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Abstract 

For many years there has been considerable research from both an academic and industrial perspective into the monitoring and 
control of CNC machining processes, and progress has been well documented. It is widely acknowledged within the CIRP 
community that collection of information into the performance of material cutting processes is a worthwhile research topic, and 
this is mirrored in the work of the Scientific Technical Committee-Cutting (STC-C) and other Scientific Technical Committees. 
This work has been continued by the consortium engaged in the REALISM project, an EU-FP7 funded project which is 
investigating the use of sensor fusion in a real time production environment, to monitor CNC tool wear through the use of three 
sensor technologies- Force, Acoustic Emission and Vibration. However, the real work of the project consortium will be in the 
analysis and interpretation of the data from the collated fusion of the deployed sensors- and the intelligent interrogation of this 
sensor information. The sensor deployment strategy of this project was outlined in a presentation, poster and paper presented at 
the 2014 CIRP ICME conference and this current paper provides an update on the ongoing work. 
An overview is provided in this paper of the challenges that have been overcome as part of the REALISM project, and a brief 
overview of the initial verification trials that were undertaken on the deployment of the sensors. Further results will also be 
presented that show promising initial sensor data, which shows conditions leading to Catastrophic Tool Failure (CTF). 
© 2015 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of 48th CIRP Conference on MANUFACTURING SYSTEMS - 
CIRP CMS 2015. 
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1. Introduction 

As is well documented, there have been many years of 
investigation into the use of physical emissions from the CNC 
machining process to evaluate the performance of the cutting 
operation. Such has been the extent of the investigations for in 
excess of forty years that there has been a number of 
opportunities for the research community, both academic and 
industrial, to take stock and publish extensive state of the art 
snapshots of the current state of the art in this area. The most 
recent of these was by Teti et al [1] in 2010 in a CIRP keynote 

paper. Given the fact that previous state of the art reviews of 
the advances in the field were undertaken in 1995 by Byrne et 
al [2], in 1988 by Tonshoff et al [3], in 1983 by Tlusty & 
Andrews [4] and as far back as 1976 by Micheletti [5], one 
can appreciate the breath and range of interest in this area. 

During the research and experimentation through the years, 
many process variables, failure modes and data interrogation 
methods have been employed in an attempt to determine how 
tool wear in the machining operation can be monitored and 
evaluated, in real time and in situ to provide accurate 
feedback to the machine operator as to the condition of the 
operation. 
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Early studies tended to concentrate on the directly and 
easily measurable characteristics within the machine 
operation such as spindle motor current [6]. However, it was 
determined later that the various other energy releases from 
the machining process would offer more valuable information 
about the process than those directly measurable from the 
machine. 

With this mindset, research focused on the physical 
emissions emanating from the cutting zone that were 
measurable in immediate cutting environment, or emissions 
that were transferred from the process to close structures 
within the machine tool. The measurable phenomena that 
were quickly identified by the research community in this 
regard were process temperature [7,8], force [9,10], ultrasonic 
emissions [11], work piece irradiation [12], audible sound 
energy [13-15] and acoustic emissions [16-18]. In addition to 
this work, there has also been extensive research into the use 
of multiple sensors in a fusion configuration [19,20]. Driven 
by developments in this area, significant work has been 
undertaken into the analysis of the signal features from the 
sensors [21,22], and the use of neural networks to analyze the 
resultant information [23-25]. 

In addition to the literature available from the industrial 
and academic research community there have been a number 
of large scale collaborative projects investigating the 
feasibility of sensor monitoring of tool wear, such as 
ADACOM [26], IFACOM [27] and SOMMACT [28]. 

The participants in the REALISM [29] project have been 
involved for many years in research into the evaluation of all 
the above mentioned process phenomena, and have 
collectively arrived at the conclusion that the chosen process 
emissions in the REALISM project contain the most 
worthwhile information as to the performance of the process. 

The process emissions that were identified by REALISM 
to be analysed include; 

 
 Acoustic Emission  (AErms)  
 Vibration   (VxVyVz)  
 Force   (FzFyFx) 

 
An overview of the REALISM project plan was given at 

the 2014 CIRP ICME conference [30]. 

2. Overview of the REALISM project 

REALISM is an FP7 funded research project with 
participants across a number of member states within the 
European community. The consortium partners are listed in 
Table 1. 

 
Table 1. The REALISM consortium 
 

Name Country Participant type 
Schivo Precision Ireland SME 
Waterford IT Ireland RTD 
IDT Solutions Norway SME 
Warsaw University Poland RTD 
Tulino CTM Italy SME 
University of Naples Italy RTD 
Gjovic University Norway RTD 

 
 

2.1 The consortium work package breakdown for members 
 
The REALISM project consortium work packages are 

broken down as detailed in figure 1 below. 

 
Figure 1. Realism project work package overview 

3. Overview of the deployment of the sensor system agreed 
by the REALISM project consortium 

It was agreed that the sensors to be deployed on CNC 
machine tools for the investigation phase would include an 
AE sensor, a vibration sensor and a force sensor. The sensor 
types that were agreed are outlined in Figure 2: 

 
Figure 2. The realism sensor configuration. 
 

It was agreed that the sensors would be deployed on a 
machine within Schivo Precision based in Waterford, Ireland. 
It was determined that the best machining configuration was a 
turning configuration, given that most vertical and horizontal 
machining operations utilize tools with multiple cutting 
surfaces. However, turning operations on a lathe typically 
employ single-point cutting or two-point drilling. 

This means that the cutting tool wear is less complicated in 
a turning configuration and is simpler to interrogate, as there 
are less variables in terms of cutting/material interfaces during 
a real time production environment. 
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It was decided that the sensor installation would be 
undertaken on a Mazak Quickturn Nexus 200II, shown in 
Figure 3. 
 
 

 
 
 
 
 
 
 
 

 
Figure 3. Mazak quickturn 200 nexus lathe at schivo 

4. Overview of the Sensor installation on the Mazak Quick 
turn Nexus 200  

The installation of the sensors was simple in the case of the 
AE sensor and the accelerometer, in that these sensors were 
installed on the machine turret, as illustrated in Figure 4. 

 
 
 

 
 
 
 
 
 

 
 
 
 

 
 
 
Figure 4. Position of installation sites of acoustic emission & vibration 
sensors. 

 
However, the installation of the force sensor proved to be 

more problematic. The force sensor on the machine was 
intended to be at the interface of the turret with the main 
machine body. However, it was discovered that the particular 
model of Mazak lathe is fitted with a slideway turret, which 
meant that this installation location was not feasible. We 
therefore identified a number of locations within the machine 
through which forces would likely be transmitted, but in 
discussion with the consortium partners realized that the 
transmission paths for these forces through these locations 
would not provide worthwhile sensor information. 

With this in mind we agreed to insert the force sensor into 
the structure of the machine, by drilling a hole into the 
substructure of the machine (at the risk of compromising the 
structural integrity of the machine). The final location of the 
force sensor is shown in Figure 5 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 

Figure 5. Location of the force sensor in a specially drilled pocket. 

5. Presentation of the results from the initial cutting trials. 

Once the initial issues with the sensor installation and 
configuration were overcome, we were able to commence 
cutting trials on the machine. 

These cutting trials were undertaken on the machine in 
controlled conditions using billets of 316SS. For varying cut 
depths, comparative trials were undertaken with new and 
worn cutting tools. Table 2 below outlines the cutting 
configuration and parameters for this trial: 
 

Table 2. Cutting parameters of verification trials 
 

Machine Mazak Nexus 200 

Operation Single point turning 
Cutting Insert Type Sandvik Carbide WNMG 08 

04 08- QM 

Work piece material 316ss 
Constant surface speed rate (Vc) 100m/min 

Feedrate (Fn) 0.225mm/rev 

Cut length 85mm 
Original work piece diameter  57mm 

 
Analysis was undertaken on each of the 7 individual sensor 

signals- Fx, Fy, Fz, Vx,Vy,Vz and AErms - and the correlations 
are illustrated in Figures 6-8 below. 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
Figure 6. Plot of the three cutting forces (fx, fy, fz) versus depth of cut for a 
new and worn insert and when no cutting is taking place. 

bebeloloww..
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The plots show that the cutting forces are affected by the cut 
depth and that there is a change in magnitude between the 
new and worn insert. These results correlate with the expected 
outcome.  The results of the vibrations (Vx, Vy & Vz) versus 
depth of cut for a new and worn insert are given in Figure 7. 
Plots of the vibrations when no cutting is taking place are also 
shown and were found to have a negligible effect on the 
operational vibrations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 7. Plot of vibration (vx, vy, vz) versus depth of cut for a new and 
worn insert and when no cutting is taking place. 
 

The plots show that the vibrations are affected by the cut 
depth and that there is a change in magnitude between the 
new and worn insert. These results correlate with the expected 
outcome.  The results of the acoustic emissions (AErms) 
versus depth of cut for a new and worn insert are given in 
Figure 8. A plot of acoustic emissions when the machine is in 
operation but no cutting is taking place is also shown.  

 
Figure 8. Plot of acoustic emission (rms) versus depth of cut for a new and 
worn insert and without cutting. 

 
The plot shows that acoustic emissions can be detected at 

depths of cut about 3mm for both the new and worn insert. 
Below this, the magnitudes of the emissions are not 
sufficiently distinguishable between the emissions when no 
cutting is taking place.  Adjustments were made to the AE 
sensor to improve signal gain. 

Figure 9 shows the images of an unused (A) and of the 
new (B) and worn insert (C) which were used for the cutting 
operations.  The profile of the tip and allows for wear 
comparison and quantification. Figures 9(C) shows that there 
is sufficient wear of the tip to have an effect on the machining 
parameters and sensor data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  Images of tip using optical microscopy, scanning electron 
microscopy and white light interferometry. 
 

Figure 10 shows the characterisation of the workpiece 
surface after the cutting tests were completed for the new (a) 
and worn (B) insert. This shows that the workpiece surface 
profile is affected by tool wear.   

Figure 10. White light interferometry images of the workpiece surface for a 
new (a) and worn (b) insert. 

Initial results show that the force and vibration sensor are 
giving results in line with expectations. The AE sensor signals 
are not sufficiently distinguishable between the emissions 
when no cutting is taking place.  Adjustments were made to 
the AE sensor to improve signal gain. The characterisation 
techniques have been established and allow for correlation 

A 

B 
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with the sensors data.  The data acquisition system duplicates 
files on the cloud server and can be accessed by all 
consortium members.  

6. M-code and G-code programming 

For effective signal data analysis, it was imperative to 
distinguish between machine operation (tool changes, turret 
movements, coolant on/off) and machine cutting (Cutting 
Feed).  To achieve this, the CNC controller had to be given 
additional functionality with the expansion of machine codes 
(M-codes) using a bolt-on M-code module. The additional M-
codes allowed the machine programmer to implement G-code 
programming to switch on/off analogue relays and digital 
signals (logic 0 or 1) to control data acquisition parameters. 
This is used, for example, to give the DAQ and LabVIEW 
software information on the tool number through the use of a 
binary table system with 3M-Code inputs as described in 
Table 3. 

Table 3. M-Code outputs from Mazak Machine to DAQ 

Description M-Codes Binary I/P to DAQ 

File Acquisition start/stop M8/M9 Analogue 

Tool No 1 402 001 

Tool No 2 403 010 

Tool No 3 402,403 011 

Cutting Feed Start 400 101 

Cutting Feed Stop 401 110 

Tool Change 401,402, 403 111 

 

7. Overview of data taken from the TCM system in first 
production trials 

With the sensor system and M-codes fully operational, 
controlled cutting tests were undertaken at the beginning of 
May 2015. This testing comprised of cutting high carbon tool 
steel continuously over an 8-hour shift and evaluating the tool 
condition with an optical Zeiss microscope. Experimental 
conditions are given in Table 4. The sample rate is 10kHz. 

 
Table 4. Operational conditions of ctf instances. 
 

Name 

Workpiece 
start 
diameter 
(mm) 

Depth 
of cut 
(mm) 

Cut 
length 
(mm) 

Feed rate 
(mm/rev) 

Surface 
speed 
(Vc) 
(m/min)   

Figure 9 113 5 149 0.4 260 
Figure 10 72 4 149 0.3 195 
Figure 11 100 4 149 0.3 195 

 
During these trials a number of instances of Catastrophic 

Tool Failure (CTF) occurred (Figure 11).  
 
 
 
 
 

 
 
 
Figure 11. Insert exhibiting critical tool failure (ctf).  

Figures 12, 13 & 14 show the sensor signals detected in the 
lead up to the occurrence of CTF.  

 
Figure 12. Sensor information from ctf, instance 1 

Figure 13. Sensor information from ctf instance 2 
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Figure 14. Sensor information from ctf instance 3 

 
In the above figures, the incidence of CTF occurs in the 

band indicated as “CTF”.  There is a consistent anomalous 
signal feature (SF) indicated by the “SF” band in advance of 
the CTF event. This signal feature is most prevalent in the 
three axes of the force sensor, and lasts for approximately 
2500ms. However, our examination of the corresponding 
sensor signals indicated that there is a pattern in this region 
that is also unique and worth further investigation.  

8. The Data analysis 

A neural network approach is being taken to the analysis of 
the results from the sensors. The approach taken is the use of 
a number of signal features from the sensors. The signal 
features are correlated against the degree of tool wear as a 
percentage of the tool life. This approach is being presented 
separately in the conference in an overview paper provided by 
the research staff at the University of Naples Federico II. The 
approach that has been taken in this regard is the 
interpretation of a number of signal features as will be 
outlined separately within the project dissemination.  

9. Conclusions 

As outlined in this paper, the initial deployment of the 
sensors has proven successful, with good correlation between 
the sensor signals from a known worn condition and a known 
good cutting condition.  

As the sensors were deployed on a standard production 
machine, rather than in a laboratory environment, there were a 
number of challenges encountered during the initial setup 

phase. However, these were overcome and the system as 
demonstrated in this paper is now fully operational.  

There are encouraging results from the sensor system both 
at the initial deployment stage. Furthermore, the CTF 
detection potential outlined in Figures 12, 13 & 14 suggest 
that the deployed sensor configuration could give extremely 
useful information regarding the machining operation. 

The deployment of the sensors on a real-time production 
machine has proven that the sensor configuration works 
outside a laboratory environment. The work initially outlined 
in this paper serves to prove the belief that sensor fusion is a 
worthy method, through which real-time analysis can be 
undertaken on a machining operation in a real-time 
production environment, once a correctly configured sensor 
system is used.  

The sensor information outlined in section 7 of this paper 
is promising in that initial observations suggest that there are 
signal features that may provide advance warning of CTF.  

The authors would like to thank both our colleagues in the 
REALISM project and the European Commission.  

10. References 

[1]R. Teti, K. Jemielniak, G. O’Donnell, D. Dornfeld. Advanced monitoring 
of machining operations. CIRP annals- Manufacturing Technology. 
Volume 59, Issue 2, 2010. Pages 717-739.  

[2]G. Byrne, D. Dornfeld, I. lnasaki, G. Ketteler, W. Konig, R. Teti. Tool 
condition     monitoring (TCM)- The status of research and Industrial 
application. CIRP Annals- Manufacturing Technology. Volume 44, Issue 
2, 1995, Pages 541-567.  

[3]H.K. Tőnshoff, J.P. Wulfsberg, H.J.J. Kals, W. Kőnig, C.A. Van 
Luttervelt.  Development & Trends in monitoring and control of 
machining processes.  CIRP Annals. Volume 37, Issue 2, 1988, Pages 611-
622. 

[4]J Tlusty, G.C Andrews. A critical review of sensors for unmanned 
machining. CIRP Annals. 1983. Volume 32, Issue 2, Pages 563-572. 

[5]DF. Micheletti, W. Konig, HR. Victor. In process tool wear sensor for 
cutting operations. CIRP Annals, Volume 25, Issue 2, 1976, Pages 483-
496. 

[6] Romero-Troncoso Rene de Jesus,  Herrera-Ruiz Gilberto, Terol-
Villalobos   Ivan, Jauregui-Correa Juan Carlos. Driver current analysis for 
sensorless tool breakage monitoring of CNC milling machines. Intl Journal 
of Machine Tools & Manufacture 43 (2003) 1529–1534 

[7]M. A. Davies, T. Ueda, R. M’Saoubi, B. Mullany, A. L. Cooke. On The 
Measurement of Temperature in Material Removal Processes.CIRP Annals 
Vol. 56 Issue 2. 2007. Pages 581-604 

[8]Takashi Ueda, Mahfudz Al Huda, Keiji Yamada, Kazuo Nakayama. Temp 
Measurement of CBN Tool in Turning of High Hardness Steel.  CIRP 
Annals Volume 48, Issue 1, 1999. Pages 63-66 

[9]Martin B. Jun, O. Burak Ozdoganlar, Richard E. DeVor, Shiv G. Kapoor, 
Andreas Kirchheim, Georges Schaffner. Evaluation of a spindle-based 
force sensor for monitoring and fault diagnosis of machining operations. 
International Journal of Machine Tools & Manufacture 42 (2002) 741–751 

[10]G. Byrne, G.E. O’Donnell. An Integrated Force Sensor Solution for 
Process Monitoring of Drilling Operations  Annals of the CIRP Volume 
56, Issue 1, 2007. Pages 89-92.  

[11] Nidal H. Abu-Zahra, Taysir,. Method for ultrasonic online monitoring of 
gradual wear during turning operations. Int. J. Mich. Tools Manufact. Vol. 
37, No. 10, pp. 1475-1484, 1997 

[12] Cook N.H, K. Subramanian. Annals of CIRP 27(1)73-78. Micro-iostope 
tool wear sensor. 1978.  

[13] Rubio, Eva M; Teti, Roberto. Cutting Parameters Analysis for the 
Development of a Milling Process Monitoring System based on Audible 
Energy Sound, Journal of Intelligent Manufacturing. Volume 20, Issue 1, 
February 2008, Pages 43-54. 

[14] Rubio, Eva M; Teti, Roberto. Machining Process Monitoring System 
Using Audible Energy Sound Sensors, Book on Future Manufacturing 
Systems, Tauseef Aized (Ed.). 2010. 

[15]Downey, J. O’Leary, P. Raghavendra, R.  Comparison and analysis of 
audible sound energy during single point machining of HSTS with PVD 
TiCN sutter insert across full tool life. International Journal of Wear 



926   Jonathan Downey et al.  /  Procedia CIRP   41  ( 2016 )  920 – 926 

Volume 313 (2014) pages 53–62 
[16] D.E. Lee, I. Hwang, C.M.O. Valente, J.F.G. Oliveira, D.A. Dornfeld. 

Precision manufacturing process monitoring with acoustic emission. 
International Journal of Machine Tools & Manufacture 46 (2006) pages 
176–188. 

[17] Xiaoli Li. A brief review: acoustic emission method for tool wear 
monitoring during turning. International Journal of Machine Tools & 
Manufacture 42 (2002) 157–165. 

[18]Otman, O, K. Jemielniak. Catastrophic tool failure detection based on 
acoustic emission signal analysis. CIRP Annals, Volme 47, Issue 1 1998 

[19]K. Jemielniak, P.J. Arrazola. Application of AE and cutting force signals 
in tool condition monitoring in micro-milling. CIRP Journal of 
Manufacturing Science and Technology, Volume 1, Issue 2, 2008, Pages 
97-102. 

[20] Myeong Chang Kang, Jeong Suk Kim, Jeon Ha Kim. A monitoring 
technique using a multi-sensor in high speed machining. Jour of materials 
processing technology, 113 (2001) 331-336. 

[21] Segreto, T., Teti, T., 2007, Applications of Intelligent Sensor Monitoring 
for Machining Processes, 8th Int. Conference & Exhibition on Laser 
Metrology, Machine Tool, CMM & Robotic Performance, Lamdamap 
2007, p. 388. 

[22] Krzysztof Jemielniak, Tomasz Urbański, Kossakowski, J, Bombiński, S. 
Tool condition monitoring based on numerous signal features. Int J Adv 
Manuf Technol. DOI 10.1007. 

[23]Karam, S., Teti, R., 2012. Wavelet Transform Feature Extraction for 
Pattern Recognition of Chip Form in C Steel Turning, 8th CIRP Conference 
on Intelligent Computation in Manufacturing Engineering – CIRP ICME 
’12, Procedia CIRP, 12, p. 97. 

[24]Teti, R., Segreto, T., D’Addona, D., 2004. Unsupervised Neural Network 
Monitoring of Tool Wear in the Machining of Composite Materials, 4th 
CIRP ICME ‘04, p. 362. 

[25]Segreto, T., Teti, T., 2007. Tool Condition Monitoring in Composite 
Materials Machining through Neural Network Processing of Acoustic 
Emission, 3rd Int. Virtual Conf on I*PROMS. 

[26]EU FP7 Funded project RCN 88740, project reference 214766. 
http://www.adacom.eu.com.  

[27]EU FP7 Funded project RCN 11390, project reference 285489.   
http://www.ifacom.org.   

[28]EU FP7 Funded project RCN 92739, project reference 229112 
http://www.sommact.eu/ 

[29]EU FP7 Funded project REALISM RCN 31567,  http://www.realism-
fp7.eu.  

[30]Downey, J, Bombinski, S, Nejman, M, Jemielniak, K. Automatic 
Multiple sensor data acquisition system in a real time production 
environment. 9th CIRP ICME conference, Capri, Naples, Italy.  


