of the generated plans.

<table>
<thead>
<tr>
<th>Technique</th>
<th>PTV</th>
<th>PBM</th>
<th>Bladder</th>
<th>Rectum</th>
<th>Bowels</th>
<th>Skin</th>
<th>Pelvis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DCRT</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>IMRT(+)</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>IMRT(-)</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>VMAT(+)</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>VMAT(-)</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
</tr>
</tbody>
</table>

The statistical analysis were performed by Friedman ANOVA with Nemenyi’s procedures used as post-hoc tests. In order to find the relationship between doses in PTV and PTV and/or PBM, the Spearman correlation was used. All tests were performed on the significance level equal to 0.05.