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Abstract 

The frequency assignment problem is the problem of assigning frequencies to transmission 
links such that either no interference occurs, or the amount of interference is minimized. We 
present an approximation algorithm for this problem that is inspired by Karmarkar’s interior point 
potential reduction approach to combinatorial optimization problems. A non convex quadratic 
model of the problem is developed, that is very compact as all interference constraints are 
incorporated in the objective function. Moreover, optimizing this model may result in finding 
multiple solutions to the problem simultaneouly. Several preprocessing techniques are discussed. 
We report on computational experience with both real-life and randomly generated instances. 

Keywords: Interior point methods; Nonlinear optimization; Combinatorial optimization; Binary 
programming; Frequency assignment 

1. Introduction 

In this paper we are concerned with developing an interior point potential reduction 

approach to solve the Frequency Assignment Problem (FAP). This problem arises in 

practice when a network of radio links has to be established. Each radio link has to 

be assigned a frequency, subject to a number of interference constraints. An interfer- 

ence constraint gives the minimal required distance (in mHz) between the frequencies 

assigned to a couple of links. If this constraint is violated, communicaton using these 

links will be distorted. In practice, interference will occur when two links which are 

situated near each other, are assigned the same or close frequencies. 
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We will consider instances of the FAP with the following objective. Given a set of 

frequencies, a set of links and a set of interference constraints: 

l Try to assign each link a frequency such that the number of violated interference 

constraints is minimal. 

l If a feasible assignment exists, try to assign each link a frequency such that all the 

interference constraints are satisfied, and the number of used frequencies is minimal. 

The FAP is NP-complete, since the graph coloring problem, which can be consid- 

ered as a special case of the FAP, is NP-complete [3, 121. For NP-complete problems 

no polynomial-time algorithms are known; the worst-case complexity of exact algo- 

rithms is an exponential function of the problem size. However, in practice exact 

algorithms may behave much better than their worst case. For instance, for the FAP 

a branch-and-cut algorithm has been developed [l] which turned out to be quite effec- 

tive. Still, finding a solution and proving its optimality requires substantial computation 

times. Hence approximation algorithms must be developed, i.e. algorithms that find a 

good, but not necessarily optimal solution within reasonable time. Examples of such 

algorithms (that also have been applied to the FAP) are local search, genetic and 

graph based algorithms [3, 12, 17, 181. The interior point potential reduction method 

discussed in this paper also is an approximation algorithm. It is inspired by the research 

of Karmarkar et al. [6, 9, lo]. 

In 1984 Karmarkar showed that linear programming problems can be solved in poly- 

nomial time by an interior point method [8], improving upon the polynomial worst-case 

bound of Khachiyan’s ellipsoid algorithm for linear programming [l 11. More recently, 

he and his colleagues extended the interior point approach to combinatorial optimiza- 

tion problems. Promising results on the satisfiability problem [6] and the set covering 

problem [lo] are reported. The idea is to formulate the combinatorial optimization 

problem under consideration as a binary feasibility problem with linear constraints, 

relax the integrality constraints, and add a (concave) quadratic objective function that 

forces the variables to binary values. Subsequently, a nonconvex potential function is 

introduced, whose minimizers are feasible solutions of the binary problem. An interior 

point method is used to sequentially minimize the potential function. Since the poten- 

tial function is nonconvex, a local (nonbinary) minimum may be found. To generate 

feasible solutions more quickly, after each iteration the current interior point is rounded 

to a binary solution. 

In this paper we will develop a nonconvex quadratic model for the FAP, in which 

all interference constraints are incorporated in the objective function. Optimizing this 

model may result in finding multiple feasible assignments simultaneously. In [19, 201 

it is shown that this model may also be obtained from a binary linear model for the 

FAP. To solve the model, an appropriate potential function is designed and minimized 

by the interior point method Karmarkar et al. [6, lo] propose. In our algorithm we also 

incorporate preprocessing techniques, rounding schemes and techniques to escape from 

local minima. 

This paper is organized as follows. In Section 2 we will construct various nonconvex 

quadratic models for the FAP. Furthermore, it is briefly indicated how these models 
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can be derived from linear models for the FAP. In Section 3 the interior point method 

to solve the quadratic model is discussed, and specific details on the application of 

the algorithm to the FAP are given. Section 4 contains computational results on both 

real-life and randomly generated instances of the FAP. The real-life instances were 

provided by CELAR, the random instances were generated using the TU Delft devel- 

oped test problem generator GRAPH [2]. Finally, Section 5 contains some concluding 

remarks. 

2. Mathematical model of the frequency assignment problem 

2.1. Dejnitions und notation 

In order to model the FAP, the following notation is used: 

9’: set of L radio links; 

9: set of F frequencies; 

4: frequency domain of link 1~9’ (4 & F); 

f -+ 1: the assignment of frequency f E% to link 1 E 2; 

9: set of pairs of links for which an interference constraint must be 

satisfied; 

dlk: minimal required frequency distance for the links (I, k)E9. 

SO 

g={(/,k)]if f-Z and gAkthen(,f-g( ad/k, l,kE2’, fE-4, gEFk_). 

We define the following decision variables: 

i 

1 iff-l, 
x,f= 

0 otherwise, 
VlE9, Vf E2&. 

To enable our model to deal with more sophisticated instances of the FAP we introduce 

some additional definitions. 

p&: priority of the constraint concerning links (I, k) E 9; 

7,: penalty if a constraint with priority i is violated; 

Jpre: preinstalled frequency for link 1; 

mob): mobility for link 1; 

19,: penalty if to a link 1 with mobility j a frequency other than Apre 

is assigned. 
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It is assumed that ri, 0, E N and that ri > ri+l, Qj > Oj+, . For the priorities plk and the 

mobilities mob1 the following holds: 

PlkE{O, I,..., Prni”), V(Lk)EL3 

mob,E{O,l,..., mobmax}, WEE. 

If a constraint has priority 0, it must be satisfied, if it has priority i E { 1,. . . , pmin} it 

may be violated at cost ri. Similarly, if a link has mobility 0, its preinstalled frequency 

may not be changed, while if it has mobility j E { 1,. . . , mobmax - 1) its preinstalled 

frequency may be changed at cost 0,. A mobility of mobmax means that no frequency 

has been preinstalled. 

Before going on, we introduce some more notation: 

(21: the number of elements of set 2; 

I* =arg EF 141: the element I” E .Y for which 1% 1 is maximal; 

f * + 1: f * -+ 1 and the exclusion of interfering assignments, i.e. .-xv* : = 1; 

Xlf :=O, tlf Efi\{f*}; xks :=O, &kE, 

gEpj, such that If* - g( <d& 

sgn(x): equals 1, 0, -1 if x is positive, zero, negative. 

e: all-one vector. 

In the following, by an assignment, an assignment x or a feasible assignment, we usu- 

ally mean a full assignment, i.e. each link is assigned exactly one frequency. Sometimes, 

by an assignment we mean a single assignment, i.e. f--j 1 for some 1 E ._!.Y and f E 4; 

this will be clear from the context. A pair of assignments refers to f---f 1 and g-+ k 

for some 1, k E 9 and f E 4, g E 4. Furthermore, if an instance of the FAP allows a 

feasible assignment, we refer to it as a feasible FAP. Other instances of the FAP are 

referred to as infeasible FAPs. 

2.2. A quadratic model 

In this section we will derive quadratic models for the FAP. For each class we 

have the requirement that exactly one frequency is assigned to each link. This can be 

modelled as: 

In the following subsection it is shown how the interference constraints are modelled 

and subsequently it is indicated in which way the objective to minimize the number 

of frequencies used is incorporated. Finally, a more general formulation of the FAP is 

given, which enables us to deal with interference constraints of different importances, 

and partially fixed assignments. 
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2.2.1. Feasibility version of the FAP 

Let us define the coeficients qtfkg: 

qlfks = 
( 

1 if If - 91 <d/k> Q(l,k)ES, f EC%, .qEFj-, 

0 otherwise. 
(2) 

Now we can write the feasibility version of the FAP as the minimization of a (non- 

convex) quadratic function subject to the constraints that to every link exactly one 

frequency must be assigned (1) and all the variables must be binary: 

(PQ) S.t. cXy=l, VlEy, 

f E .F, 

X!f E 1% 11, VlEE, Vf E9$. 

In (PQ), Q is an m x m matrix, with m = Ct,Y (41 the number of variables, containing 

the elements q/fly. The matrix Q has the following structure: 

0 Q12 . . QX 

Q21 0 . . . Qzr. 
(3) 

QLI QL~ . 0 

The (4/ x )gk ) submatrix Qlk represents the interference constraint concerning the 

links 1 and k. Obviously, if no such constraint exists we have Q/k = 0. Furthermore, 

Qlk =Ql/, for all 1, kc 9, so Q is symmetric. Since the diagonal of Q contains only 

zeroes, Q is indefinite. 

The relaxation of (PQ) will be called (RQ). In (RQ) the integrality constraints are 

replaced by 0 < xv d 1, WEE, Yf (5.6. 

Lemma 1. The nonconvex quadratic optimization problem (RQ) has the following 

properties: 

1. xTQx 3 0 for any feasible solution x. 

2. Zf x is a feasible assignment for the original FAP then it holds that xrQx=O. 

3. Zf xTQx =0 then x yields one or more feasible assignments for the original FAP. 

Proof. 

(1) 

(2) 

(3) 

As both Q and any feasible solution x of (RQ) contain only nonnegative elements. 

we conclude that xTQx 3 0. 

If we are given a feasible assignment x, there is no combination 1, f, k, g such that 

qrfku =Xf “Xkq = 1, SO xTQx =O. 

Given a solution x of (RQ) such that xTQx=O. This implies that there is no combina- 

tion 1, f, k, g for which qtfie = 1 and both xv and Xky are positive. Letting .? = sgn(x) 

(thus I is binary), ZTQ_?=O. The assignment corresponding to .? may be overfull, 
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i.e. to a link more than one frequency might be assigned, but we can simply set 

variables from one to zero until each link is assigned exactly one frequency. This 

completes the proof. 0 

It may be worthwhile to observe that any assignment x is a feasible solution of 

(RQ). As will be clear from the proof of Lemma 1, for a given assignment x the 

objective value ixTQx is equal to the number of violated interference constraints. On 

the other hand, the next lemma states that from a fractional (not necessarily optimal) 

solution x of (RQ), a solution I of (Pe) can be constructed that has an objective value 

that is at least as good as the objective value of x. 

Lemma 2. Let t(x)= $xTQx. Given a feasible nonintegral solution X of (RQ), we can 

construct a feasible integral solution 2, such that ((2) d Qx). 

Proof. We construct 2 link by link. Let x :=x and consider a link I” for which two 

or more variables xl*f, f E z+, are fractional. Using the symmetry of Q and the fact 

that qrfls = 0, Vl E 2, tlf, g E 4, (definition (2)), we can rewrite c(x) as: 

5(x)= c C~XP/ + K (4) 
f EF,* 

where the cost coejicients cf are given by 

cf= c c ql*fkgxkg 3 0, f EB*, 
&Y\{l*} BE& 

and 

K=; c c c xqifkilX@kg 3 0. 
[ET\{I*} f E% kEY\{/*} gc.6 

Note that both K and the cost coefficients are independent of the values of the variables 

xl*,-. Therefore we can simply take f * to be given by 

f * = arg min 
f E.%* 

cf. 

and set 

&‘f * = 1; I1.f =o, Vf c%*\{f*}; tt-lf :=xy, wE9\{1*}, Vf ER. 

Then, using (4) and the definitions of 2 and cf, 

<(2)-K = c cf”r*f=cf*=f~in~ cf= f~4n* cf c xref 
f&6* [ I f E.?q* 

d c cfx/ef =5(x) -K. 
fE4* 

If P is not binary, we let x : = I and repeat this procedure. When 5Z is binary, we have 

constructed an integral solution such that ((2) < t(X). 0 
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Since all the input data are integral, an interesting corollary of this lemma is that the 

objective value of any strict minimizer (local or global) of (RQ) is integral. Moreover, 

assuming that a (fractional) minimizer x has integral objective value t, using Lemma 2 

one can construct multiple assignments, each of which violates exactly < constraints. 

The number of assignments N, thus obtainable is given by the following formula: 

(5) 

2.2.2. Minimizing the number of used ,frequencies 

The quadratic model has to be slightly extended in order to be able to minimize the 

number of used frequencies. We introduce the additional variables zf: 

Z/ = 
0 if the frequency .f is assigned to at least one link, 

1 otherwise, 
yJ.- E .F. (6) 

Furthermore, let us define the additional coefficients Y(,!/ by 

Let R be the J.ql xm matrix containing the elements rylf. The matrix R has the following 

structure: 

R=(R, R2 . . . RL). (7) 

The (.P;( x 131 submatrix RI indicates which variable xv, J’ E 4, corresponds to which 

frequency; it has a 1 in position .f’ of row g if and only if ,f =g. 

Lemma 3. For un cxsignment x and corresponding z it holds that 

Proof. For a given assignment X, with x/f = 1, QX/~ = 1 if and only if g=.f’. Hence 

c 1 yyvxlf =# of times the frequency g is used 
/El/‘fE.% 

The lemma follows immediately by the definition of z4. i7 

Letting 

a:= ; f ) ( > y:= x 0 z ’ 
(8) 
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the FAP can be written as 

ss. ~Xrf4,VlE~, 
SE.% 

(PQ> c Zf =M, 
fE% 

ZfE{O, 11, Vf EF> 

where F-M is the maximal number of frequencies to be used. (Recall that F = 191). 
The relaxation (RQ) of (PG) is obtained by relaxing the integrality constraints to linear 

inequalities. 

Lemma 4. The nonconvex quadratic optimization problem (RQ) has the following 

properties: 

1. 

2. 

3. 

yTey > 0 for any feasible solution y. 
If y yields a feasible assignment for the FAP that uses no more than F - M 
frequencies then we have yTDy=O. 
If yTey=O then y yields one or more feasible assignments for the original FAP 
that use no more than F - A4 frequencies. 

Proof. 

(1) 

(2) 

(3) 

As both Q and any feasible solution y of (Ra) contain only nonnegative elements, 

YTQY > 0. 
Using (8), we have that yTQy =xTQx + 2zTRx. If the assignment x uses exactly 
F - M frequencies, we find by Lemmas 1 and 3 that yT&=O. If x is a feasible 

assignment that uses less than F-M frequencies, we need to modify z. We have 

xTQx=zTRx = 0, but by definition (6) we have that Cf EF zf > M + 1, so strictly 

speaking y is not a feasible solution of (RQ). However, we may set some variables 

z/ from one to zero until y is feasible. Obviously, this does not change the value 

of ZTRX. 

Suppose now that y is an optimal solution of (Rg) with zero value. As for a solution 

y of (Ra) we require that CfEP zf - -M, we find that at least M of the z-variables 

are greater than zero, so at most F - M of the z-variables are equal to zero. So, 

since there is no combination g, 1 such that both xl, and zs are positive, at most 

F-M frequencies are used. For the term xTQn, Lemma 1 applies. This proves the 

lemma. 0 

We observe that the proof of Lemma 2 can straightforwardly be extended to this 

situation. 
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Note that, given a minimizer Y=(x,z)~ of (Ra) for which two or more zj variables 

are fractional, all assignments that can be constructed from x use less than F - A4 

frequencies. To compute the number of ussignments with the same objective value, we 

can again use (5) since it is not necessary to take into account the number of fractional 

z1 variables. To compute the number of different binary solutions however, the number 

N, obtained by (5) must be multiplied by Z!/M!(Z - M)!, where Z= C,.E,F sgn(z, ). 

2.2.3. Example 

We give a small example of the construction of the matrices Q and R. Let 

9={1,2,3,4} and ~={10,20,30,50}; 

9, =,,-,={ 10,20,50}, 92=<9s =8; 

~={(1,2),tl,4),(2,3)}. 

The required frequency distances & are given by the following matrix: 

- 12 - 25 

D= 
12 - 7 - 

25 - - - 

We now can construct the matrices Q and R submatrix by submatrix (see (3) and (7)). 

The submatrices Qis,Q24,Qsd (and their transposed counterparts) are all-zero 

matrices; 

Q23 =14x4; 

The other submatrices are given by 

Q,i=(; / ; ;), Q,4=(; ; 8). 

Now we construct the submatrices RI, I = 1,. . . ,4. 
l Rz=R3=Idx4 since 9=2=93=.9-; 

l Furthermore, 

R, =R4= 

The third row contains all zeroes since 30 6 91, 30 $ 94 

2.2.4. Minimizing the cost of interference 

We now generalize our model to enable us to deal with more sophisticated instances 

of the FAP. If the interference constraints have different priorities, the different penalties 

can be taken into account in the following way. Instead of setting qtfks to one if its 
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corresponding pair of assignments violates an interference constraint, we define the 

coefficients @,fkq to be equal to the penalty of the assignments f + 1 and g --) k. If 

a constraint has priority 0, i.e. it must be satisfied, we can set the corresponding penalty 

ro to a large number, such that zo >>zI. So, 

%fkg = 
I 

zi if If - g1 <d/k and p/k = i, v(l, k) E 9, tlf E F,, vg E &, 

0 otherwise. 

(9) 

Let a be the matrix containing the elements Glfkg; its structure is similar to that of Q 

in (3). 

If preinstalled frequencies and mobilities are given, one may choose to add the mobility 

costs to the diagonal of the matrix e. Another possibility is to introduce a linear penalty 

term in the objective function. The second option results in a model which has more 

attractive properties, as then Lemma 2 straightforwardly can be extended. Thus the 

vector v is defined as follows: 

Lemma 5. The cost of a given ussignment x is equal to ix’& + vTx. 

Proof. The cost incurred by the pair of assignments f + 1, g + k equals Glfkg. As e 

is symmetric, the term @rfzgX[fX@ occurs twice, so to find the cost we have to divide 

the total sum by two. Furthermore, if f +I, 1~9, with mob,=j and f #fr”“, then 

a penalty 6, = VIM has to be paid. 0 

Now we can write the FAP as: 

min ;xrex + vrx 

(PC) s.t. c x/f = 1, Vl E 9, 

.fC.% 

X/f E (0, 11, ‘dlE2, Vf EF,. 

The relaxation of (PC) will be called (Re). The minimum of (PC) is the optimal value 

of the original FAP (Lemma 5). Due to the following lemma, the optimal values (Rc) 

and (P,-) are equal. 

Lemma 6. Let r(x) = ix’ex + vTx. Given a feasible nonintegral solution X of (Rp), 

we can construct a feasible integral solution 2, such that {(x”) < t(x). 

Proof. Essentially the same as the proof of Lemma 2. The only change is that a linear 

term is added to the cost coefficients cf, i.e. 

Cf := VI” f + cc G,* fkgxkg 2 O. 
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Again, the values of cf are independent of the values XI* f‘, so the proof of Lemma 2 

applies to this situation. 0 

Using (5) one can again compute the number of assignments with the same objective 

value that can be constructed from a minimizer with integral objective value. 

Note that if instead of introducing a linear term, we add the mobility costs to the 

diagonal of the matrix 6, the minima of (PG) and (Re) are in general not equal. 

2.3. An ulternutice way to derive the quadratic model 

In the previous section we have constructed the nonconvex quadratic model for the 

FAP in a straightforward manner. In this section we indicate how it can be derived 

from a linear model for the FAP. This linear model has certain properties which 

make it possible to give an alternative expression for the matrices Q and e (see also 

[ 19, 201). The matrix e can also be derived from a linear model, but this requires a 

little more effort. 

2.3.1. Linear models for the FAP 

We use the notation introduced in Section 2.1. As described in Section 2.2, we need 

to assign exactly one frequency to each link. This results in constraints of the form 

(1). The interference constraints can be modelled as follows: 

XI/ + %, G 1, V(l,k) E 9, Vj” E .PI, 9 E <Pk: 1-f - Q/ <d/k. (11) 

Note that the number of constraints may be reduced significantly by combining con- 

straints of the form (1 1 ), thus obtaining: 

Let the equality constraints (1) now be denoted by Bx = e, and let either the 

gated (11) or aggregated (12) inequality constraints be denoted by .4x < e. 

can write the FAP as a (0, l} feasibility problem: 

(PL) find x E (0, l}” such that Ax < e, Bx = e. 

To extend the model for minimizing the number of used frequencies, we 

variables zf (6). A number F - A4 of frequencies to be used is determined 

add the constraint 

c Z/ =M. 
/EF 

Furthermore, the following constraints are added to the model: 

(12) 

disaggre- 

Then we 

use the 

and we 

(13) 
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Now let y = (x, z)~ and let the set of linear inequalities (11) or (12) and (13) be 

denoted by Ay d e, then the new feasibility problem becomes: 

(PF) find y E (0, l}m+F such that Ay < e, By = d, 

where 

L?=(; e;), d=(i). 

2.3.2, A special structure of (PL) and (Pi) 

The models (PL ) and ( PE) have the following properties: 

Property 1. All elements of A and A are binary. 

Property 2. All elements of B and B are binary. 

Property 3. The columns of B and 8 contain exactly one nonzero element. 

Property 4. The right-hand sides of all (but one) constraints equals one. 

For the moment, let us assume that the interference constraints are modelled accord- 

ing to (11). Then (PL) and (Pr) also have the following property: 

Property 5. Two variables that occur in the same equality constraint, do not occur 

simultaneously in any inequality constraint. 

Note that, independent of the way the interference constraints are modelled, the only 

constraint in (Pi) that has a right-hand side not equal to one (provided M # 1, which 

will usually be the case), always has Property 5. From now on, we will consider only 

(PL), (PQ) and (I$); for (Pr), (Pa) and (Re) similar theorems apply (see [19, 201). 

We can give the following expression for the matrix Q: 

Q = sgn[ATA - diag(ATA)], (14) 

where diag(ATA) denotes the diagonal matrix containing the diagonal entries of the 

matrix ATA. Note that due to Property 5 the sgn-function is superfluous. 

Lemma 7. The matrices Q as defined in (14) and (2) are the same. 

Proof. Let the columns of A be indiced by the Zf -pairs, 1 E 9, f E 91, and the rows 

by i= 1,. . . , n. Using the Properties 1, 4 and 5, the following equivalencies hold: 

[ATA - diag(ATA)]vks = 1 H 2 ailfaik, = 1 
i=l 

u 3(!)t E (1 ,...,n}such thata,lf=a,k,=l. 

So constraint t is x/f + xks < 1. Therefore, f + 1 and g -+ k will violate constraint t. 

This implies that 1 f - g[ <dtk. Also, by definition (2), we have that qlfkg = 1 if and 

only if If -g[<dtk. q 
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Now we can prove the following theorems concerning (PL) and (R,) (see for a 

proof [20]). The first is a generalization of Lemma 1; its proof uses the Properties 

1-4. 

Theorem 1. The following statements hold 

1. IJ’x is a feasible solution of (PL), then x is an optimal solution of (RQ). 

2. !f x is an optimal solution of (Rp) with xTQx=O, then x is either u (binary) 

solution of ( PL), or we can trivially construct multiple solutions of ( PL) from x. 

The second is a rephrase of Lemma 2. Again, we need the Properties l-4 to prove it. 

Theorem 2. Given a feasible nonintegral solution X of (RQ), one can construct a 

feasible integral solution 1 of (PQ), such that ZTQi d YTQX. 

We observe that if we model the interference constraints according to (12), Lemma 7 

does not hold. This is due to the fact that Property 5 does not hold for (all) equality 

constraints; as a consequence not all qtfb, 1 E 9, f,g E CF,, are equal to zero. However, 

even if qtfb = 1 for all 1 E 9, f, g E Y/, f # g (then Q = sgn[ATA + BTB - diag(ATA + 

BTB)]; note that now the function sgn is needed to ensure that Q is binary) both 

theorems apply. In this case, the minimizers of xTQx will be strictly binary. 

The reduction of problem size in terms of the number of constraints, when com- 

paring (PL) and (RQ) is enormous. The number of constraints required to model the 

interference constraints according to (12) (which is more concise than (11)) is ap- 

proximately (@IF. For example, in the test problems that we have considered, 191 is 

approximately 5 times the number of links, while 48 frequencies are available. So for 

a 200-link problem, the reduction is almost 50000 constraints, leaving only 200 equal- 

ity constraints and the bounds on the (appr. 4000) variables. 

Theorems 1 and 2 also hold if the matrix Q is replaced by a nonnegative matrix Q 

with the same nonzero structure. Thus they also can be applied to derive (PC). For 

a given (infeasible) instance of the FAP, we can construct the matrix A as discussed 

in the previous section. Subsequently, Q can be computed as discussed above. If we 

replace each ‘one’ by the penalty that has to be paid if the corresponding constraint is 

violated this will result in the matrix Q. 

3. Solving the frequency assignment problem 

The models constructed in Section 2.2 can be uniformly denoted in the following 

way. 

min ;xTQx + vTx 

(FAP) s.t. Bx=d 

O<x<e, 
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for some indefinite symmetric matrix Q E Rmxm, v E R”, BE Rpxm, d E RP, x E R”, 
m and p appropriate. Note that the quadratic formulation (FM’) is quite similar to 

existing models of other well known combinatorial optimization problems such as the 

max clique problem [ 131, the quadratic assignment problem and the graph partitioning 

problem [7]. The latter have been approximated using semidefinite relaxations. The 

quadratic formulations also have been used to derive bounds on the optimal solution, 

by solving their dual problems. Since our model has the advantage of a known optimal 

value (provided the instance under consideration is feasible; see Theorem 1) and there 

exists an efficient procedure for rounding fractional to binary solutions (Theorem 2), 

we choose to directly solve (PAP). To this end, we apply the interior point method 

developed by Karrnarkar et al. [6, lo] to an appropriate potential function. In the fol- 

lowing sections we discuss a suitable potential function, an interior point method to 

minimize the potential function, and further algorithmic details such as preprocessing 

techniques, starting points, ways to deal with local minima and rounding schemes. 

3.1. A potential function for the FAP 

To obtain a problem in which only inequality constraints occur, we relax the equality 

constraints Bx = d to inequality constraints Bx 2 d. This is valid, since B, Q, x and d 

are all nonnegative. The interpretation is that we require that at least one frequency 

is assigned to each link. Note that one could also choose to deal with the equality 

constraints by using a projection onto the null space of B [ 191. From now on, let 

A:=(;), b:=(b) 
(so this is not the matrix A of Section 2). A is an n x m matrix, with n = 2m + p. To 

solve (FAP), we introduce the weighted logarithmic barrier potential function: 

n 

I)(X) = ~x’Qx + VTX - C Wi lOgSi, 

i=l 

where Wi are positive weights, and the variables si are the slacks of the constraint set 

Ax < b. Instead of (FAP) we solve the equivalent nonconvex minimization problem 

(FAP$) min I,&). 

3.2. An interior point method to minimize a nonconvex function 

In this section we discuss the interior point method developed by Karmarkar et al. 

[6, lo]. The treatment is similar to that given in [lo], although the notation used is 

somewhat different. Furthermore, the extension of the algorithm proposed by Shi et al. 

[ 151 is mentioned. 
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3.2.1. An approximate problem 

Solving (FAP$) is NP-complete. Therefore, in each iteration (FAP$) is approximated 

by a quadratic optimization problem over an ellipsoid, that can be solved in polynomial 

time. Define 

9=(x E Rm IAx <b}; 

Y”=Int(9)={xE R”(Ax<b}. 

The algorithm starts with an initial interior point x0 E Y”. It generates a sequence of 

points {xk}, k = 0, 1,. . , in the interior 9”’ of the polytope Y. 

Let xk E 9’ be the kth iterate and let sk = b - Axk be its slack vector. Using the 

notation S = diag(s’;, . . ,si) and W = diag(w, , . . , w, ), the Hessian and gradient of $ 

in xk can be expressed as 

hi = Qxk + lj + ATS-‘w; (16) 

Hti = Q + ATS-’ WS-‘A. (17) 

Note that the density of H$ is determined by the density of the matrix Q + BTB. The 

quadratic approximation of $ around xk is given by 

9(x) = ;(x - x~)~H~(x - xk) + h;(x - xk) + $(xk). 

As approximation of the polytope ,9’, the Dikin ellipsoid [4] is used. The Dikin ellipsoid 

around xk E 9” is given by 

8(r) = {x E R” 1 (x - x~)~A~S-~A(X - xk) d Y*}, 

where for Y < 1 the ellipsoid is inscribed in 9’. Denoting Ax =x - xk we obtain the 

following optimization problem: 

min +(A~)~H~(flx) + h;f;(dx) 

(FAf'cc) 

s.t. (Ax)~A~S-~A(AX) < r2. 

(FAPg) can be solved in polynomial time (see e.g. [ 16,21,5]). It is known in the 

literature as the trust region subproblem. The classical algorithm has been proposed 

by Sorensen [16], and requires the (Cholesky) factorization of an m x m matrix. More 

recently, Lanczos-type algorithms have been introduced [14], that require the compu- 

tation of the smallest eigenvalue of an m x m matrix. Since we are dealing with sparse 

matrices and we need not fix the value of y2, we use (following Karmarkar et al. [lo]) 

a Sorensen-type algorithm. It is explained in the next section. 

3.2.2. Computing the descent direction 

We start with formulating the optimality conditions of (FAPg) (see [5, 10, 161). 

The vector Ax* is an optimal solution of (FAPg) if and only if p >/ 0 exists, such 
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that 

(H$ + /UPS-?4)dx* = - h@ (18) 

p ((dX*)r‘4Wz‘4(/4X*) - r2)=0 (19) 

H$ + ,uATSd2A is positive semidefinite. (20) 

To find a solution dx’ that satisfies the optimality conditions, one first needs to find 

a ,D > 0 such that (20) holds. Since A has full rank m, the matrix ATSC2A is positive 

definite. Let U be its Cholesky factor, i.e. UTU =ATSp2A. Ye [21] established the 

following lower and upper bound for p. 

Lemma 8. Let &in < 0 be the smallest eigenvalue of E? = UpTH~U-‘. Then p sat- 

isjies 

-&in </l < “U-Th”’ + m max ]rl,jl. 
r i,j 

In the algorithm these bounds are not used explicitly. The idea is to choose a value for 

the multiplier p such that (20) holds, and subsequently compute the corresponding r. 

From (18) it follows that 

Ax*(u)= - (Hti + PATS-*A)-‘he. 

The S-norm of Ax* is defined as 

(21) 

IlAx*(~>lls = J(Ax*(~))~A~S-~A(AX*(~)). (22) 

The S-norm of Ax@) is a strictly decreasing convex function of p, in the interval given 

in Lemma 8 [lo, 211. Since ,U > 0, from (19) we conclude that /Ax*(p)((s =r. To find 

a solution Ax* that both satisfies the optimality conditions and lies on an appropriate 

ellipsoid, the following search strategy is employed. The linear system (18) is solved 

for different values of p until a solution is obtained such that 4 d jlAx*(,u)lls d 2, where 

h and 1 are a lower and upper bound on the radius of the ellipsoid. Karmarkar et al. 

[lo] call the interval (&x) the acceptable length region. The procedure to compute the 

descent direction is given in Algorithm 3.1. Each run through this procedure is called 

a minor iteration. Some explanation is given below. 

The procedure needs as input the current iterate xk, an initial multiplier p and the acceptable 
length region (&,I). Three logical keys are set: 

l IDkey, which is true if during the process an indefinite matrix is encountered, 
. jikeY (ekey), which is true if an upper (lower) bound is found forthe multiplierp. An upper (lower) 

bound is found if for a given p the corresponding S-norm is too small (too large). 

The procedure runs as follows. If necessary p is increased until H$ + pATF2A is positive definite. 
Subsequently the descent direction and its S-norm are computed. 

. If the S-norm is too small, and ID key isfalse, an upper bound on p has been found. p is decreased, 
either by multiplying it by Ijdx*Il~ or if a lower bound on p exists, by taking the geometrical 
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Algorithm 3.1. The descent-direction algorithm 

Procedure descent-direction (p.xk,&l) 

/(Ax* /1,~ :: 0: lDkey := false; lkcy := false; llkey .= false; 

while (lId,~*(l.y 1 x or (lIAx*lls < _ and IDker =false)) do 
while Hi t prl’S_ ‘A IS not PSD do 

,L := ,1&; 

IL&, :: true; 
endwhile 

Ax* := -(H$ + pATF2A)-‘hti; 

I~Ax*~~,~ := J(Ax*)~ATS-~A(AX*); 

if (~lk~*ll.~ < 4 and I&y= false) then 
ji :- 11; ,ukc. := true; 

if 11 
-hCY 

= trk then p := a else p 

endif 

if (Ilkx* I/S > x) then 

1~ := IL; pkry := true; _ 

if Jikry = true then p := @ else p 

if /&., = false then IDkey := @Ue; 

endif 

endwhile 

if (l/A** 117 < _ and IDkey= true) then i_ := ;A; 
.T 

if (IlAx* 11,s < 7 and IDkey = false) then p := ~i,Inx* 11s: 

return (Ax*, p. A, i) 

mean of h and the lower bound; with the new value for p, the new descent direction and S-norm 
are computed. 
If the S-norm is too large, a lower bound on p has been found. p is increased, either by multi- 
plying it by /~Ax*((s or if an upper bound on p exists, by taking the geometrical mean of p and 
the upper bound; with the ne value for p, the new descent direction and S-norm are computed. 
If the S-norm is too, small and IDkey is true, decreasing p will lead to an indefinite matrix;the 
acceptable length region is adjusted, i.e. i, :I= 74, i < 1, and the descent direction is accepted. 
If the S-norm is satisfactory the descent direction is accepted. If the S-norm is below a certain 
bound, for example (4 + 1)/2, the current multiplier p is multiplied by the S-norm. The final 
multiplier of this iteration is the initial multiplier of the next iteration. 

Karmarkar et al. [6, lo] choose, when the S-norm is too large (too small), to multiply 

(divide) p by a constant p(I = &. During our experiments we observed that in each 

iteration the product p(/d x * )I s is more or less constant for each p. Therefore we choose 

to modify tl as described above. 

After a descent direction dx” has been found, a line search is applied to find the 

minimum of the potential function along the line {x E Ri 1 xk + ct Ax*}. Shi et al. [ 151 

use a golden section search. The new iterate xk+’ is computed by 

Xki-’ = Xk + cq@ Llx* 

If the potential value does not improve, i.e. $(_@+I ) > $(x”), the acceptable length 

region and hence the radius of the ellipsoid are decreased. It can be shown [lo] that 
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always a descent direction can be found if the radius of the ellipsoid is sufficiently 

decreased. In our implementation, we consider xk+’ to be a local minimum if the 

potential value does not sufficiently improve, i.e. $(xk+’ ) 2 $(xk) - ~1. 

3.3. Further algorithmic details 

3.3.1. Preprocessing 

Since the test problems are of considerable size, methods to reduce the size of 

the problem may be used, thus decreasing computational effort. Some straightforward 

preprocessing methods, which can be used separately or in combination, are discussed 

below. 

3.3.1.1. Removing variables from the problem. In some cases, it is easily seen that 

a variable included in the problem is redundant, and may be removed. For instance, 

given a frequency domain consisting of frequencies in the range [ 10, 1001, and for a 

given pair of links the minimal required frequency distance is, say, 70, then frequencies 

in the range [30,80] may not be assigned to either of these links, and the variables 

corresponding to these assignments may be removed. So, if for a given frequency-link 

pair the following holds: 

given lE2, f EF, : 3kE.Z such that VgEFk : If - g[ < d&H qrfks= I), 

then the variable xlf may be removed from the problem. Removing a variable xlf from 

the problem and updating its frequency domain may lead to other variables becoming 

redundant. We remove variables from the problem until no redundant variables remain. 

Note that this method may identify infeasibility of the problem under consideration. 

This occurs if for a link all variables are removed. Furthermore, after preprocessing, 

some links may have only one available frequency. Then the corresponding assignment 

can be fixed, and all variables corresponding to interfering assignments may be removed 

from the problem. This, in turn, may lead to some variables becoming redundant or to 

more fixed assignments. The process is repeated until no further reduction is possible. 

The infeasible instances of the FAP also can be preprocessed based on this idea. 

A variable xlf is removed if there exists a k E 9 such that for all g E &, qlfkg > C,,,,,, 

where C,,,,, is the maximum cost we allow for any pair of assignments. Removing 

variables in this way, may result in increasing the optimal solution value of the problem, 

since usually nothing is known about the optimal solution. Note that if an upper bound 

UB is known, taking C,, = UB obviously does not lead to changing the optimal 

value. 

3.3.1.2. Removing frequencies from the problem. This strategy is only valid for the 

feasible instances of the FAP. It is attempted to find a feasible assignment for the prob- 

lem using a straightforward heuristic method, and subsequently the potential reduction 

method is used to find a better solution, using only the frequencies that are required 

in the initial assignment generated by the heuristic method. A heuristic method that 
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appeared to be quite successful in finding reasonably good feasible solutions for the 

given test problems, is the following. The idea is to select the link that has the lowest 

number of frequencies available, and assign to it the frequency that has the highest 

number of links to which it may be assigned. This frequency is assigned as many times 

as possible, before another frequency is chosen to be assigned, according to the same 

rule. 

We introduce some more notation: 

The heuristic is formalized below. 

9’: the set of links to which no frequency has been assigned; 

.F,- : the set of available frequencies for link 1; 

F”: the set of unused frequencies. 

(23) 

.&f := {IEzl~fE,-}, V’fE.F. 

I* :=argmin 19,-I. 
IE YO 

while 3,: # 0 

,f* := argmax I&j 1. 
f‘E.C- ,* 

while ~FIT # 0 

f‘” * 1%. 

Update G$, Y’f E 9’; Y” and F[-. VI E Y”. 

I* = argmin IF1”,- (. 
1E d,. 

endwhile 

l* = argmin IF[-l. 
IE.9 

endwhile 

The heuristic either finds a feasible assignment, or it stops when it detects an infea- 

sibility caused by the partial assignment it has generated. If a full assignment is found, 

the preprocessed problem is obtained by removing all frequencies that are not used in 

this assignment. Note that the resulting problem may have a worse optimal assignment 

than the original, but is clearly feasible. 

3.3.2. Starting points 

Since we choose to relax the equality constraints to inequality constraints, we need 

to find an interior starting point x0 satisfying 0 <x0 <e, Bx” >d. We simply take 

(assuming IFlj 3 3, ‘dl E 2) 
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If required, for the variables zf we take 

0 M 
Zf=F- v’f EF”, 

where F - M is (again) an upper bound on the number of frequencies to be used. 

3.3.3. Local minimu 

If the algorithm ends up in a local minimum, some measures have to be taken 

to prevent the algorithm from running into the same local minimum again after the 

process has been restarted. To accomplish this, we use the following combination of 

methods. Let xl, denote the final interior solution, yielding a local minimum, and let 

x0 be the starting point. 

Change the weights in the barrier of the potential function, according to the 

following rule: determine all constraints i which are ‘near-active’ for the final 

interior solution xlm, i.e. si < ~2, where ~2 > 0 is small. Increase the corresponding 

weights wi. 

Add a cut (see also Karmarkar et al. [lo]). Let 2 be the final rounded solution. 

Suppose ,? is infeasible. Let 9 = {If 12~ = l}, then the cut 

c Xlf d VI- 1 
1fE.F 

does not cut off any feasible solution. Of course, any infeasible rounded solution 

may be used to generate a cut. 

Restart the process from a new starting point, taking the new starting point xieW 

as: 

&W =xlm + %ax(XO - X/m), 

where a,,,,, = max {a E [w+ / xlm +a (x0 -nlm) ego}. Clearly, if a=1 then x&w E x0, 

so we are looking for an CI > 1. 

3.3.4. Rounding schemes 

In each iteration, the new iterate x k+l is rounded to one or more binary solutions. 

A number of rounding schemes has been developed and tested. Here we only describe 

the rounding schemes that were the most successful in finding feasible assignments, 

according to our experiments. Table 1 gives an indication which rounding schemes are 

applicable to which classes of problems. In this section we also use the notation (23). 

3.3.4.1. Rounding scheme I. This is a straightforward rounding scheme: to each link, 

assign the frequency that has the largest xlf-value. It yields a full (not necessarily 

feasible) assignment. 

Given a fractional solution x: 

fi* : = argmax xtf , VIEW. 
fE% 

s,* + 1, VlE_Y. 
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Table I 
Applicability of rounding schemes 

Feas. Prob. Min. # Frqs. Min. Cost 

I Y 

II Y 

llla Y 

IIIb N 

IVa Y 

IVb N 

Va N 

Vb N 

3.3.4.2. Rounding scheme II The idea of this rounding scheme is to first make the 

assignment corresponding to the largest xv value which has not been rounded yet, then 

determine which assignments are not allowed as a consequence of this assignment. 

and subsequently make the next assignment. It terminates either when a full, feasible 

assignment has been found, or when a partial assignment has been generated that cannot 

be extended without violating constraints. 

Given a fractional solution x: 

while any x/f is not rounded 

(I*, f*):= argmax -y/f. 
IEP, rt4; 

3.3.4.3. Rounding schemes ZZZa and ZZZb. These rounding schemes assign a frequency 

as often as possible, before moving on to assigning other frequencies, terminating when 

a full, feasible assignment has been found, or when a partial assignment has been 

found that cannot be extended without violating constraints. The difference between 

the rounding schemes is the manner in which the frequency to assign is selected. IIIa 

selects a frequency according to the values of the x-variables, IIIb evaluates the values 

of the z-variables. Rounding scheme IlIa is formalized. 

Given a fractional solution x: 

while any XI/’ not rounded 

J” := argmax x/f. 
IEP fE.T . I 

0 := { 1 E 2’ 1 xlp unrounded} 

while 0 # 0 

I* := argmax x~f*. 
Ire 

f” =+ I*. 

Update 0. 

endwhile 

endwhile 
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3.3.4.4. Rounding schemes IVa and ZVb. In these rounding schemes the link that 

has the least number of frequencies available is selected and assigned the frequency 

corresponding to its largest xlf value. The rounding schemes terminate when either 

a full, feasible assignment has been found, or when a link has no available frequencies 

left. Rounding scheme IVa uses initially the full set of available frequencies for each 

link. In rounding scheme IVb we first construct a subset Q, of 9 containing F - M 
frequencies, with F -M the number of frequencies to be used, which can be selected 

according to either x or z values. In the rounding procedure only frequencies in @ are 

used. We summarize rounding scheme IVa: 

Given a fractional solution x: 

while any xlf not rounded and P[- # 0, ‘dl E 2’ 
1’ := argmin IP[-I. 

lE9 
f * := argmaxxj*f. 

fq; 

f* =+ I’. 
endwhile 

3.3.4.5. Rounding schemes Vu and Vb. These rounding schemes have been developed 

for the infeasible instances of the FAP; given a partial assignment, the cost of all 

possibilities of extending the assignment are determined. Subsequently, for each link the 

assignment corresponding to the lowest cost is determined, and of these the assignment 

corresponding to the highest cost is selected, until a full assignment has been generated. 

This is a maximin-strategy; rounding scheme Vb uses a minimin-strategy. To obtain 

the partial assignment the algorithm requires to start with, slightly modified versions 

of rounding schemes II or IIIa may be used. For instance, consider rounding scheme 

II. We use a slightly different notation: 

f + I : f + I and the exclusion of all interfering assignments 

with a penalty higher than AC, 

where X is some maximum cost that is allowed for the next assignment. Va can be 

summarized as follows: 

Given a partial assignment x (i.e. xi E (0, 1)): 

A := {I E 9 ( no frequency is assigned to I}. 

while A # 0 
lclf := cost of f --f I, v lEA, Vf EF,. 
fr* := argmin ‘elf, VI E A. 

fEfi 
I’ := argmax ‘cl-t;*. 

IEA 
f,T -+ I*. 
Update A. 

endwhile 
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Algorithm 3.2. The main algorithm 

Procedure solveEAP (Q, A, b) 

k := 0; /I := pLo; w := wO; 4 := &; T := x0; K := 0; 
(Q, A, b) := preprocess (Q, A, h) 
xk := grtstart_point (A,b); 

fk := round_of(xk); 
while not STOP do 

(*) 

(*I 

(Ax”, ~,2,2) := descent-direction (p,,@,&X); 
nopt := goldensection- step (A,b,xk, Ax*); 
xk+’ := xk i zoptAx*; 
if $(xk +’ ) < $(xk) - EL then 

% +I := round-of (xkf’ ); 
$4 := L&J; 
k:=k-t I; 

else 

(*I 

(A, b,x”, w) := localmin (A,b,xkf’,xo. w); 
k := 0; /I := pLo; & := &; : := 1,); K := K + 1; 

3 := round_ofS(xk); 
endif 

(*) 

STOP := eL;aluatestopping_criterium; 
endwhile 

3.4. Summary of the algorithm 

Now we are ready to summarize the complete algorithm; see Algorithm 3.2. 

We give some explanation below. 

The procedure needs initial values for the multiplier, the weight vector and the ac- 
ceptable length region. k is a counter for the number of minor iterations, K counts 
the number of major iterations. The marked steps (*) are optional. The boolean vari- 
able STOP represents some stopping criterium, which is evaluated in each (minor) 
iteration. Possible stopping criteria are, for example: 

l A feasible solution has been found. 
. A feasible solution that uses no more than F -M frequencies has been found. 
l A global minimum of nTQx has been found (without using rounding schemes). 
. A solution with ‘acceptable’ cost has been found. 
l The number of major iterations exceeds some maximum K,,,=. 

The procedures preprocess, descent-direction, get-start-point, local_min 
and round-off are discussed in the Sections 3.3.1, 3.2.2, 3.3.2, 3.3.3 and 3.3.4. Each 
time an improved value for the potential function has been found, the weights are 
decreased by a constant factor b<l, to ensure the minimum of the potential function 
will be equal to zero. 

4. Computational results 

In this section we report on computational results on a number of test problems, 

both real-life and randomly generated. The CELAR problems were made available as 
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part of the international CALMA project, which is part of the EUCLID program of 

the departments of defense of the United Kingdom, France and the Netherlands. The 

goal of this project was to develop and test algorithms for a variant of the FAP: the 

Radio Link Frequency Assignment Problem (RLFAP). Several algorithmic approaches 

have been taken to solve the RLFAP; see for an overview [ 18].3 Both the CELAR 

and the randomly generated test instances have a specific structure which is explained 

in the next subsection. Further on in this section some implementational issues will be 

discussed. 

4. I. A special structure of the CELAR problems 

In the model constructed in Section 2 it is assumed that no equality interference 

constraints exist. In the CELAR data sets however, equality constraints do occur. 

By using a special structure of the CELAR problems, the equality constraints can 

be eliminated. Let us introduce some extra notation: 

9Jeq: set of pairs of links for which an equality constraint must be satisfied; 

dz: required frequency distance between the links (I, k) E 94. 

On examination of the CELAR data sets the following structure concerning the equality 

constraints becomes clear: 

geq={(1,2),(3,4) ,..., (L- 1,L)); 

d;; = 4e” = . . = d;& = 238; 

p12 = p34 =. . . = PL__1,J = 0. 

Or, in words, for each link there exists exactly one equality constraint, which has to 

be satisfied. Furthermore, the frequency domains have the following structure: 

Qf~9:3!f*~9: If*-f]=238; 

4 = &I, Ql E 3, 1 odd. 

So, each frequency has exactly one complementary frequency. Therefore we can define 

9’ = {I E 9 1 I is odd}. 

We define the following binary decision variables: 

1 

xrf = 
if f -+ 1, 

0 otherwise, 
Q’IEY, 'if EF,. 

Obviously, it is sufficient to define xv only for all 1 E .Y*, because assigning 

f to 1 automatically implies assigning the complementary frequency of f to 1 + 1. 

3 For more information on the CALMA project, the interested reader is referred to the World Wide Web 

page http://www.win.tue.nI/win/mat/bs/comb_opt/hmkens/calma.h~l. Most test problems appearing in this 
section (and technical reports) are obtainable from ftp://ftp. win.tue.nl/pub/techreports/CALMA. 
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This yields a problem size reduction by a factor two. Consequently, we may assume 

that no equality constraints occur in the RLFAP; the equality constraints in Wq will 

be modelled implicitly. The GRAPH test problems [2] are patterned after the CELAR 

problems and exhibit the same structure. 

Finally, we mention that all test instances make use of a frequency domain that 

consists of 48 distinct frequencies, and for each link a subset of these 48 frequencies 

is available. Therefore, an upper bound on the number of variables required to model 

an L-link FAP is ;LF = 24L. 

4.2. Implementation 

The algorithm is implemented in MATLABTM. A number of FORTRAN routines, 

provided by the linear programming interior point solver LIPSOL [22], are incorporated. 

These use sparse matrix techniques to do the minimum degree ordering, symbolic 

factorization, Cholesky factorization and back substitution to solve the linear system 

( 18). The tests were run on a HP9000/720 workstation, 144 Mb memory, 50 mHz. 

In the implementation, the following parameter settings are used: 

l The initial acceptable length region (2, z) = (0.5, 1 .O). 

l The reduction factor of the acceptable length region y = 0.25. 

l The tolerance cl = 10p3. 

l The weights w, are initially set to 100/n; they are multiplied by a = i in each 

iteration. After a restart, the weights are reset to their initial value, and a number 

of weights are increased by a factor 8, according to the rule described in Section 

3.3.3, with 1:~ = 10-2. 

l The initial multiplier ~1’ is set to ~(n/lOO)max~(~,)max~,(Q,j), where i is a constant 

that is taken equal to i, 2, l/10 for solving the problems (RQ), (RQ), (RF). 

l The maximal number of major iterations K,,, is set to 5 for the smaller ( < 1200 

variables) problems, and to 2 for the larger problems. 

4.3. Results on feasible FAPs 

In this section the results of applying the algorithm to a number of feasible test 

problems are given. All problems except the CELAR problems were generated using 

GRAPH [2]. 

4.3. I. Preprocessiny the feasible FAPs 

Most problems can be reduced by applying the preprocessing technique of Sec- 

tion 3.3.1 .l. Table 2 shows the results obtained using this preprocessing method. It 

appears that this preprocessing method is a powerful tool to reduce the size of the 

problems; three problems are even completely solved, as it appears that only ow fea- 

sible assignment exists for these problems. Obviously, this method is effective only 

if there exist some reasonably large interference constraints. Unfortunately, not in all 

problems such constraints exist; these problems do not reduce in size. 
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Table 2 

Preprocessing results using preprocessing method 1 

Problem description 

Name L 

min. 

# frq. 

Reduction # variables 

Before After Pert. 

GR10.4 IO 8 4 240 144 

GR10.6 10 16 6 240 158 

GR10.8 10 32 8 178 75 

GR16.6 16 28 6 384 208 

GR20.6 20 36 6 480 387 

GR20.10 20 80 IO 480 212 

GR24.6 24 74 6 494 494 

GR26.8 26 12 8 624 363 

GR30.8 30 84 8 720 538 

GR36.12 36 204 12 526 506 

GR40.8 40 170 8 670 627 

GR40.10 40 124 10 786 20 

GR40.18 40 212 18 782 239 

GR50.12 50 240 12 1200 568 

GR60.12 60 296 12 948 30 

GR76.10 76 392 10 1544 512 

GR100.12 100 484 12 2400 1156 

TUD200.1 200 1071 

TUD200.2 200 1043 

TUD200.3 200 1060 

TUD200.4 200 1042 

12 4064 

46 3840 

< 14 3620 

20 3456 

3991 2% 

100 100% 

3425 6% 

302 94% 

CELAR04 680 3627 46 13428 740 96% 

41% 

35% 

60% 

47% 

20% 

44% 

0% 

43% 

26% 

4% 

7% 

71% 

58% 

100% 

69% 

53% 

Note: Given are, for each test instance, the numbers of links and interference constraints, the minimal number 

of frequencies required and the number of variables before and after preprocessing. The reduction percentage 

can be computed by noting that for a feasible L-link problem, at least ;L variables must remain. 

The method described in Section 3.3.1.2 was developed to reduce the size of the 

larger (3 200 links) problems. Table 3 shows the results. 

4.3.2. Computationul results on ,feasible FAPs 
The algorithm was applied to all the preprocessed problems of the previous sec- 

tion, using model (RQ). After each iteration, the rounding schemes I, II, IIIa and IVa 

all were applied, because earlier experiences with the algorithm indicated that, gener- 

ally speaking, it is hard to predict beforehand which of these rounding schemes will 

give the best results. In our implementation, the amount of time needed to round the 

solutions and solve the linear systems is comparable. In an efficient low level lan- 

guage implementation, solving the linear systems will dominate the computation times. 

A number of problems were solved using both the full and preprocessed version. 

In Table 4 the best solutions are shown. For all problems feasible assignments were 

found, and in most cases the assignments found are optimal or near-optimal. During 

the experiments, we observed that for the majority of problems feasible (but not neces- 

sarily optimal) assignments were generated in the first few iterations (this is not indi- 

cated in the table). Globally speaking, rounding scheme IIIa was the most successful 
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Table 3 

Preprocessing results using preprocessing method 2 

Problem description min. Preprocessing 
~_______ 

Reduction # variables 

Name L ITI # frq. +l frq. Time Before After Perc 

TUDZOO. 1 200 1071 12 70 6.2 399 I I740 5f”‘,, 

TIJD200.3 200 1060 <I4 76 6.4 3425 1483 55” 0 

GRAPH0 I 200 1034 I8 12 6.7 3460 I702 511 I, 

GRAPH02 400 2045 I4 18 24.2 7312 3078 58”o 

GRAPH14 916 4180 8 I2 127 18358 5062 7 ; ( ,~, 

CELAROI 916 5090 I6 20 I IX IX 100 7734 W’ 0 

CELAROZ 200 II35 I4 I6 9.2 4002 I506 63” 0 

CELAR03 400 2560 14 18 26.1 7946 3180 6 1’) 0 

Note: Given are, for each test instance, the numbers of links and Interference constraints, the minlmal number- 

of frequencies required, the quality of the solution and the time required for preprocessing, the number of’ 

variables before and after preprocessing, and the reduction in percentages. 

in finding optimal assignments, rounding scheme II generated feasible assignments 

quickly, rounding scheme IVa worked when the others failed (especially for the largest 

problems) and rounding scheme I found feasible assignments when the iterates were 

close to a global minimum. 

Furthermore. for most problems a global minimum which yields in all cases more 

than one and for the larger problems an enormous number of feasible assignments was 

found. Unfortunately, though not surprisingly, in most cases the best assignments that 

can be constructed from a fractional global minimizer are nonoptimal. 

Therefore, we also solved most of the above problems using model (Ra) (Table 5 ). 

The number of frequencies to be used F - M was set equal to the optimal or best 

known solution. We used the rounding schemes I-IV. IJsing this model, for a number 

of problems a better solution was found (than previously). However, it is much more 

rare that a global minimum was found. This only happened for a few (relatively small) 

instances. In some cases a local minimum was found in which only the constraint on 

the number of frequencies to be used was violated, i.e. for the final solution y = (.t-,: )’ 

we found that xTQx = 0 while zTRx > 0. Still, the assignments induced by x were close 

to optimal, and are therefore included in the table. 

Generally, if no global minimum was found, the local minima that were found had 

a value close to zero, usually in the range of l-8. So, the corresponding assignments 

violate only a very small number of interference constraints. By applying some local 

search technique to these infeasible assignments, feasible assignments can be generated, 

probably in only a few steps. 

4.4. Results on infeasible FAPs 

Finally, a number of infeasible instances were solved. For these instances I?““” = 

mobmax = 4 and the associated penalties zi resp. Oi are equal to 104-‘; except for 

CELARlO where Bi = 106-‘. A priority of 0 occurs only for equality constraints. 
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Table 4 

Computational results using model (RQ) 

Problem 

Best assignment 

# frq. Time # iter. 

Final feasible assignments 

# ass. Best Time # iter. 

GR10.4 

GR10.6 

GR10.8 

GR16.6 

GR20.6 

GR20.10 

GR24.6 

GR26.8 

GR30.8 

GR36.12 

GR40.8 

GR40.18 

GR50.12 

GR76.10 

GR100.12 

TUDZOO. 1 
TUD200.lpp 

TUD200.3 

TUD200.3pp 

TUD200.4 

GRAPH01 

GRAPH0 lpp 

GRAPH02pp 

GRAPH14pp 

CELARO 1 pp 

CELAR02 

CELAR02pp 

CELAR03 

CELAR03pp 

CELAR04pp 

4 0.2 

6 0.2 

8 0.2 

6 4 

6 0.4 

10 2.8 

6 0.5 

8 22 

10 35 

14 49 

10 0.8 

18 8 

12 325 

16 36 

14 69 

18 3602 

14 348 

32 2926 

20 2395 

20 8 

22 568 

18 391 

14 286 

10 3806 

18 2863 

16 164 

14 102 

20 248 

16 183 

46 5 

0 

9 

10 

0 

5 

80 

12 

18 

16 

29 

32 

4 

19 

4 

11 

8 

3 

0 

36 000 4 

1170 6 

15 8 

7650 6 

7.1 x 106 10 

1200 16 

9.9x 106 8 

9.0 x 106 10 

2.1 x 105 12 

82944 14 

7.8 x lo9 10 

1.8 x lo* 20 

Local minima 

5.4x 10’0 22 

1.3xlO’O 20 

1.8 x 1O35 32 

3.6x 102’ 20 

2.9 x 1O34 32 

Local minima 

8.8 x 10’2 20 

2.3 x 10” 32 

1.8x 1028 22 

9.0x 1O55 18 

Local minima 

22 25 

37 29 

6 16 

29 22 

49 18 

36 19 

69 19 

33 17 

90 22 

75 18 

80 19 

13 15 

37 19 

336 43 

5215 26 

342 22 

2575 29 
- 

14 14 

2776 23 

1426 101 

1199 29 
- 

Local minima - 

9.6 x 1 045 28 2238 54 

1.5x 1032 350 50 

9.1 x 109’ :z 7973 59 

Local minima - 

1.7x lO@j 46 83 12 

Note: Given are times and numbers of minor iterations required to find the best (optimal) feasible assign- 

ment and a global minimum (if any). The times are respectively with and without time for rounding the 

fractional solutions incorporated. Also, the number of feasible assignments and the best assignment that can 

be constructed from the (fractional) global minimizer are given. 

Table 6 gives the preprocessing results for a number of problems. The maximum cost 

for any assignment (C,,,) was set to 50 (see Section 3.3.1.1). In Table 7 the compu- 

tational results are shown, The rounding schemes I and Va and Vb were applied. The 

partial assignment needed by the rounding schemes V was generated with rounding 

scheme II, with X = 50 (see Section 3.3.4). We observe that only for the smallest 

instance an optimal solution was found, by rounding scheme Va. In most other cases 

the best found solution was generated by rounding scheme I and equal to the value of 

the final solution, except for CELARlO; this solution was obtained by rounding scheme 

Va. Again, large numbers of equivalent assignments were found simultaneously. 
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Table 5 

Computational results using model (RQ) 

Name 

Best assignment 

x frq. Time # iter. 

Final feasible assignments 

# ass. # frq. Time # iter. 

GR10.4 

GR10.6 

GR10.8 

GRI 6.6 

GR20.6 

GR20. IO 

GR24.6 

GR26.8 

GR30.8 

GR36.12 

GR40.8 

GR40.18 

GR76.10 

GRl00.12 

TUD200.lpp 

TUD200.3 

TUD200.3pp 

GRAPH0 1 
GRAPHOlpp 

GRAPH02pp 

CELARO I pp 

CELAROZ 

CELAR02pp 

CELAR03 

CELAR03pp 

4 0.2 

6 0.2 

8 0.2 

6 13 

6 0.4 

10 2.9 

6 0.5 

8 18 

8 6 

12 78 

8 850 

18 61 

14 180 

IR 684 

16 2611 

26 6632 

18 2434 

20 237 

18 1397 
14 2355 

16 544 

14 2355 

14 13 

18 6618 
16 3314 

0 

6 

1 

15 

145 

22 

46 

59 

8 4 

8 6 

2 8 

4 6 

Local minima 

Local minima 

4096 6 

Local minima 

Local minima 

64 12 

4 8 

Local minima 

Local minima 

Local minima 

114 Local minima 

60 Local minima 

155 Local minima 

I 
73 

39 

12 

39 

I 
31 

79 

4.7 x 1039 20 

Local minima 

Local minima 

Local minima 

4.0x 103” 16 

1.2x 1028 

8.1 x 106’ :: 

5.7x 1O62 18 

23 27 

36 31 

57 130 

35 28 

133 28 

193 39 

729 151 

3212 29 

2545 60 

380 52 

I I225 75 

1524 110 

Note: Given are times and numbers of minor iterations required to find the best (optimal) feasible assignment 

and a global minimum (if any). The times are respectively with and without time for rounding the fractional 

solutions incorporated. Also, the number of feasible assignments (if any) that can be constructed from the 

final (fractional) minimizer and the number of frequencies the) use are given. 

Table 6 

Preprocessing results on infeasible FAPs 

Problem description 

Name L 

min. Reduction # variables 

cost Before After Pert. 

GR12.6 12 32 100 214 

GR40.6 40 124 2130 704 636 IO% 

CELAR06 200 1222 3437 4010 2164 47% 

CELAR09 680 3763 15665 13428 5550 60% 

CELARIO 680 3763 32 456 13428 3450 76% 

Note: Given are, for each test instance, the problem size, the optimal cost and the reduction of the number 

of variables both absolute and in percentages. CELAR09( 10) was preprocessed by fixing assignments for 
links with a mobility lower than 2(3). 
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Table 7 

Computational results using model (Rz) 

Problem 

Best assignment 

cost Time # iter. 

Final assignments 

# ass. cost Time # iter. 

GR12.6 100 8 3 288 103 50 25 

GR40.6 3604 648 69 663 552 3604 637 78 

GR40.6pp 2776 263 29 84 672 2776 293 38 

CELAR06pp 4539 2620 90 7.3 * 1023 4539 2176 95 

CELAR09pp 15775 1756 30 8.1 * lOI 15775 1905 43 
CELARl Opp 32 460 50 1 3.4 * 10’5 32474 582 27 

Note: Given are times and numbers of minor iterations required to find the best (optimal) assignment and 

a local minimum. The times are respectively with and without time for rounding the fractional solutions 

incorporated. Also, the number of assignments that can be constructed from the (fractional) local minimizer, 

and their cost, are given. 

Remark. The matrices B are generally more dense than the matrices Q and ?j; this 

is due to the fact that the required frequency distances in most infeasible instances of 
the (RL)FAP are larger than for the feasible instances. Therefore, solving the linear 

systems requires more time. 

5. Concluding remarks 

In this paper an interior point potential reduction algorithm for the Frequency As- 

signment Problem has been developed. 

l A quadratic formulation of the FAP has been developed, which results in a com- 

pact and computationally attractive problem formulation. A further advantage of the 

quadratic formulation is, that it provides a uniform model for the various objectives 

of the FAP and that by optimizing it multiple solutions may be found. 

l By applying an interior point algorithm to the potential function for solving the 

quadratic model, problems up to a size of 8000 variables have been solved within 

reasonable time. The assignments obtained are generally speaking fairly good; for 

most feasible instances optimal or near optimal assignments have been found, while 

for the infeasible instances the obtained assignments are within reasonable distance 

of the best known or optimal assignments. For the larger problems vast amounts 

of assignments have been found; though this requires substantial computation times 

(since the algorithm must run until it converges to a global minimum), the numbers 

of assignments found are so large that it is worth the effort if the user is interested 

in obtaining multiple solutions. 

l A drawback of this method is that it does require substantial computational effort as 

in each iteration a square symmetric matrix has to be factorized at least once; for 

large problems this matrix is considerably large, and therefore computation times 
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will increase. Reducing the problem size as much as possible is therefore important. 

For the FAP several preprocessing methods, both exact and heuristic, have been 

developed. These methods work quite well and subsequently good solutions are 

found using potential reduction. 

l The results described in this paper were obtained using a MATLABTM/FORTRAN 

implementation. Computation times can substantially be improved when using an 

efficient low level language implementation. 

As the results indicate, potential reduction methods can be quite effective in solving 

difficult combinatorial optimization problems. An overview paper by Tiourine et al. 

[18] evaluates the assets and drawbacks of the various approaches which have been 

applied to the FAP within the CALMA project. Although it is hard to compare the 

various algorithms, since different programming languages and hardware were used to 

test them, the following tentative conclusions are drawn. With respect to effectiveness, 

the potential reduction method is ranked along with simulated annealing, variable depth 

search and certain types of genetic algorithms, while it rates slightly better than taboo 

search and other types of genetic algorithms. As far as efficiency is concerned, the 

method is comparable to the above-mentioned algorithms. 

Taking into consideration the short history of the method, the outlook is promising: 

more experimentation with potential reduction methods on various kinds of combina- 

torial optimization problems will give us more insight in the behavior of the algorithm 

and thus lead us to apply it as successful as possible. 
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