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Abstract

We generalize and complete Ferri’s characterization of the finite quadric Veron#balshowing
that Ferri's assumptions also characterize the quadric Veroneseans in spaces of even characteristic.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let g be a fixed prime power. For any intederdenote byPG(k, ¢g) the k-dimensional
projective space over the finite (Galois) fi&é (¢) of g elements. We choose coordinatesin
PG(2, g) and inPG(5, ¢). TheVeronesean mamaps a point oPG(2, ¢) with coordinates
(x0, x1, x2) onto the point oPG(5, ¢) with coordinates

2 2 2
(x§, X1, X5, X0X1, X0X2, X1X2).

The quadric Veroneseai’n’g1 is the image of the Veronesean map. Thel@is a cap of
PG(5, g) and has a lot of other nice geometric and combinatorial properties, summarized in
[2]. We also refer to [2] for characterizations of this cap, sometimes callecbmesean cap

In particular, there exists a characterizationiéfin terms of the intersection numbers of a
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hyperplane which is valid faodd. It was first considered and proved by Fgt}ithe proof
in [2] is much shorter because Hirschfeld and Thas make use of the other characterizations.
Also, the proof of Ferri did not work fof = 3; see [1]. Recently, the authors proved a new
characterization of the finite quadric Veroneseans, and they will use it here to generalize
Ferri’'s result to all.

We now prepare the statement of our Main result.

2. Main result

Recall from [2] that the quadric Veronesebf@ is a capk in PG(5, q) satisfying the
following two properties:

(VC1) For every hyperplane of PG(5, ¢), we havelr N K| = 1,¢g + 1 or 24 + 1, and
there exists some hyperplanesuch thatz N | = 2¢ + 1.
(VC2) Any plane ofPG(5, ¢) with four points inK has at leasy + 1 points inkC.

It is also proved iff2] that these two properties characterlﬁ!sfor all oddg; Ferri [1] had
proved this for all odd; # 3. In the present paper we will prove this for gllin fact, we
will be able to copy the proof in [2] for the general case (now relying on the Main results
of [4]) except forg = 4, for which we produce a separate argument.

So we obtain the following general characterization:

Theorem 2.1. Let K be a set of points d?G(5, ¢), ¢ > 2, satisfying(VC1) and (VC2).
Thenk is projectively equivalent with the quadric Veroneseérin PG(5, g). Forg = 2,

a set of points irPG(5, 2) satisfying(VC1) and (VC2) is either a quadric Veronesean or
an elliptic quadric in some subspa®&(3, 2).

3. Proof of the main result

We now prove Theorer.1.

Let KC be a set of points dPG(5, ¢), ¢ > 2, satisfying (VC1) and (VC2) (see above).
We first prove thakC is a(¢? + ¢ + 1)-cap. This follows from the results in [2] if # 4.
So we first deal with the cagse= 4.

In the next three lemmas, we assume that 4 and thatC satisfies (VC1) and (VC2).
We adopt the terminology of [2]: solid is a 3-dimensional subspaceP®(5, 4), while a
primeis a 4-dimensional subspaceRG(5, 4).

Lemma 3.1. K generateG(5, 4).

Proof. By (VC1) the setlC does not generate a line. Assume tkagenerates a plane.
By Lemma 25.3.5 of2] there is a lineL of 7o with |[L N K| € {2, 3}. Let n4 be a prime
which containd_ but notn,. Then|mg N K| € {2, 3}, contradicting (VC1). Next, assume
thatC generates a soligk. Then|/C| = 9 and each plane af; has one or five points ift.
Letp andp’ be distinct points ok. Suppose that the lingp’ = L hasb > 2 points ink.
Counting the points of in the planes oftz through the lind., we obtain $5—5) +b = 9,



J.A. Thas, H. Van Maldeghem / Journal of Combinatorial Theory, Series A 110 (2005) 217 — 22119

whenceb = 4. LetLNK = {p, p’, p”, p”}and letro N K = {p, p’, p”, p"”, r}, with 72
some plane oftz throughL. Then the line'p has only 2 b points inkC, a contradiction.
Finally, assume that generates a primes. By (VC1) we have agaiflC| = 9 and each
solid iz of 4 has one or five points ik. LetL be a line having at least 2 pointsit) and let
72 be a plane oft4 containingL. Further, lef L N | = a and|n2 N K| = b. Counting the
points of K in the solids ofr4 containingro, we obtain %5 — b) + b = 9, whenceb = 4.
Counting the points ok in the planes oft4 containingL, we obtain 214 — a) +a = 9.
Consequently: = 15/4, a contradiction. The lemma is proved.]

Lemma 3.2. Kisacap

Proof. LetL be a line. By Lemma 25.3.2 ¢2] we have eithel. € I or |L N K|<3.

Firstassume that N K = {p, p’, p”}. Choose pointsy, r2, r3onK\ {p, p’, p”} so that
(L, r1,r2,r3) is a primens. Then|ng N K| = 9. NecessarilyL, r;) contains five points
of K,i =1, 2, 3 (use (VC2)). The solidL, r1, r2) contains either seven or eight points. If
(L, r1, r2) contains eight points, then it contains the three pldaiies;), i = 1,2, 3, so it
contains nine points, a contradiction. Hemken (L, r1, r2)| = 7. Considering the primes
containing(L, r1, r2) there arise$XC| = 17. Now we projecfC \ L from L onto a solidrs
skew toL. There arises a séf’ of size 7 ing which intersects each plane of in either
one or three points. By [3] such a gétdoes not exist.

Next, assume thak’ contains a lineL. Choose pointsy, 2,73 € K \ L such that
(L, r1, r2, r3) generates a primey. Then|mga N IC| = 9. Let (K Nwg) \ L = {r1, r2, r3, r4}.
By the preceding paragraph ¢ (L, r;),i = 1, 2, 3, as otherwise there is a line containing
exactly three points of. Now we projectC \ L from L onto a solidrz skew toL. There
arises a set’’ which intersects each plane of in either one or four points. By [3] such a
setK’ does not exist.

The lemma is proved. O

Lemma 3.3. The capk contains exactl21 points

Proof. Put|K| = k. Letnl, 2, ... be the primes oPG(5, 4), and lets; be the number
of points of K in ”2- Counting in two ways the number of ordered pairs ”2)’ with
p € KN xi, we obtain

1365
> si =34k
i=1

Counting in two ways the number of ordered triples p’, nz), with p, p’ e KN nz, and
p # p’, we obtain

1365

Z si(s; — 1) = 85k(k — 1).

i=1
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The setC is a cap; so counting in two ways the number of ordered 4-tuples’, p”, m}),
with p, p/, p” e KNy, andp # p’ # p” # p, we obtain

1365
> silsi = Disi — 2) = 21k — D(k — 2).
i=1
Sinces; € {1, 5, 9} for all i, we have
1365

> i = Disi —5)(s; —9 =0.

i=1

Hence
1365 1365 1365
Z si(si = D(si —2) — 12 Z si(si — 1) + 45 Z s; — 61425= 0.
i=1 i=1 i=1

We obtain, substituting the previous equalities,
21k(k — 1)(k —2) — 1020c(k — 1) 4+ 1534% — 61425= 0.

Hence %3 — 361k? + 546% — 20475= 0. It follows thatk = 21 ork = 25.

Assume that = 25. If 3 is a solid which containg > 6 points of/C, then|K| = 25 =
a +5(9 — a), soa = 5, a contradiction. Iftz is a plane which contains at least four points
of I, thenny contains at least five points @ (by (VC2)), so there exists a solid which
contains at least six points @&f, a contradiction. Hence any four points/Gfare linearly
independent.

Let p be a fixed point ofC. Let¢; be the number of primes &G(5, 4) which containp
and intersecikC in i points,i = 1, 5, 9. Counting pair§p’, na} with p’ € IC, p # p’, with
T4 @ prime angp, p’ € n4, We obtain 45 + 8cg = 2040. Counting triplegp’, p”, ma} with
p.p" ek, p#£p #p’# p,withngaprimeandg, p’, p” € na, we obtain G5+28cg =
5796. Counting quadrupld®’, p”, p””’, ma} with p’, p”, p”" € K, p, p’, p”, p’” distinct
74 @ prime andp, p’, p”’, p’”’ € ma, we obtain 4s + 56cg = 10120, clearly contradicting
the previous equalities.

So we conclude thdt = 21 and the lemma is proved[]

Now it is clear that Lemmas 25.3.10-25.3.132jfhold for all ¢ > 3. In particular, this
means that there are exacil§ + g + 1 planes oPG(5, ¢) meetingk in an oval (which is
a (g + 1)-arc), and every pair of points & is contained in exactly one such plane. Also,
two such planes meet in exactly one point, which belongs.toet C be as in Theorem 2.1
and suppose > 2. By the proof of Theorem 25.3.14 of [2], we now also have that every
three planes dPG(5, ¢) that interseckC in an oval generateG(5, ¢). By Theorem 1.3 of
[4], K either is the quadric Veronese}i@ org = 4 andK is the unique 2-dimensional dual
hyperoval ofPG(5, 4). As in the latter case (VC2) is not satisfied, we proved Theorem 2.1
forallg > 2.

Finally suppose; = 2. We use similar terminology as before. et be a prime of
PG(5, 2) containing 5 points of. If these five points generate, then, considering the



J.A. Thas, H. Van Maldeghem / Journal of Combinatorial Theory, Series A 110 (2005) 217 — 2211

three primes through a solid containednin and itself containing four points df, it is
easily seen thattC| = 7 and every six points of generatd?G(5, 2). In this caseC is a
skeleton and hence isomorphic to the quadric Verone]siéaﬁo we may assume that these
five points do not generatey. Clearly this impliegC| = 5. It is now an easy exercise to
see thatC generates a solid and is an elliptic quadric in that solid (because every plane of
that solid contains either one or three point&df

The proof of Theoren2.1 is complete.
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