An Iterative Recurrence Formula

N. J. Finf:
Pennsylvania State University, University Park, Pennsylvania 16802
Submitted by G.-C. Rota

> The recurrence $G(0)=0, G(n)=n-G(G(n-1))(n \geqslant 1)$, is shown to have the simple solution $G(n)=[(n+1) a]$, where $a=(\sqrt{5}-1) / 2$. Generalizations are disscussed. © 1986 Academic Press. Inc

The following recurrence formula appears in "Gödel, Escher, Bach" by Douglas R. Hofstadter, pp. 135-137 (Basic Books, New York, 1979). Let $G(n)$ be defined by

$$
\begin{gather*}
G(0)=0, \tag{1}\\
G(n)=n-G(G(n-1)) \quad(n \geqslant 1) . \tag{2}
\end{gather*}
$$

Can we find a closed form for $G(n)$?
It is easily proved that $0 \leqslant G(n) \leqslant n$ and that G is monotonic nondecreasing. In fact, $G(n+1)-G(n)=0$ or 1 . A short run on my baby computer suggested that $G(n)$ increases rather regularly. If we assume that $G(n) \approx a n$ for a constant a, then (2) (for large \mathbf{n}) shows that $a=1-a^{2}$, so $a=(\sqrt{5}-1) / 2$.

A longer run, calculating $\Delta(n)=G(n)-a n$, seemed to indicated that $\max \Delta(n)-\min \Delta(n)<1$. A little further experimentation suggested that $-1<\Delta(n)-a<0$, so we were led to conjecture that

$$
\begin{equation*}
G(n)=[a(n+1)] \quad(n \geqslant 0) \tag{3}
\end{equation*}
$$

([] = greater integer).
When we showed this to Harley Flanders, he ran it up on his grown-up computer to $n=15,000$. It coughed up four cases where (3) was violated. But calculating a to a few more decimal places remedied those exceptions. Thus convinced of the truth of (3), we both went home that night and proved it, rather easily.

The natural generalization of (2),

$$
\begin{equation*}
G(n)=n-G_{k}(n-1), \tag{4}
\end{equation*}
$$

where G_{k} is the k th iterate of G, proved to be a slight disappointment.

With $a=$ the root of $a^{k}+a=1$ lying between 0 and 1 , let $D(n)=$ $a(n+1)-G(n)$. Then for $k=3$, $\max D(n)-\min D(n)>1$, so no formula of the form

$$
G(n)=[a n+C],
$$

with C constant, can be true. Nevertheless, the values of $D(n)$ stay remarkably small, and a very plausible conjecture is that $D(n)$ is bounded.

The following generalization does work, however.
Theorem. Let r be a positive integer, and let G be defined by $G(0)=0$ and

$$
\begin{equation*}
G(n)=n-\left[\frac{1}{r} G(G(n-1))\right] \quad(n \geqslant 1) . \tag{5}
\end{equation*}
$$

Let a be the positive root of $a^{2} / r+a-1=0$. Then

$$
\begin{equation*}
G(n)=[a(n+1)] \quad(n \geqslant 0) . \tag{6}
\end{equation*}
$$

Proof. Let $F(n)=[a(n+1)]$, and define

$$
S(n)=F(n)+\left[\frac{1}{r} F(F(n-1))\right] \quad(n \geqslant 1) .
$$

Since $F(0)=0$, it will be sufficient to prove that $S(n)=n$, for then F will satisfy (5).

Let $a n=J+\theta$, where J is an integer and $0<\theta<1$. Then $[a n]=J$ and

$$
\begin{gathered}
F(n)=[a n+a]=J+[\theta+a] \\
{\left[\frac{1}{r} F(F(n-1))\right]=\left[\frac{1}{r}[a J+a]\right]=\left[\frac{a}{r}(J+1)\right]}
\end{gathered}
$$

we have used the fact that if \mathbf{r} is a positive integer, \mathbf{x} real, then

$$
\left[\frac{1}{r}[x]\right]=\left[\frac{x}{r}\right] .
$$

Now

$$
\begin{aligned}
\frac{a}{r}(J+1) & =\frac{a}{r}+\frac{a}{r}(a n-\theta) \\
& =\frac{a}{r}(1-\theta)+(1-a) n \\
& =\frac{a}{r}(1-\theta)+n-J-\theta .
\end{aligned}
$$

Hence $S(n)=n+[a+\theta]+[T]$, where

$$
T=\frac{a}{r}(1-\theta)-\theta .
$$

Clearly $T<a / r<1$ and $T>-\theta>-1$, so [T] $=0$ if $T \geqslant 0$ and $[T]=-1$ if $T<0$. But

$$
\begin{aligned}
T & =\frac{a}{r}-\theta\left(1+\frac{a}{r}\right) \\
& =\left(1+\frac{a}{r}\right)\left(\frac{a}{a+r}-\theta\right) \\
& =\left(1+\frac{a}{r}\right)(1-(a+\theta)) .
\end{aligned}
$$

Thus, if $[a+\theta]=0, a+\theta<1, T>0$ and $[T]=0$. If $[a+\theta]=1, a+\theta>1$, $T<0$ and $[T]=-1$. In both cases, $[a+\theta]+[T]=0$, so $S(n)=n$. This completes the proof.
If we replace $1 / r$ in (5) by an arbitrary $b<1$, the result (6) (with appropriate a) fails in general. Here, again, the approximation is remarkably close, and we conjecture that $G(n)-a n$ is bounded.

