An Iterative Recurrence Formula

N. J. FINE

Pennsylvania State University, University Park, Pennsylvania 16802

Submitted by G.-C. Rota

The recurrence G(0) = 0, G(n) = n - G(G(n-1)) $(n \ge 1)$, is shown to have the simple solution G(n) = [(n+1) a], where $a = (\sqrt{5}-1)/2$. Generalizations are disscussed. \bigcirc 1986 Academic Press. Inc.

The following recurrence formula appears in "Gödel, Escher, Bach" by Douglas R. Hofstadter, pp. 135–137 (Basic Books, New York, 1979). Let G(n) be defined by

$$G(0) = 0, \tag{1}$$

$$G(n) = n - G(G(n-1))$$
 $(n \ge 1).$ (2)

Can we find a closed form for G(n)?

It is easily proved that $0 \le G(n) \le n$ and that G is monotonic nondecreasing. In fact, G(n+1) - G(n) = 0 or 1. A short run on my baby computer suggested that G(n) increases rather regularly. If we assume that $G(n) \approx an$ for a constant **a**, then (2) (for large **n**) shows that $a = 1 - a^2$, so $a = (\sqrt{5} - 1)/2$.

A longer run, calculating $\Delta(n) = G(n) - an$, seemed to indicated that $\max \Delta(n) - \min \Delta(n) < 1$. A little further experimentation suggested that $-1 < \Delta(n) - a < 0$, so we were led to conjecture that

$$G(n) = [a(n+1)] \qquad (n \ge 0)$$
(3)

([] = greater integer).

When we showed this to Harley Flanders, he ran it up on his grown-up computer to n = 15,000. It coughed up four cases where (3) was violated. But calculating **a** to a few more decimal places remedied those exceptions. Thus convinced of the truth of (3), we both went home that night and proved it, rather easily.

The natural generalization of (2),

$$G(n) = n - G_k(n-1),$$
 (4)

where G_k is the kth iterate of G, proved to be a slight disappointment.

185

With a = the root of $a^k + a = 1$ lying between 0 and 1, let D(n) = a(n+1) - G(n). Then for k = 3, max $D(n) - \min D(n) > 1$, so no formula of the form

$$G(n) = [an + C],$$

with C constant, can be true. Nevertheless, the values of D(n) stay remarkably small, and a very plausible conjecture is that D(n) is bounded.

The following generalization does work, however.

THEOREM. Let r be a positive integer, and let G be defined by G(0) = 0 and

$$G(n) = n - \left[\frac{1}{r} G(G(n-1))\right] \qquad (n \ge 1).$$
(5)

Let a be the positive root of $a^2/r + a - 1 = 0$. Then

$$G(n) = [a(n+1)] \qquad (n \ge 0).$$
(6)

Proof. Let F(n) = [a(n+1)], and define

$$S(n) = F(n) + \left[\frac{1}{r} F(F(n-1))\right] \qquad (n \ge 1)$$

Since F(0) = 0, it will be sufficient to prove that S(n) = n, for then F will satisfy (5).

Let $an = J + \theta$, where J is an integer and $0 < \theta < 1$. Then [an] = J and

$$F(n) = [an + a] = J + [\theta + a],$$
$$\left[\frac{1}{r}F(F(n-1))\right] = \left[\frac{1}{r}[aJ + a]\right] = \left[\frac{a}{r}(J+1)\right];$$

we have used the fact that if \mathbf{r} is a positive integer, \mathbf{x} real, then

$$\left[\frac{1}{r}\left[x\right]\right] = \left[\frac{x}{r}\right].$$

Now

$$\frac{a}{r}(J+1) = \frac{a}{r} + \frac{a}{r}(an-\theta)$$
$$= \frac{a}{r}(1-\theta) + (1-a)n$$
$$= \frac{a}{r}(1-\theta) + n - J - \theta$$

186

Hence $S(n) = n + [a + \theta] + [T]$, where

$$T = \frac{a}{r} (1 - \theta) - \theta.$$

Clearly T < a/r < 1 and $T > -\theta > -1$, so [T] = 0 if $T \ge 0$ and [T] = -1 if T < 0. But

$$T = \frac{a}{r} - \theta \left(1 + \frac{a}{r} \right)$$
$$= \left(1 + \frac{a}{r} \right) \left(\frac{a}{a+r} - \theta \right)$$
$$= \left(1 + \frac{a}{r} \right) (1 - (a+\theta)).$$

Thus, if $[a + \theta] = 0$, $a + \theta < 1$, T > 0 and [T] = 0. If $[a + \theta] = 1$, $a + \theta > 1$, T < 0 and [T] = -1. In both cases, $[a + \theta] + [T] = 0$, so S(n) = n. This completes the proof.

If we replace 1/r in (5) by an arbitrary b < 1, the result (6) (with appropriate **a**) fails in general. Here, again, the approximation is remarkably close, and we conjecture that G(n) - an is bounded.