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A b s t r a c t - - A  formula expressing the ultraspherlcal coefficients of the general order derivative of an 
infinitely differentiable function in terms of  its original ultraspherical coefficie~ats is stated in a more 
compact form and proved in a simpler way than the formula suggested by Karageorghis and Phillips 
in their recent report [5]. 
Formulas expressing explicitly the derivatives of ultraspherical polynomials of any degree and for 
any order in terms of the ultraspherical polynomials are given. The special cases of Chebyshev 
polynomials of the first and second kinds and of Legendre polynomials are considered. 
An application of how to use ultraspherical polynomials for solving ordinary and partial differential 
equations is described. 

1. INTRODUCTION 

Classical orthogonal polynomials are used extensively for the numerical solution of differential 
equations in spectral and pseudospectral methods, see for instance, Gottlieb and Orszag [3], 
Voigt et al. [8], and Doha [2]. If these polynomials are used as basis functions, then the rate of 
decay of the expansion coefficients is. determined by the smoothness properties of the function 
being expanded. It is well-known that if the solution of the differential equation is infinitely 
ditferentiable then the nth expansion coefficient will decrease faster than any finite power of 
( l /n) ,  of. [3]. 

For spectral and pseudo-spectral methods, explicit expressions for the expansion coefficients 
of the derivatives in terms of the expansion coefficients of the solution are needed. Also explicit 
expressions for the derivatives of the basis function in terms of the basis functions themselves are 
required. 

A formula expressing the Chebyshev coefficients of the general order derivative of an infinitely 
differentiable function in terms of its Chebyshev coefficients is given by Karageorghis [4], and a 
corresponding formula for the Legendre coefficients is obtained by Phillips [6]. 

A formula for the coefficients of an expansion of ultraspherical polynomials which has been 
differentiated an arbitrary number of times to those in the original expansion is proved by Kara- 
georghis and Phillips [5]. Their formula is somewhat complicated and its derivation is too lengthy, 
also the particular cases considered from it are not direct. No formula expressing explicitly the 
derivatives of the ultraspherical polynomials in terms of ultraspherical polynomials are known 
yet. 

In the present paper we rederive the formula given in [5] in a simpler way and write it in a 
more compact form, and we obtain explicit expressions for the derivatives of the ultraspherical 
polynomials of any degree and for any order in terms of the ultraspherical polynomials. 

In Section 2, some properties of the ultraspherical polynomials are given. In Section 3, we 
rederive the simpler and more compact formula corresponding to that given in [5]. Formulas 
expressing directly the derivatives of ultraspherical polynomials in terms of ultraspherical poly- 
nomials are given in Section 4; results for the Chebyshev polynomials of the first and second kinds 
and for the Legendre polynomials are obtained. In Section 5, we describe how the ultraspherical 
polynomials are used to solve differential equations of higher orders. 

Typeset by .AA/IS-TEX 

115 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82590432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


116 E.H. DOHA 

2. SOME P R O P E R T I E S  OF U L T R A S P H E R I C A L  POLYNOMIALS 

The ultraspherical (Gegenhauer) polynomials associated with the real parameter (a > -½) are 
a sequence of polynomials C (a) (z) (n = 0, 1, 2 , . . .  ), each respectively of degree n, satisfying the 
orthogonality relation 

+1 (1 - z2)a-½ C(a)(z)C(C')(z) dz = 0 
1 

(m # .) 

For the present purposes it is convenient to standardize the ultraspherical polynomials so that 

C~a)(1)=l ( n = O ,  1 ,2 , . . . )  (1) 

This is not the usual standardization, but has the desirable properties that  C(.°)(z) is identical 

with the Chebyshev polynomials of the first kind T.(z),  C(.])(z) is the Legendre polynomials 
P . (z) ,  and C(1)(z) is equal to (1/(n + 1))U.(z), where U.(z) is the Chebyshev polynomials of 
the second kind. In this form the polynomials may be generated by Rodrigue's formula 

( 1)" F(a+]) (l_,2)½-aD:((l_z2)n+a-½) 0¢"°)(=) = - r ( .  + ~ + ½) (2) 

The following two recurrence relations are of fundamental importance in developing the present 
work. These are 

( .  + ~)cZ) , (=)  = 2(. + o,)=c¢,?)(x) - . c~)~(x )  (3) 

2(n + a)C(a)(x) = n + 2or D,C(%) (z ) n (a) n +  1 n + 2 a -  1D'c~n- l (z)  (4) 

Note that  the recurrence formula (3) may be used to generate the ultraspherical polynomials 
starting from C0(a)(z) = 1 and C~a)(z) = z, cf., Szeg8 [7]. 

Suppose now we are given a function f (z )  which is infinitely differentiable in the closed interval 
[-1, 1], then we can write 

oO 

s(~) = ~ ~.c~:)(=) (5) 
n = O  

and for the qth derivative of f (z) ,  

O0 

f(q)(z) = %-' a(q)C(~)/z~ n n ~ J 

n=O 
(6) 

then 

and making use of (4) gives 

oo 

f(¢+1)(m) = ~ a(:+l)C(~)(m) 
n=O 

f(f+l)(x ) = ~ [ n "~ 2 ~ -  1 a(nq._+~ ) n "~ 1 a(f+l)l 
,= t  [2n(n"+aT" i) - - 2 ( n + a +  1)(n+ 2a) n+l ] D,~C(a)(z) 

On differentiating (6), we find 

o o  

/c,+,(x) = ~ a(.,)o.c~z)(=) 
r~-----O 
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from which, and equating the coeffcients, we have 

(n + 2a_--1_) a(,+1) ( n + 1) a(,+l ) a(nq ) 
2 n ( n  Jc 4 - -  11 n - 1  - -  2(11Jl-  4 -1- 1)(n -I- 241 .+i  = n _> 1 (71 

For computing purposes, this equation is not easy to use, since the coefficients on the left hand 
side are functions of n. To simplify the computing, we define a related set of coefficients b (') by 
writing 

.(,) = (n + 4)rcn + 24) b(n, ) 
n! n > 0 ,  q=O,  1,2,. . .  (8) 

where r( .)  is the Gamma function. Equation (7) then takes the simpler form 

b(q.)l- - b(q)n+l = 2(n + 41b0-1) n _> 1, q = 1,2,. .. (9) 

This difference equation may be solved to give 
oo 

I,,LO-I) (I0) b 0) = 2 E ( n  + 2i + 4 - ~)%+2i-1 
i=1 

3. RELATIONS B E T W E E N  THE COEFFICIENTS a 0) AND a,  

The main result of this Section is to prove the following theorem for the coefficients b('): 

2' , ~  (j + q - 2)!r(n + j + q + 4 - 1) 
bO)= (q - 1)--'---~ "---" ( j - 1 ) [ r ( n + j + a )  (n+2j+q+4-2)bn+~j+q_2 (11) 

j=l 

The following lemma is needed to proceed with the proof of the theorem (11/. 

8.1 Lemma 1: 

E(n+~' 2 i + a -  1 ) ( p -  i + q -  1) [ r (n+  i + p + q +  4 -  1) 
(p -  i)!r(n + i + p + 

1 ( p +  q -  1 ) ! r ( n + p +  q + 4 / 
( p - 1 ) ! V ( n + p + 4 )  Vn, Vq>_l (12) 

PROOF. For p = 1 the left hand side of (12) equals the right hand side of (12) which is equal to 
(q - l ) ! r ( n  + q + 4 + l ) / r ( n  + 4 + 11. I f  we app ly  induct ion on p, assuming  t h a t  (121 holds, we 
have to show that 

p + l  
y ] ( n + 2 i + 4 _ l l ( P + q - i l ! r ( n + p + q + i + 4 )  l ( p + q ) ! r ( n + p + q + 4 + l )  
i=1 ( P - - i ~ ÷ P q ' i ÷ 4 ÷ 1 1  "-q ~ d - + ~  (13) 

From (121 by taking n + 2 instead of n and m = i +  1, we get 

p-l-1 
~'_,(n+2m+4_11(p+q-m)!r(n+p+q+m+41 1(p+q-ll!r(n+p+q+4+2) 
m=2 (p - m + 1 ) ! r (n  + p + m + a + 1) = q" (p - 1 ) ! r (n  + p + 4 - 2) 

(14) 
The left hand side of (13) becomes (with application of (14)) 

(n+4+11(P+q-1)!r(n+p+q+4+ 1) . 1  
p ! r ( n + p +  4 +  2) + E ( n + 2 i + 4 - 1 )  - 1)!r(n+p+i+4+l) 

i..--2 

= (n+ 4+ 1) (p+q- 1)!r(n+p+q+4+ 1) + l(p+q- 1)!r(n +p + q+4+2) 
p!r(n + p + 4 + 2) q (p - l)!r(n + p + 4 + 2) 

1 ( p + q ) l r ( n + p + q  + 4 +  1) 
q p!r(n + p + 4 + 1) 

which completes the induction and proves the lemma. 
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PROOF OF THEOREM. For q - 1, the application of (10) with q = 1 yields the required formula. 
Proceeding by induction, assuming that the theorem is valid for q, we want to prove that 

1 oo 
2 '+  ~ q - i)!  r (n  + j + q + a)  (n * b(,+1) (J + = ~ - . / z ~  1 "  "= (j-~-)~ g ( ~ i - ~ . ; ~ i ,  _2j+q+a-1)bn+2y+,-1 (15) 

From (10) (by taking q + 1 instead of q) and assuming the validity of the theorem for q, 

b(_ '+1) _ 2q+1 oo 
(q--F)! E ( n  + 2 i +  a -  1) 

i=1 

x { ~  (j+q-2)!r(n+2i+j+q+a-2)" } 
j----X ~ _~ ~).I r(n+2i+j+a-1) (n+2i+2j+q+a-3)bn+2i+2y+,-3 (16) 

Let i + j - 1 = p, then (16) may be written in the form 

b(,+x) 2 '+1 ' (j + q )t r ( .  + 2i + j + q + ~.~ ) 
- (q"~-i)! E (n+2i+a-1) U-  • r ( n + 2 i + y + a  

p = l  i,j=l 
i+jmp-kl 

x (n + 2 p +  q -t- ~ - 1)bn+2p+q-1] 

which also may be written as 

b(n,..kl ) 2 '+1 ~ I  ~ - (q---i)! (n + 2 i +  
p=l hi----1 

l~(lo - i + q -  1)! r (n  + p +  i + q + a ~)1) 
a - . ,  (p - i)! F(n + p + i + a - -  

x (n + 2p + q + a - 1)] bn+2p+q-1 

Application of lemma 1 given in (12) to the second series yields equation (15) and the proof of 
the theorem is complete. 

Now, substitution of (11) into (8) gives the relation between the coefficients of a general order 
derivative of an expansion in ultraspherical polynomials in terms of the coefficients of the original 
expansion as 

.~) = 2' (n + ~ ) r ( n  + 2~) 
(q - l)!n! j=1 

~ ( j +  q -  2)! r(n + j +  q+ a -  1)(n+ 2j + q -  2)! 

for all n_> O,q >_ 1 (17) 

Formula (17) is more simple and is written in a more compact form than the formula given in 
[5]. 

In particular, the special cases for the Chebyshev polynomials of the first and second kinds 
may be obtained directly by taking a = 0, 1 respectively, and for the Legendre polynomials by 
taking a = ½. These are given as corollaries to the previous theorem. 

COROLLARY 1. If f (z)  is an infinitely differentiable function on [-1, 1], then the Chebyshev 
coefficients a~ ) of the qth derivative of f (z)  are related to the Chebyshev coefficients, a , ,  of f (z)  
by 

2q x-~ (j + q - 2)!(n + j + q - 2)! 
Cn a (n q) (n + 2j + 2)aa+2j+q-2 

(q- - l ) !  2.-, (j 1 ) ! (n+j - -~)~  
q m 

j=1 
for a l ln_>0,  q>__l (18) 

where c 0 = 2 ,  c ~ = l  for a l l n >  1, c n = 0 f o r n < 0 .  
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PROOF OF THEOREM. For q = 1, the application of (10) with q = 1 yiehls the required formula. 
Proceeding by induction, assuming that the theorem is vahd for q, we want to prove that 

l O” &q+‘) = ?!.g c (j + q - l)! I?(n + j + Q + o) 
. j=l cj_1)! r(n+j+rr) (n+2j+q+cr-l)bn+2j+q-l (15) 

From (10) (by taking q + 1 instead of q) and assuming the validity of the theorem for q, 

00 

Gaq+‘) = & i=l C( n+2i+a- 1) 

X 

{ 

~(j+*-2)!r(n+2i+j+*+D-2)(n+2i+2j+q+a_3)( +2.+2j+q_s 

j=l (j- V r(n+2i+j+a-1) 
n I 1 (16) 

Let i + j - 1 = p, then (16) may be written in the form 

00 

eq+‘) = (,“T)! p=l 

P a = (j + q - 2)! r(73 + 2i + j + q + cr - 

i j=l (n+2i+a-1) (j-l)! P(n+2i+j+a-1) 
2) 

itj=ptl 

x (n + 2p + q + Q - l)bnt2ptq-1 1 
which also may be written as 

00 P 

*iq+‘) = &,., i=l c[c( n+2i+a-1) 
(p-(;+q)-l)!P(n+p+i+q+o- 1) 

-i! r(n+p+i+a-1) 

x (n + 2p+ q + a - 1) 1 bnt2ptq-1 

Application of lemma 1 given in (12) to the second series yields equation (15) and the proof of 
the theorem is complete. 

Now, substitution of (11) into (8) g ives the relation between the coefficients of a general order 
derivative of an expansion in ultraspherical polynomials in terms of the coefficients of the original 
expansion as 

.$) = 
2q(n + +yn + 24 O” 

(q - l)!n! 
c (j + q - 2)! r(n + j + q + a - l)(n + V + q - 2)ia t2jtq 

j=l (j-0 
I(n+j+a)P(n+2j+q+2a-2) n - 

2 

for all n 1 0,q 1 1 (17) 

Formula (17) is more simple and is written in a more compact form than the formula given in 

Fl. 
In particular, the special cases for the Chebyshev polynomials of the first and second kinds 

may be obtained directly by taking o = 0,l respectively, and for the Legendre polynomials by 
taking cr = 3. These are given as corollaries to the previous theorem. 

COROLLARY 1. If f( z is an infinitely differentiable function on [- 1, 11, then the Chebyshev ) 

coefficients cak’ of the qth derivative of f( ) z are related to the Chebyshev coefficients, a,, of f(z) 

by 

c,a$) = - 
(Q ‘l,! j=1 

2 (j + q - 2)!(n + j + q - 2)i 
(j - l)!(n + j - l)! 

(n + 2j + q - 2)%+2j+q-2 

for all n 1 0,q 2 1 (18) 

where CO = 2, c, = 1 for all n 2 1, c, = 0 for n < 0. 
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2'(q + 2j + 1)! ~ (2i + ~ + 1)r(2i + 2~ + 1) 
DfqC~+~+x(z)q (a) _ (q _ 1).W(q + 2j + 2 a +  1) ~ffi0 (2i + 1)!(j - i)! 

x r ( q + j + i + o +  2) 1) (q + j - i - 1 ) ! C ( 2 ~ ) 1 ( x )  
r ( j  + i + ot + 

(25) 

The particular expressions for the derivatives of the Chebyshev polynomials of the first and 
second kinds, and for the Legandre polynomials may be obtained as specials cases from formulas 
(24) and (25). we give these as corrollarias as follows: 

COROLLARY 4. Set ~ = 0 in (24) and (25), we get the derivatives of the Chebyshev polynomials 
of the first kind in the forms: 

2q(q + 2 j ) ~ '  (q + j - i - 1)!(q + j + i - 1)!T2i(z) 
o,%+2~(~) = ~ : ' 1 ~ .  ,_-o (j - i)!(j + i)! 

(26) 

2q(q + 2j + 1) ~ (q + j - i - 1)!(q + j + 
DCfTq+2J+x(z) = ( q -  1)! i=o (j i ) ~ j ~ i +  i-)T i)!T2i+l(x) (27) 

(~"~f means that  the first term is taking with factor -~). 

COROLLARY 5. The corresponding formulas for Chebyshev polynomials of the second kind are 
given by: 

J 
2q E ( 2 i + l ) ( q + j - i - 1 ) [ ( q + j + i ) ! u 2 i ( z )  (28) 

D~U,+~q(z) - (q _ 1)! i=o (j i)!(j + i + 1)! 

2 f+1 J 1 ) ( q + j - i -  1 ) l ( q + j + i +  1)!U2,+l(x) 
D~Uq+~j+t(z) "- (q _ 1)! E ( i  + ,=o ( j  - i )!( j  + i + 2)! 

(29) 

These are obtained from (24) and (25) by setting a - 1, and noting that  C(t)(z) = Un(z) / (n+ 1). 

COROLLARY 6. The derivatives of Legendre polynomials are given by: 

j - i - 1)!r(q + j + i + ½) 2'-1 E ( 4 i +  1) (q + 
D~P¢+2j(z) - (q---T)! if0 (j - i)!P(j + i + 3/2) P2i(z) 

1 E ( 4 i + l ) ( q + j - i - 1 ) ! ( 2 q + 2 j + 2 i - 1 ) !  ( j + i + l )  
- 2q-2(q - 1)! i=0 (j - i)!(2j + 2i + 2)! (q + j + i - )!P2i(z) 

(30) 

2 '-x J,~ . ( q + j - i - 1 ) [ r ( q + j + i + 3 / 2 )  
OqPq+2j+l(X) = (q'-'~i)] ~ ( 4 5  "J~ 3)" ~.~ ~)l~(j~Tgs/2) P2i.t.lCX) 

J 3 ) ( q + j - i - 1 ) l ( 2 q + 2 j + 2 i + 1 ) ! O + i + 2 ) [  
_ 1 E ( 4 i  ÷ ( j - i ) ! (2 ) '+2 i+4) !  ( q + j + i ) [  P2i+x(z) 2q-2(q - 1)! i =o  

(31) 

Note here that  the first equalities of (30) and (31) are obtained simply by setting a - ½ in (24) 
and (25) respectively. Making use of (21) with n - i + 1, n - i + 2 give the second equalities 
directly. 
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5. USE OF U L T R A S P H E R I C A L  POLYNOMIALS TO SOLVE 
DIFFERENTIAL EQUATIONS 

Consider the linear ordinary differential equation of order n of the form 

121 

n 

.f~(z)D$y(z) = g(:c) (32) 
i--O 

where f~(z) and g(z) are functions of z only. Suppose the equation to be solved in the interval 
[-1, 1] subject to n linear boundary conditions, and assume we approximate y(x) by a truncated 
expansion of ultraspherical polynomials 

N 

,(,) = Z : o , e , ° ) ( , )  
S=o 

(33) 

where N is the degree of approximation, ao, ax, . . . ,  aN are unknown coefficients to be determined. 
Substituting (33) into (32) yields 

fi(z) asD~C~7)(z) g(x) 
i----0 

which may be written in the form 

(34) 

a s f i(x)D a)(x = g(x) 
S=O i=0 

(35) 

The boundary conditions associated with (32) give rise to n equations connecting the coeffi- 
cients as, and the remaining equations may be obtained in two ways: 

(i) we may equate the coefficients of the various C~7)(x ) after expanding the two sides of (35) 
in ultraspherical series. 

(ii) we may collocate at m = N - n selected points in ( -1 ,  1). 
The system of equations obtained from the collocation is of the form 

k = 1 , 2 , . . . , m  (36) 

where zk are the collocation points, which are usually chosen at the zeros of C(a)(x), (See 
for instance, Abramowitz and Stegun [1]). Since the derivatives D~C(a)(z) are now expressible 

in terms of C(a)(z), then the problem of computing them is solved by using the formulas explicitly 
(24) and (25). Therefore, the resulting linear system obtained from (34) and the n linear boundary 
conditions can easily be solved using standard direct solvers. 

The method just described is easily extended to higher dimensions. Consider, for example, the 
second order partial differential equation 

Al(x, y)uxx + As(x, Y)Uxu + A3(x, y)uuu + A4(x, y)ux + As(x, y)uu + A6(x, y)u = f(x, y) (37) 

where the coefficients A1, A2, . . . ,  A6 and f are functions of • and y only. Suppose the solution 
of the equation is required in the square S ( -1  _< x,y < 1), subject to general linear boundary 
conditions of the form 

Bi(z, y)u~ -I- B2(x, y)uy, + Bs(x, y)u - g(x, y) (38) 

on the sides of the square S. 
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Suppose the function u(z, y) can be approximated by the double finite ultraspherical series 

M N 

u(z,y) -- ~_~ ~_~ a,,,C(,~)(z)C(,~)(y) (39) 
mm0n=0 

for sufficiently large values of the integers M and N. Since u(z, y) satisfies (37) we have approx- 
imately 

M N 

E ( E  am"[ A1D2zC(a)(z)C(na)(y) + A2D'C(ma)(z)D~C(a)(Y) 
m----0 n----0 

+ AaC(a)(z)D~C(,a)(y) + A4D=C(~)(z)C(a)(y) + AsC(a)(z)DvC(a)(y) 
+ = (40) 

On collocating equation (40) at (M - 1)(N - 1) distinct points (z~,yj) i = 1,2, . . .  ,M - 1, 
j = 1, 2 , . . . ,  N - 1, in S, there results a set of (M - 1)(N - 1) linear equations for the coefficients 
am,. If we now collocate equation (38) at 2(M + N) points on the sides of the square S, we find 
the remaining equations for the unique determination of the coefficients am,. 

As in ordinary differential equations, the derivatives of ultraspherical polynomials occurring in 
(40) are computed by use of (24) and (25), and numbers zi, yj are chosen at the zeros of the 
appropriate ultraspherical polynomials. 
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