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Abstract 

Egawa, Y. and P.D. Vestergaard, Spanning trees in a cactus, Discrete Mathematics 110 (1992) 

269-274. 

We prove a best possible lower bound for the number of isomorphism classes into which all 

rooted spanning trees of a rooted cactus partition. We announce a best possible lower bound 

for the number of isomorphism classes into which all spanning trees of a cactus partition. 

1. Introduction 

A tree T is a connected graph without circuits. A forest is a graph where each 

component is a tree. A cactus is a connected graph where each block is either an 

edge or a circuit. An n-cactus is a cactus with exactly n circuits. A rooted graph is 

a pair (G, R) of a graph G and a set R consisting of one specified vertex from 

each component of G. 

Two rooted graphs are said to be root isomorphic if there exists an 

isomorphism under which the two root sets correspond. We write 

(G’, R’) G (G”, R”) or for short G’ G G” if the context shows which root sets are 

intended. 

1x1 denotes for x E R the least integer not less than X. JGI = IV(G)( denotes the 

number of vertices in G. The girth of a graph G, which contains at least one 

circuit, is the length of a shortest circuit in G. 

Zelinka [3] proved that the spanning trees of an n-cactus are partitioned into at 

least n + 1 isomorphism classes. Vestergaard [2] raised this lower bound to 
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2 + (n - 1) [g/21 f or an n-cactus of girth g, and conjectured that the bound could 

further be raised to 

g n+ - -1 I1 2 ( 1 11 
6-l . 
2 

In this note we prove a rooted version of this conjecture. The case k = 1 in 

Theorem 1 below states that a rooted n-cactus (G, r) of girth g has at least 

g n+ - -1 II 2 ( 1 I1 !I! -1 
2 

root isomorphism classes of spanning trees, all rooted at r. 

Let us now state the main theorem, its proof comes in the next section. 

Theorem 1. Let G have k components, k 3 1, each of which is a rooted cactus 
(Gi, rr), 1 s i s k. Let g 3 3 be a number such that each circuit in G has length at 
least g, and for each i, 1 s i s k, let nj 2 0 denote the number of circuits in Gi. Let 

nI+nz+.*. + nk = n and [g/2] = q. Then the rooted spanning forests of G, (each 
consisting of k rooted trees (T, rJ, 1 < i < k), are partitioned into at least (” G 4 ; ‘) 
root isomorphism classes. 

2. Proof of Theorem 1 

We shall prove Theorem 1 by induction on 1 V(G)I. The main steps in the proof 

will be taken in Lemmas l-3 below. 

Obviously Theorem 1 is true if IV(G)1 = 1. Likewise, if ka2 and IV(G,)l = 1 

for some i, say for i = k, then we can simply delete Gk and apply the induction 

hypothesis to the resulting graph. 

Suppose that IV(G,)l3 2 for all i, and suppose that Theorem 1 holds for graphs 

with at most IV(G)/ - 1 vertices; we shall then prove that Theorem 1 holds for G. 

We shall not apply the induction hypothesis until the proof of Lemma 3; in the 

meantime we shall do some preparations. Let R = {rI, r,, . . . , rk}, k 2 1, be the 

set of roots of G. Let % = {C,, Cz, . . . , C,}, m 2 0, be the set consisting of 

those circuits in G which contain a root. If m = 0 the argument skips ahead and 

continues with Lemma 3 below. 

Otherwise, m 2 1 and we can choose a circuit C from %. Let (G’, r’) be that 

rooted component of G which contains C. Define L,(G’, r’) to be the graph 

spanned in G’ by r’ together with that component of G’ - r’ which contains 

C - r’. 
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For each edge e of C not incident with r’ define a(e), P(e), a(e) 6 P(e), to be 

the orders of the two components of (L,(G’, r’) - r’) - e. If e is incident with r’, 

then define a(e) to be zero and P(e) to be the order of L,(G’, r’) - r’. 
For each C in %? there exist at least 4 distinct multisets {a(e), P(e)} as e ranges 

over E(C), because C has length at least g. 

In Lemma 1 below we shall use the fact that any spanning forest of G with root 

set R, i.e. a set of k rooted trees (z, Ti), 1 < <k, can be obtained from G by i 

deletion of exactly one edge from each circuit in % followed by deletion of exactly 

one edge from each remaining circuit. 

For each i, i = 1, 2, . . . , m, let e, be an edge in Ci and define the multiset 

T(e,, e2, . . . , 4 = {4eJ, Ned, 44, P(d . . , 44, Ned). 

We let r*(el, e2, . . . , e,) denote the sub-multiset of T(e,, e2, . . . , e,) obtained 

by deleting all entries that are equal to zero. Further, let A denote the multiset 

consisting of the orders of those components of G - R, which have no vertex in 

common with any circuit from %. 

Lemma 1. Let notation be as above and let ei E E(C,), h E E(C,) for each i, 
1 <i < m. Zf the multisets T(e,, e2, . . . , e,) and r(fI, f2, . . . , fm) are distinct, 
then for any pair of rooted spanning forests T and S for G - {e,, e2, . . . , e,} and 

G-K&, . . . , fm}, respectively, we have (T, R) + (S, R). 

Proof of Lemma 1. First note that from the assumption that T(e,, e2, . . . , e,) 

and ZU,fi, . . . ,fm) are distinct, it immediately follows that r*(e,, e2, . . . , e,) 

and r*(f,, f2, . . . , fm) are also distinct. 

Suppose that (T, R) t (S, R). Then the multisets of orders of all components of 

T - R and S - R, respectively, must be identical, but we see from above that 

these multisets are exactly T*(el, e2, . . . , e,) U A and r*(f,, fi, . . . , fm) U A, 

which by assumption are distinct. This contradiction proves Lemma 1. 0 

With the help of Lemma 1 we shall demonstrate that there exist sufficiently 

many distinct graphs G - {e,, e2, . . . , e,}, ei E E(C,), (Lemma 2) and combining 

this with an induction hypothesis that each G - {e,, e2, . . . , e,} has sufficiently 

many spanning forests (Lemma 3) we shall obtain a proof of Theorem 1. 

Lemma 2. Let q 2 1, m 2 1. For each i, 1 s i < m, let there be given q distinct 
pairs (aij, &) which satisfy 

0 s aij < /3, for all j, l<j<q 

a;, < a;2 < . . . < a&. 

Then there exist at least (miQ ; ’ ) pairwise distinct multisets of the form 

{fflj,, Plj,, %jz, PZj,, . . . > amjm, Pmj,.}. 
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Proof of Lemma 2. We shall use induction on q. Lemma 2 is trivially true for 

q = 1. Let q 3 2 and assume that Lemma 2 is true for q - 1, we shall then prove 

that it is also true for q. 
We may choose notation such that a,, c azl s * * * G a,,. 
for each i, 0 c i < m, define a set S, of multisets: 

Si = 
1 

(a119 PII, (yZ1~ 621, . . . 9 ail~ Pil, ai+l,jt+l, Pi+l.j,+,, . . . 9 amjm3 Pmi,lI 

jk 3 2, for each k with i + 1 c k s m 1. 

S, has jk 3 2, for all k, and S,,, has jk = 1, for all k. 
The proof of Lemma 2 follows from (i)-(iii) below: 

(i) Si n Sj = 0, for all i, j with 0 < i <j s m, 

(ii) IS,1 2 ( m ‘4’: 4 -‘), for all i with 0 < i s m, 

(iii) C~“=,(“-~?4-2) = (“,‘J!F’). 

Proof of (i). Let o E Si, z E Sj. We shall see that o # t by demonstrating that 

the multisets (T and t do not contain the same number of numbers less than or 

equal t0 CXi+l,l. 

The numbers from u which do not exceed %+1,1 lie in 

{%, Pm a21, P21, . . . 2 ail, pil} because for all s si+landforallta2wehave 

that (~i+~,~ s as, < cr,, s & 

The numbers from z which do not exceed c~i+~, l include ai+l,l in addition to 

the numbers from u not exceeding cWi+l,l. This proves that (T # z and hence that 

Si n Sj = 0. 
Proof of (ii). For each i, i = 0, 1, 2, . . . , m, the following holds: Each multiset 

from Si has i pairs fixed, namely (~11, I&l), ((YZI, PA, . . . , (ail, Bil) (with 
jk = I), while there are q - 1 choices for each of the other m -i pairs 

(ai+I,j!+l, Pi+l,j,+l)r . . . P (amjm, Prni,), c2 <jk s m). By the induction hypothesis of 

Lemma 2 with m replaced by m -i and q replaced by q - 1 we obtain 

ISi1 ~(“-~?$-“) as desired. 

Proof of (iii). Use the identity 

( 

m+q-l-i 

) ( 

m+q-l-i-l 

q-l = > ( 
+ 

m+q-l-i-l 

q-2 q-l > 

successively for i = 0, 1, 2, . . . , m. This concludes the proof of Lemma 2. 0 

From Lemmas 1 and 2 follow that at least (” ,‘! 1’) distinct sets {eI, e2, . . . , e,} 
exist such that all the corresponding graphs G - {e,, e2, _ . , e,} have pairwise 

disjoint families of root isomorphism classes of spanning forests with root set R. 
We shall prove that each family is large enough to make Theorem 1 true. For 

the case m = 0 the argument is resumed here. 

Lemma 3. Let notation be as above. For any set of edges e,, e2, . . . , e, with 
ei l E(Ci), the graph G - {el, e2, . . . , e,} has at least (“-~t~-‘) spanning 
forests with root set R, no two of which are root isomorphic to each other. 
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Proof of Lemma 3. In each component of (G - {e, , e2, . . . , e,}) - R let the 

unique vertex which is adjacent to a vertex of R be designated as a new root r,?, 
j = 1, 2, . . . . 

Then G* = (G - {e,, e2, . . . , e,}) -R is a graph, whose components are 

rooted cacti (GJ, r,!), j = 1, 2, . . . . G* contains IZ - m circuits, each of length at 

least g. Since IV(G*)l < IV(G)l, we may apply the induction hypothesis of 

Theorem 1, and we see that G* has at least (” -TTp - ‘) distinct root isomorphism 

classes of spanning forests with root set R* = {rf, rz, . . .}. 

From the construction of G* it follows that G - {e,, e2, . . . , e,} also must 

have at least (“-~?~-‘) root isomorphism classes of spanning forests with root 

set R. This is because there exist a surjection from the set of root isomorphism 

classes of (G - {e,, ez, . . . , e,}, R) onto the set of root isomorphism classes of 

(G*, R*), and this implies that the first set is at least as large as the second set. 

This proves Lemma 3. 0 

The lower bounds of Lemmas 2 and 3 together with the inequality 

--‘)q+-+;l) 

finally prove Theorem 1. 0 

(*I 

We can verify the truth of inequality (*) by observing that (*) is equivalent to 

(set a = m, b = n - m, c = q - l), which in turn is equivalent to 

{(a + l)(a + 2) . . . (a + c)}{(b + l)(b + 2) . . . (b + c)} 

2 {(a + b + l)(a + b + 2). . . (u + b + c)}{l .2. . . c}. 

Taking the ith factor from each of the four products we see that 

(a + b + i)i hold for i = 1, 2, . . . , c. 
(a + i)(b + i) 2 

The bound of Theorem 1 is best possible. Let the rooted n-cactus (G, r) be 

obtained as disjoint union of n rooted circuits, each of length g, with all n roots 

identified into one vertex r. Then (G, r) has exactly (” z 4; ‘) root isomorphism 

classes of spanning trees. 

In fact it follows from our proof that if G attains the lower bound in Theorem 

1, then either n = ni for some i or ni 6 1 for all i. We shall say no more about the 

structure of a graph which attains the lower bound. 

3. Spanning trees 

For large q we can prove Theorem 2 below. We conjecture that Theorem 2 

holds without this restriction. The details will hopefully be discussed in a 

subsequent paper. 



274 Y. Egawa, P.D. Vestergaard 

Theorem 2. Let n > 2, g 2 3, g = [g/2]. The spanning trees of a cactus with n 

circuits, each of length at least g, partition into at least 

(“,‘“T’) isomorphism classes. 
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