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ABSTRACT Assuming that the shape of red blood cells is controlled by the curvature
elasticity of the surrounding membrane, we fit theoretical shapes to the contours
Evans and co-workers determined by interference microscopy. Very good agreement is
obtained for disc shapes. The fit is not so good for less common shapes, which may
result from Evans' parametric representation and from the interference of shear
elasticity.

INTRODUCTION

Human red blood cells in their normal state form very regular biconcave discs, as has
been known since the invention of the microscope. In the last few decades many at-
tempts have been made at a theoretical explanation. There is general agreement that
the shape is determined by the elastic properties of the red cell membrane whose thick-
ness is very small (of the order of 100 A) as compared with the cell diameter ( - 8 ,um).
In the early theories the membrane was postulated to behave like a rubber skin with
either the sphere or the disc representing equilibrium (1). In a more recent approach,
inspired by the virtual constancy of area, the membrane was assumed to be essentially
a fluid lipid bilayer and the red cell shape to be determined by the elasticity of curva-
ture or bending (2-4). Subsequently, it was shown that this model predicts disc shapes
only if there is a spontaneous membrane curvature of sufficient strength and negative
sign, i.e. opposed to that of the sphere (5). If the condition is not satisfied red cells
could be prolate instead of oblate. Although the concept of a spontaneous curvature
seems indispensable (6, 7), recent experiments in which red blood cells were partially
sucked into micropipettes have demonstrated quite convincingly that curvature
elasticity is not the only factor controlling red cell shape (8). Another important in-
fluence appears to be the shear elasticity of the membrane. The elastic modulus of
shearing is much smaller than that of area dilation. Accordingly, the membrane area
can be considered constant, as is also done in the lipid bilayer model. The sucking ex-
periments further provided evidence that the response to shear may be an elasto-
viscous effect in the sense of a Maxwell body with a very long molecular relaxation
time, perhaps of the order of hours (and probably due to a hampered rearrangement of
membrane proteins). As a result, one may have to distinguish between slow and fast
deformations. If a certain shape has days or hours to develop it is likely to be con-
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trolled solely by curvature elasticity including spontaneous curvature. If a deformation
takes place within a shorter time, shear elasticity can in general not be neglected. How-
ever, mild shape changes such as the transition between the disc and the osmotic
spherocyte are, perhaps, only weakly affected by shear stresses.

In the present paper we fit theoretical shapes to red cell contours which E. A. Evans
and co-workers (9-li) determined by interference microscopy. Only curvature
elasticity is taken into account. We feel justified in doing so as most comparisons are
made for discs, i.e. for shapes close to normal shape. For these, the agreement of
theory and experiment will be seen to be very satisfactory. Deviations for less com-
mon shapes are appreciable; they may be due to the parametrized representation of
the experimental data as well as to the neglect of shear elasticity.

THEORY

The curvature energy per unit area of a lipid bilayer or a membrane is given by a kind
of Hooke's law

g = (0)k,.(c1 + C2 - C.)2 + (i)k.c- c2, (1)

where cl and c2 are the two principal curvatures, kc and kc are elastic moduli and c. is
the spontaneous curvature (4). The latter may be caused by an asymmetry of the mem-
brane or its environment with respect to the center plane of the membrane. The in-
tegral of the second term in Eq. 1 over a closed surface is known to be independent of
the shape of the surface. Therefore only the first term in Eq. 1 is relevant for the shape
of red cells or lipid bilayer vesicles. In the present paper we shall restrict ourselves to
shapes having rotational symmetry. Their principal curvatures are those along the
meridians (cm) and the parallels of latitude (cp). Let the contour of a cell be given by a
function z(x) (see e.g. Fig. 1), the z-axis being the rotational axis. By 4' we denote the
angle made by the rotational axis and the surface normal of the cell. With this no-
tation we find

cp = (sin 4+/x); cm = cos 4 - (d4/dx); (dz/dx) = - tan 4'. (2)

Combination of the two equations eliminates 4, and leads to

dc,,/dx = (cm- c,)/x. (3)

We now wish to find the contour for which the total elastic energy E = (+) kc-
f dS (cm + c, - c.)2 is minimal at given volume and surface area. The problem is
solved by conventional calculus of variation. We may write

5t(Ji)kc f dS(cm+ cp-Co)2 + Ap- V + A-Si = O, (4)

where Ap and A are Lagrange multipliers for the constraints of constant volume V and
surface area S. They represent an osmotic pressure difference Ap = p. - pi be-
tween the outside and the inside of the cell and a tensile stress A.
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Expressing d Vand dS by

dV = w-x3.c1,(l - x2 c2)-1/2dx,
dS = 2*r*x*(l - x2 .c2) -/2 dx, (5)

and using Eq. 3 to eliminate cm, we have

a fJ mx (1 - 2- C2) 1/2

* [x(dcp/dx) + 2 - C. - cj2 + (Ap /k,)*x2 *C + 2X/k,J dx = 0, (6)

where cp(x) is the function to be varied. Doing the variation and expressing the
second derivative of c,(x) by Eq. 2, we obtain

dcm/dx = x*(1 - x2_c2)-'

*0) C [(C'- C.)2-_C2] + (X/k,)-c, + () - Ap/kjI - (Cm - cp)/x. (7)

The two independent Eqs. 3 and 7 can be solved numerically (5) and the contour z(x)
found by a further integration

z(x) - z(o)= -f tan# dx= -f x. cp. ( - x2.C2)'I1/2 dx. (8)

It is interesting to note that the elastic constant kc enters the equations only as a
scaling factor for the Lagrange multipliers Ap and A. Consequently, the shape of the
cell is independent of the magnitude of kc and controlled solely by the volume. The
maximum volume is V. = (42r/3) R. with R. being defined by S = 42r * Ro. We ex-
press x and z in units of R., all curvatures in units ofRo and the volume in units of
VO. When the cell is nearly spherical, i.e. V = V., it should have the shape of either a
prolate or an oblate ellipsoid of revolution. It was reported earlier (5) that the oblate
form has lower elastic energy than the prolate one as long as the spontaneous curvature
c. is below a critical value co, = -(j) R -. The details of this calculation will be
given elsewhere.' Theory (4) also shows that as V approaches VO the pressure dif-
ference Ap approaches the value Ap, = 2 * k, - (6 - coRo) - Ro3. With the estimate
k, = 5 _ 10-13 erg one has APc = 1 dyn cm-2 for red cells (4). Accordingly, Ap should
be completely negligible as compared to osmotic forces. When the volume is reduced
sufficiently below VO the prolate ellipsoids become dumbbells in our theory. For all
values of V/ VO the prolate and the dumbbell-like forms were found to have a higher
elastic energy than the oblate and the biconcave discoid forms, provided co < co,.
For co > co, the prolate ellipsoids have lower energy than the oblate ones. If, how-
ever, the volume is sufficiently reduced the dumbbells finally have higher elastic
energies than discs of equal volume. For co > co, there would have to be a hysteresis

i Deuling, H. J., and W. Helfrich. The curvature elasticity of fluid membranes: a catalogue of vesicle shapes.
Submitted for publication in J. Phys.
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in the transition between discocytes and osmotic spherocytes, which is not found ex-
perimentally. It is gratifying that our analysis of experimental data, to be discussed be-
low, gives values for c. well below ca,. However, the fact that deformations of red
cells into elongated bodies are only rarely observed may be evidence for the influence
of shear elasticity. It is readily seen that less shear is required for the formation of
flattened than elongated shapes if one starts from the sphere or a disk.

NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENTAL CONTOURS

We have compared our model with experimental data by Evans and co-workers (9-1 1)
obtained from human erythrocytes by means of interference microscopy. This method
allows to measure the phase change tp (x) which a light wave undergoes when passing
through a blood cell along the direction parallel to the rotational axis. The phase
change s (x) is not simply proportional to the thickness of the cell but is related to
the contour z(x) in a much more complicated way due to diffraction effects. To allow
for diffraction effects Evans et al. calculated the phase shift Sp° (x) for the class of
contours given by the following expression

z(x) = (1 - (x/R)2)'/2.(Co + C2(x/R)2 + C4(x/R)4). (9)

The free model parameters R, Co, C2, C4 were determined by fitting so,,.(x) to the
measured phase shift jp (x). Obviously, this method gives accurate results only if ex-
pression 9 represents a good description of the contour of the cell which has been
measured.

z R0= 3.271jm z Rv03.1364m
V/V0 = 0.641 WV/v = 0.6"

COOa-2.41coco= -0.74pnm- CO0

0 1.0 x 0 1.0 x

FIGURE I FIGURE 2

FiGuRE 1 Contour of a red blood cell calculated with the curvature elastic model (solid curve)
in comparison to average contour (A) of normal red blood cells at 300 mosmol as obtained by
interference microscopy. Only one quadrant of the contour is shown. Experimental data taken
from ref. 10.
FiGuRE 2 Contour of a red blood cell calculated with Canham's model (curvature elasticity
without spontaneous curvature) in comparison with the data of Fig. 1.
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Fig. 1 shows the best fit possible with the curvature-elastic model (solid curve) to
data obtained by Evans and Fung (10) from 50 normal red blood cells at 300 mosmol.
The data (marked by A) are plotted in reduced form, i.e. x and z are in units of the
equivalent sphere radius R. = 3.13 ,im. The volume was found to be V = 0.644 VO.
The only free parameter in the curvature elastic model is the spontaneous curvature
c0 (not to be confused with the coefficient C. in expression 9). Fitting the theoretical
contour to the data gives c. = -0.73 jsm-'. The deviation of the theoretical curve
from the data is within experimental error.2

Fig. 2 compares the theory for c0 = 0 to the data of Fig. 1. The theoretical curve
of Fig. 2 represents the stable form since its elastic energy is slightly smaller than that
of the dumbbell ofequal volume. The poor agreement indicates that a curvature elastic
model without the assumption of a spontaneous curvature does not render the shape of

-erythrocytes satisfactorily. Fig. 3 shows data of 55 normal red blood cells (10) at 217
mosmol. We get good agreement with the data choosing c0 = -1.94 &m '.
When the cell volume is reduced sufficiently the two membrane halves touch each

other at the center ofthe cell thus forming torocytes. (Our nomenclature is essentially
that of Bessis [12]). The two halves have contact not only at one point but over an en-
tire circular area which increases as the volume is reduced further. Such cells were
reported by Evans and Leblond (1 1) as intermediate forms in the discocyte to cup cell
transformation. Two such cells are shown in Fig. 4. The parametrization (9) (with the
first coefficient C. put equal to zero) used by the authors permits the two halves of the
cell to be in contact at a single point only in the center of the cell. The contour for
torocytes being derived from the measured phase shift with an inadequate parametriza-
tion can therefore not be as accurate as the data for discocytes. This seems to be the

z R z 3.26 rm z Ro = 3.55 pm
V/Vo 0.8 v/vo = 0.426
CRO z - 6.31 CORO= - 2.0

co0 - 1.94r' c= -os.6rm'

Ro;= 3.51 v 1.0 x

V/VO = 0.519
CORO = -2.8
C020.8 PM-

0 1.0 x 0 1.0 x

FIGURE 3 FIGURE 4

FIGURE 3 Comparison of theoretical contour to average red blood cell at 217 mosmol. Data
taken from ref. 10.
FIGuRE 4 Theoretical contours of torocytes as compared to experimental data taken from
ref. 1 1.

2Evans, E. A. 1975. Comment at the Fifth International Biophysics Congress, Copenhagen. August 4-9.
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main reason for the discrepancy of theoretical and experimental shapes. The best
agreement was obtained for c0 = -0.56 gm ' and c0 = -0.8 -m', respectively.
So far we have considered only solutions which besides rotational symmetry also

have reflection symmetry with respect to the equatorial plane. In addition to these
symmetric forms we have calculated "asymmetric" solutions which lack reflection
symmetry. Fig. 5 shows a cup-shaped cell for c0R. = -4.0. The energy of this form
is only slightly higher than that of a discocyte having the same volume. The energy is
given in units of E. = 2-rk,(2 - c.R.)2 which is the curvature elastic energy of the
sphere. We found the asymmetric, probably metastable, form to exist only above a
critical volume V,. With decreasing volume the cup cell becomes more and more sym-
metric and at the critical volume V, it reaches the symmetric discocyte shape. When
the volume is increased the cup cell becomes more and more asymmetric assuming a
nearly spherical form with an indentation at one pole. When the volume is increased
further the cup cell becomes a stomatocyte, i.e. a body with a concavity, as shown in
Fig. 6 for c.R. = -2.0. The critical volume V, depends strongly on spontaneous curva-
ture and decreases with increasing c0. The smallest value we could obtain without con-
tact of the upper and lower membranes was roughly VJ/ V. = 0.5.
Very recently Jay (13) has studied the effect of albumin on the geometry of human

erythrocytes. Tracing out edge-on photographs of blood cells he obtained contours of
discocytes and cup cells from which he calculated surface area and volume. From his
numbers we find for a typical cup cell V/ V0 = 0.55.

Fig. 7 shows the theoretical contour of a cup cell for V/ V, = 0.55 and c0 = 0.
The experimental data shown in the same figure were obtained by Evans and Leblond
(11) using interference microscopy. The volume corresponding to the experimental
contour is V/ V. = 0.43. Since we have not been able to reproduce cup cells with such
a small volume we were forced to adopt a new type of solution representing an asym-
metric torocyte, also called codocyte. Fig. 8 shows a theoretical codocyte together with

P/IPc=-0.5 V/Vo=09227
v/Vo= 0.853 E/Esyrm = 1.002 CORO -2.0 E/EO= 1.1334
Co)Re -4.0
E/EO-- 1.0503 2.0

1.0

x
1.0 0.0 1.0

FIGURE 5 FIGURE 6

FIGURE 5 Theoretical contour ofa cup cell.
FIGURE 6 Theoretical contour ofa stomatocyte.
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z
Ap/Ar = 1.0
CR =0.0
V/Vo =0.55 ApCApc = 1.2

CORO = 0.82
1.0 V/VO = 0.43 z

-1.0

1.0 0O 1.0 x 1.0 0.0 1.0

FIGURE 7 FIGURE 8

FIGURE 7 Theoretical contour of a cup cell compared to experimental data taken from ref. 11.
The volume corresponding to the experimental contour is V/ V - 0.43.
FIGURE 8 Theoretical contour ofa codocyte compared to the data of Fig. 7.

the data of Evans and Leblond. Its shape cannot be described by the class of contours
used by Evans and Leblond in the analysis of their phase shift data. So there is a good
chance that the discrepancy between the experimental and the theoretical contour
shown in Fig. 8 is due to an inadequate parametrization in much the same way as we
found to be the case for torocytes (Fig. 4). On the other hand, Jay's data for cup cells
and even more so those by Evans and Leblond show a rather strong curvature at the
brim of the cup in contrast to our theoretical curves (Fig. 7 and Fig. 8). This could be
an indication that the shear elasticity of the membrane must not be neglected here.
Cup cells may therefore be well suited to study how the shear elasticity of the mem-
brane affects red cell shape.

Skalak and co-workers (14) have taken an approach to the problem of red cell shape
which employs curvature elasticity as one element. They do not draw upon the con-
cept of spontaneous curvature, but take shear elasticity into account. First numerical
results on the spherocyte-discocyte transition have been published recently (15). Either
a biconcave disc or the sphere were considered to be the equilibrium shape and the
shear elastic modulus was used as an adjustable parameter. At present, it is not pos-
sible to evaluate the relative importance of spontaneous curvature and shear elasticity
for the actual spherocyte-discocyte transition of red blood cells.

We are pleased to acknowledge very informative discussions with R. Skalak and E. A. Evans at the Fifth In-
ternational Biophysics Congress Copenhagen, August 4-9, 1975.
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