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Introduction 

In this paper we discuss some of the major functorial properties of module 

categories over topoi, and in particular their closed structure. The primary theorem is 

a general version of Morita’s theorem classifying module categories. We conclude 

with semidirect products of small categories and some conjectures based on them. 

1. Module categories over topoi 

Let E be an elementary topos and R a (unitary) ring object in E. Denote by 

Mod(E; R) the category of (right) R module objects of E and R linear homo- 

morphisms. Let Ah(E) denote the category of Abelian group objects of E and group 

homomorphisms. 

Proposition 1. (a) Ah(E) and Mod(E; R) both possess an Ah(E) valued internal 

horn. 

(b) The forgetful functor UR : Mod(E; R) + Ah(E) has a right adjoint. 

Proof. (a). The construction of the internal horn is the same for Ah(E) and 

Mod(E; R). We take [A, B] (resp. [A, BIR) to be the subobject of BA consisting of 

the homomorphisms (resp. R linear homomorphisms), i.e., we interpret the equation 

f(x + y) = f(x) + f(y) in the internal logic of the topos E. 
(b). An R module in E can now be defined as an Abelian group of E together with 

a homomorphism s : R + [C, C]. This yields, by repeated conversion, a homomor- 

phism 3”: C + [R, C]. If A is an Abelian group of E, then [R, A] is an R module since 

R X R X [R, A] + R X [R, A] -* A yields R + [[R, A], [R, A]]. The unit of R, 13 R, 

yields [R,A]+AR-,A1-A. The two maps s”:C’+[R, C] and [R,A]+A easily 

provide the desired adjunction: Mod(E; R)(C, [R, A]) = Ab(E)( UR(C), A). 0 
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Neither does UR have a left adjoint, nor are Ah(E) and Mod(E; R) closed 
categories in general. But if E possesses basic arithmetic, then both of these things 
are true. 

Proposition 2. Zf E has a : 

(a) U : Ah(E) + E has a lefr adjoinr. 

(b) Ah(E) and Mod(E; R) have Ah(E) closed structures. 

(c) UR has a left adjoinr. 

Proof. (a) This is only a particular case of the well-known theorem that if E has an 
NNO, then it has free models for every finitary algebraic theory [3]. 

(b). The construction of a tensor product in Ah(E) is straight forward; we let 
AOB =F(A XE)/P(A,B), where F is the left adjoint to U, and @(A, B) is the 
subgroup of bilinear relations, that is, we interpret the rule (a + b, c) -(a, 6) -(b, c), 
in the internal logic of the topos E. The same process gives a tensor product for 
Mod(E; R), but which is Ah(E) valued unless R is commutative. 

(c). In view of the adjointness of [ - , *] and (a)@(*), it is then clear that the functor 

C -* R 0 C is the left adjoint to UR. 0 

In particular, denote by 2, the abelian group F(1). Then 2, is a tensor-horn 
identity, and thus Ah(E) = Mod(E; 2~). Note, however, that if E does not have an 
NNO, then Ah(E) is not a module category over E. For if R were such a ring, then 
this R would have to be an integers numbers object, from which an NNO would be 
deducible. 

2. Morita classification of module categories 

The Morita Theorem, in part, classifies those Abelian categories equivalent to 
module categories (over Sets). 

Morita Theorem [l]. Zf A is an Abelian category, rhen rhe following are equivalent. 
(a) A 3: Mod(R), for some (unitary) ring R. 
(b) A is cocomplere, AB5, and has a small projectice generator. 
(c) There is a faithful funcror L : A + Ab, which has both adjoints, L* (left), and L, 

(right). 

The advantage of part (c) is that it makes no mention of objects, nor of cocom- 
pleteness and ABS-ness (these are deducible from the existence of both adjoints). 

Given a pair of functors 

Ah(E) - _H Ah(E), 
G 
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we will say that H is the interd left adjoint of G, iff there is a natural equivalence of 
bifunctors: [H(A), B] = [A, G(B)]. 

Proposition 3. If E has an NNO, and His the internal left adjoint of G, then His also 

the left adjoint of G. 

Proof. For (C,[H(A),B]) = (C,[A, G(B)]) implies (COH(A), B) = (COA, G(B)). 
Now let C = &. Cl 

If L : A + Ah(E), has left and right adjoints L* and L, respectively, then we shall 
say that these adjoints are internal adjoints if L-L* is the internal left adjoint of 
L-L*. 

Theorem 4. Let A be an Abelian category, and E a topos with NNO. Then the 

following are equivalent. 

(a) A = Mod(E; R) for some (unitary) ring object R of E. 

(b) There is a faithful functor L :A +Ab(E), which has internal left and right 

adjoints. 

Remark. The proof of this theorem is both long and cumbersome, for the major 
portion of it is devoted to showing that certain natural transformations are what they 
ought to be. This requires much tedious diagram chasing. We will outline the proof 
here, and leave the details in [2]. 

Outline of the proof of Theorem 4. (a) implies (b). UR is clearly faithful, and has 
adjoints RO( * ), and [R, (-)I. These adjoints are internal adjoints by their very 
nature. 

(b) implies (a). The condition of internal adjointness is equivalent to saying that 
there are natural isomorphisms LL*(A OB) = LL*(A)@B. This allows LL*(&) to 
carry a ring structure as follows: 

LL*(z,)oLL*(z,) = LL*(LL*(zn)oz,) = LL*(LL*(zn)) = LL*(zn). 

The final map in this sequence is L(d LAZY), where d is the back adjunction map for L* 

and L. Let R = LL*(Zn). If B is an object of A, then L(B) becomes an R module in E 

by 

ROL(B)+LL*(Zn)OL(B)+LL*(Z,@B)+LL*L(B)+L(B), 

where the final map, again, is provided by the back adjunction. Thus L :A + 
Mod@; R) is well defined and certainly must preserve all colimits, and be faithful as 
well. 

Every module over R in E is a colimit of free R modules. A free R module is of the 
form FR(X) = ROF(X), where F(X) is the free abelian group on X. But then 
FR(X) = LL*(zE)oF(x) = LLY(F(X)), and therefore is in the image of L :A + 
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Mod(E; R). Thus if the functor L, above, is full, then it must be dense and therefore 
an equivalence. 

To prove that L is full, we note the following. If f: L(A)+ L(B) is any map in 
Ah(E), then by adjointness this yields a map f’ : L*L(A) -, B in A. Since L is faithful 
and has both adjoints, the adjunction L* +L must be tripleable, and therefore, for 
any A in A, the diagram 

L*LL*L(A) 3 L*L(A) 2 A 

is a coequalizer diagram. We will refer the reader to [2], for a proof that f: L(A)+ 

L(B) is an R module homomorphism iff f’s L*L(dA) =f”.dL.L(AJ. Thus if f is an R 

module homomorphism, there is a unique g : A + B in A, such that g * do =f’. 

Adjointness then gives that f = L(g). 0 

Note that when E = Sets, then E has no internal structure, and thus the condition 
of internal adjointness is exactly the condition of adjointness. In this case, Theorem 4 
is precisely the Morita classification theorem. 

3. Semidirect products. 

If 94 is a small site and R a sheaf of rings on 94, then we may form a new category 
R &, SS? as follows: Obj(R ae &) = Obj(sP), and R @JO &(A, B) = $d(A.Sj R(A). 

Composition is defined by the rule: fcd(A, B), gcsP(B, C), r~ R(A), and s E 
R(B), then s, * rf = (R(f)(s)r),.p We put a topology on R G& d by extending the 

covers of LZ! ‘R-linearly’. The category so constructed is a small additive site, and will 
be called the semi-direct product of Sp by R. The 8 in the notation is purely symbolic 
and is used to denote that this construction is not a tensor product of categories. 

Proposition 5. Let R and I be as above, and let E = Shs,,(&), the category of 
set-valued sheaves on Sp. Then Mod(E; R) = ShAb(R ae d). 

Proof. If K is an Abelian group-valued sheaf on R &,sQ, then for all A in LX!, K(A) is 
an Abelian group. If r E R(A), and x E K(A), then define r-x = K(ri,)(x). It is easy 
to verify that this gives K the structure of an R module in E. Conversely, let h4 be an 
R module in E. If r E R(A), and f E &(A, B), then define M(r,) = (r * -)*M(f), where 
r* - :K(A)+K(A) is multiplication by r. Again, it is an easy computation to show 
that this makes M into an Abelian group valued sheaf over R 6& ~4. Cl 

In particular, if we take d to be the group G and H any other group together with 
a homomorphism B : G + Aut(H), then 8 makes Z[H], the integral group ring, a ring 
object in SG, the topos of G-sets. Proposition 5 in this case asserts that 
Mod(SG; Z[H]) = Mod(B[H x @G]), where H x eG is the semi-direct product of the 
group G by H. 
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More generally, if R is a ring object in SC, then R is a ring (as usual), together with 

a homomorphism 19 : G + Aut(R), the group of ring automorphisms of R. We have, 

by Proposition 5, that Mod(S”; R)=Mod(R,[G]), where Re[G] is the twisted 

group ring of G over R. This is the ring whose underlying abelian group is @G R, and 

whose multiplication is given by: r, * sh = (rO(g)(S)),h. This is the integral group ring 

of G over R, iff 8 is the trivial homomorphism. The twisted group ring does not seem 

to be appropriate to the study of groups by rings, i.e. group representation theory. 

Among other problems, there is no meaningful augmentation map R,[G]+ R, and 

the notion of character is no longer well defined. The twisted group ring does fit in 

nicely to the situation of the study of rings by groups, i.e. Galois theory. For example, 

if k + K is a field extension, and G the Galois group, then there is a canonical 

8: G +Aut(K), thus generating the ring &[G]. The forgetful functor 

Mod(&[G])+ Ab factors through Mod(k), and in fact Mod(k) is the largest abelian 

category through which the forgetful functor factors iff k --, K is a Galois extension. 

In this fashion, all of Galois theory has a module theoretic interpretation. 

Let us finally observe that every ring object in SC generates a Z[G]-algebra by the 

correspondence R + RJG]. The converse is false as Theorem 4 tells us it must be. 

For example, the augmentation map E : Z[G] + Z is a ring map, so gives rise to a 

functor e. : Ab --) Ab(SG) = Mod(Z[G]), which is faithful and possesses both 

adjoints. And yet it is easy to verify that F o*, and .ro- are internally adjoint iff G = 1. 

The condition of internal adjointness is strictly stronger than adjointness in general, 

and its presence in Theorem 4 may not be ignored. Thus not every Z[G]-algebra 

arises as R,[G] for some ring object R in SG. To say which Z[G]-algebras do so 

arise, does not seem to be an easy thing to determine. The real question here is: Is 

there a cohomological characterization of such Z[G]-algebras? This is what one 

would hope if the analogy between twisted group rings and semi-direct products of 

groups could be pushed far enough. 

However, let us note that while not every Z[G]-algebra arises as a ring object in 

Mod(Z[G]), every such algebra does arise as a ring object in Ab. We may conjecture: 

Is it the case that every (Grothendieck) Abelian category arises as Mod(E; R), for 

some (Grothendieck) topos E and ring object R in E? It is known that the above 

conjecture is false if one tries to always chose R to be ZE (see [2]). If we are given the 

Grothendieck Abelian category A, then it is not difficult to find a Grothendieck topos 

E and a functor f : A + Ah(E) which is faithful and possesses both adjoints. The 

nastiness is, of course, arranging things so that f* and f* are internally adjoint. 
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