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Abstract

Wegeneralize and complete Ferri’s characterization of the finite quadricVeroneseanV4
2 by showing

that Ferri’s assumptions also characterize the quadric Veroneseans in spaces of even characteristic.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Let q be a fixed prime power. For any integerk, denote byPG(k, q) thek-dimensional
projective space over the finite (Galois) fieldGF(q) of qelements.We choose coordinates in
PG(2, q) and inPG(5, q). TheVeronesean mapmaps a point ofPG(2, q) with coordinates
(x0, x1, x2) onto the point ofPG(5, q) with coordinates

(x2
0, x

2
1, x

2
2, x0x1, x0x2, x1x2).

Thequadric VeroneseanV4
2 is the image of the Veronesean map. The setV4

2 is a cap of
PG(5, q) and has a lot of other nice geometric and combinatorial properties, summarized in
[2].We also refer to [2] for characterizations of this cap, sometimes called aVeronesean cap.
In particular, there exists a characterization ofV4

2 in terms of the intersection numbers of a
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hyperplanewhich is valid forqodd. It was first considered and proved by Ferri[1]; the proof
in [2] is much shorter because Hirschfeld and Thas make use of the other characterizations.
Also, the proof of Ferri did not work forq = 3; see [1]. Recently, the authors proved a new
characterization of the finite quadric Veroneseans, and they will use it here to generalize
Ferri’s result to allq.
We now prepare the statement of our Main result.

2. Main result

Recall from [2] that the quadric VeroneseanV4
2 is a capK in PG(5, q) satisfying the

following two properties:

(VC1) For every hyperplane� of PG(5, q), we have|� ∩ K| = 1, q + 1 or 2q + 1, and
there exists some hyperplane� such that|� ∩ K| = 2q + 1.

(VC2) Any plane ofPG(5, q) with four points inK has at leastq + 1 points inK.

It is also proved in[2] that these two properties characterizeV4
2 for all oddq; Ferri [1] had

proved this for all oddq �= 3. In the present paper we will prove this for allq. In fact, we
will be able to copy the proof in [2] for the general case (now relying on the Main results
of [4]) except forq = 4, for which we produce a separate argument.

So we obtain the following general characterization:

Theorem 2.1. LetK be a set of points ofPG(5, q), q > 2, satisfying(VC1) and (VC2).
ThenK is projectively equivalent with the quadric VeroneseanV4

2 in PG(5, q). For q = 2,
a set of points inPG(5,2) satisfying(VC1) and (VC2) is either a quadric Veronesean or
an elliptic quadric in some subspacePG(3,2).

3. Proof of the main result

We now prove Theorem2.1.
Let K be a set of points ofPG(5, q), q > 2, satisfying (VC1) and (VC2) (see above).

We first prove thatK is a(q2 + q + 1)-cap. This follows from the results in [2] ifq �= 4.
So we first deal with the caseq = 4.
In the next three lemmas, we assume thatq = 4 and thatK satisfies (VC1) and (VC2).

We adopt the terminology of [2]: asolid is a 3-dimensional subspace ofPG(5,4), while a
prime is a 4-dimensional subspace ofPG(5,4).

Lemma 3.1. K generatesPG(5,4).

Proof. By (VC1) the setK does not generate a line. Assume thatK generates a plane�2.
By Lemma 25.3.5 of[2] there is a lineL of �2 with |L ∩ K| ∈ {2,3}. Let �4 be a prime
which containsL but not�2. Then|�4 ∩ K| ∈ {2,3}, contradicting (VC1). Next, assume
thatK generates a solid�3. Then|K| = 9 and each plane of�3 has one or five points inK.
Let p andp′ be distinct points ofK. Suppose that the linepp′ = L hasb�2 points inK.
Counting the points ofK in the planes of�3 through the lineL, we obtain 5(5−b)+b = 9,
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whenceb = 4. LetL ∩ K = {p, p′, p′′, p′′′} and let�2 ∩ K = {p, p′, p′′, p′′′, r}, with �2
some plane of�3 throughL. Then the linerp has only 2�= b points inK, a contradiction.
Finally, assume thatK generates a prime�4. By (VC1) we have again|K| = 9 and each
solid�3 of �4 has one or five points inK. LetL be a line having at least 2 points inK, and let
�2 be a plane of�4 containingL. Further, let|L ∩ K| = a and|�2 ∩ K| = b. Counting the
points ofK in the solids of�4 containing�2, we obtain 5(5− b) + b = 9, whenceb = 4.
Counting the points ofK in the planes of�4 containingL, we obtain 21(4− a) + a = 9.
Consequentlya = 15/4, a contradiction. The lemma is proved.�

Lemma 3.2. K is a cap.

Proof. Let L be a line. By Lemma 25.3.2 of[2] we have eitherL ⊆ K or |L ∩ K|�3.
First assume thatL∩K = {p, p′, p′′}. Choose pointsr1, r2, r3 onK \ {p, p′, p′′} so that

〈L, r1, r2, r3〉 is a prime�4. Then|�4 ∩ K| = 9. Necessarily〈L, ri〉 contains five points
of K, i = 1,2,3 (use (VC2)). The solid〈L, r1, r2〉 contains either seven or eight points. If
〈L, r1, r2〉 contains eight points, then it contains the three planes〈L, ri〉, i = 1,2,3, so it
contains nine points, a contradiction. Hence|K ∩ 〈L, r1, r2〉| = 7. Considering the primes
containing〈L, r1, r2〉 there arises|K| = 17. Now we projectK \ L from L onto a solid�3
skew toL. There arises a setK′ of size 7 in�3 which intersects each plane of�3 in either
one or three points. By [3] such a setK′ does not exist.
Next, assume thatK contains a lineL. Choose pointsr1, r2, r3 ∈ K \ L such that

〈L, r1, r2, r3〉 generates a prime�4. Then|�4 ∩ K| = 9. Let(K ∩ �4) \ L = {r1, r2, r3, r4}.
By the preceding paragraphr4 /∈ 〈L, ri〉, i = 1,2,3, as otherwise there is a line containing
exactly three points ofK. Now we projectK \ L from L onto a solid�3 skew toL. There
arises a setK′ which intersects each plane of�3 in either one or four points. By [3] such a
setK′ does not exist.
The lemma is proved.�

Lemma 3.3. The capK contains exactly21points.

Proof. Put |K| = k. Let �1
4,�

2
4, . . . be the primes ofPG(5,4), and letsi be the number

of points ofK in �i
4. Counting in two ways the number of ordered pairs(p,�i

4), with
p ∈ K ∩ �i

4, we obtain

1365∑

i=1

si = 341k.

Counting in two ways the number of ordered triples(p, p′,�i
4), with p, p′ ∈ K ∩ �i

4, and
p �= p′, we obtain

1365∑

i=1

si(si − 1) = 85k(k − 1).
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The setK is a cap; so counting in two ways the number of ordered 4-tuples(p, p′, p′′,�i
4),

with p, p′, p′′ ∈ K ∩ �i
4, andp �= p′ �= p′′ �= p, we obtain

1365∑

i=1

si(si − 1)(si − 2) = 21k(k − 1)(k − 2).

Sincesi ∈ {1,5,9} for all i, we have

1365∑

i=1

(si − 1)(si − 5)(si − 9) = 0.

Hence

1365∑

i=1

si(si − 1)(si − 2) − 12
1365∑

i=1

si(si − 1) + 45
1365∑

i=1

si − 61425= 0.

We obtain, substituting the previous equalities,

21k(k − 1)(k − 2) − 1020k(k − 1) + 15345k − 61425= 0.

Hence 7k3 − 361k2 + 5469k − 20475= 0. It follows thatk = 21 ork = 25.
Assume thatk = 25. If �3 is a solid which containsa�6 points ofK, then|K| = 25=

a + 5(9− a), soa = 5, a contradiction. If�2 is a plane which contains at least four points
of K, then�2 contains at least five points ofK (by (VC2)), so there exists a solid which
contains at least six points ofK, a contradiction. Hence any four points ofK are linearly
independent.
Let p be a fixed point ofK. Let ci be the number of primes ofPG(5,4) which containp

and intersectK in i points,i = 1,5,9. Counting pairs{p′,�4} with p′ ∈ K, p �= p′, with
�4 a prime andp, p′ ∈ �4, we obtain 4c5+8c9 = 2040. Counting triples{p′, p′′,�4} with
p′, p′′ ∈ K,p �= p′ �= p′′ �= p, with�4 a prime andp, p′, p′′ ∈ �4, we obtain 6c5+28c9 =
5796. Counting quadruples{p′, p′′, p′′′,�4} with p′, p′′, p′′′ ∈ K, p, p′, p′′, p′′′ distinct,
�4 a prime andp, p′, p′′, p′′′ ∈ �4, we obtain 4c5 + 56c9 = 10120, clearly contradicting
the previous equalities.
So we conclude thatk = 21 and the lemma is proved.�
Now it is clear that Lemmas 25.3.10–25.3.13 of[2] hold for all q �3. In particular, this

means that there are exactlyq2 + q + 1 planes ofPG(5, q) meetingK in an oval (which is
a (q + 1)-arc), and every pair of points ofK is contained in exactly one such plane. Also,
two such planes meet in exactly one point, which belongs toK. LetK be as in Theorem 2.1
and supposeq > 2. By the proof of Theorem 25.3.14 of [2], we now also have that every
three planes ofPG(5, q) that intersectK in an oval generatePG(5, q). By Theorem 1.3 of
[4], K either is the quadric VeroneseanV4

2 or q = 4 andK is the unique 2-dimensional dual
hyperoval ofPG(5,4). As in the latter case (VC2) is not satisfied, we proved Theorem 2.1
for all q > 2.
Finally supposeq = 2. We use similar terminology as before. Let�4 be a prime of

PG(5,2) containing 5 points ofK. If these five points generate�4, then, considering the



J.A. Thas, H. Van Maldeghem / Journal of Combinatorial Theory, Series A 110 (2005) 217–221221

three primes through a solid contained in�4 and itself containing four points ofK, it is
easily seen that|K| = 7 and every six points ofK generatePG(5,2). In this caseK is a
skeleton and hence isomorphic to the quadric VeroneseanV4

2. So we may assume that these
five points do not generate�4. Clearly this implies|K| = 5. It is now an easy exercise to
see thatK generates a solid and is an elliptic quadric in that solid (because every plane of
that solid contains either one or three points ofK).
The proof of Theorem2.1 is complete.
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