Note

Spanning trees in a cactus

Y. Egawa
Science University of Tokyo, Japan

Preben Dahl Vestergaard
Department of Mathematics and Computer Science, Institute for Electronic Systems, Aalborg University, Fredrik Bajers Vej 7, Dk-9220 Aalborg, Denmark

Received 30 May 1990
Revised 3 December 1990

Abstract

Egawa, Y. and P.D. Vestergaard, Spanning trees in a cactus, Discrete Mathematics 110 (1992) 269-274. We prove a best possible lower bound for the number of isomorphism classes into which all rooted spanning trees of a rooted cactus partition. We announce a best possible lower bound for the number of isomorphism classes into which all spanning trees of a cactus partition.

1. Introduction

A tree T is a connected graph without circuits. A forest is a graph where each component is a tree. A cactus is a connected graph where each block is either an edge or a circuit. An n-cactus is a cactus with exactly n circuits. A rooted graph is a pair (G, R) of a graph G and a set R consisting of one specified vertex from each component of G.

Two rooted graphs are said to be root isomorphic if there exists an isomorphism under which the two root sets correspond. We write $\left(G^{\prime}, R^{\prime}\right) \doteq\left(G^{\prime \prime}, R^{\prime \prime}\right)$ or for short $G^{\prime} \doteq G^{\prime \prime}$ if the context shows which root sets are intended.
$\lceil x\rceil$ denotes for $x \in \mathbb{R}$ the least integer not less than $x .|G|=|V(G)|$ denotes the number of vertices in G. The girth of a graph G, which contains at least one circuit, is the length of a shortest circuit in G.
Zelinka [3] proved that the spanning trees of an n-cactus are partitioned into at least $n+1$ isomorphism classes. Vestergaard [2] raised this lower bound to
$2+(n-1)\lceil g / 2\rceil$ for an n-cactus of girth g, and conjectured that the bound could further be raised to

$$
\binom{n+\left\lceil\frac{g}{2}\right\rceil-1}{\left\lceil\frac{g}{2}\right\rceil-1}
$$

In this note we prove a rooted version of this conjecture. The case $k=1$ in Theorem 1 below states that a rooted n-cactus (G, r) of girth g has at least

$$
\binom{n+\left\lceil\frac{g}{2}\right\rceil-1}{\left\lceil\frac{g}{2}\right\rceil-1}
$$

root isomorphism classes of spanning trees, all rooted at r.
Let us now state the main theorem, its proof comes in the next section.
Theorem 1. Let G have k components, $k \geqslant 1$, each of which is a rooted cactus $\left(G_{i}, r_{i}\right), 1 \leqslant i \leqslant k$. Let $g \geqslant 3$ be a number such that each circuit in G has length at least g, and for each $i, 1 \leqslant i \leqslant k$, let $n_{i} \geqslant 0$ denote the number of circuits in G_{i}. Let $n_{1}+n_{2}+\cdots+n_{k}=n$ and $\lceil g / 2\rceil=q$. Then the rooted spanning forests of G, (each consisting of k rooted trees $\left.\left(T_{i}, r_{i}\right), 1 \leqslant i \leqslant k\right)$, are partitioned into at least $\binom{n+q-1}{q-1}$ root isomorphism classes.

2. Proof of Theorem 1

We shall prove Theorem 1 by induction on $|V(G)|$. The main steps in the proof will be taken in Lemmas 1-3 below.

Obviously Theorem 1 is true if $|V(G)|=1$. Likewise, if $k \geqslant 2$ and $\left|V\left(G_{i}\right)\right|=1$ for some i, say for $i=k$, then we can simply delete G_{k} and apply the induction hypothesis to the resulting graph.
Suppose that $\left|V\left(G_{i}\right)\right| \geqslant 2$ for all i, and suppose that Theorem 1 holds for graphs with at most $|V(G)|-1$ vertices; we shall then prove that Theorem 1 holds for G.

We shall not apply the induction hypothesis until the proof of Lemma 3; in the meantime we shall do some preparations. Let $R=\left\{r_{1}, r_{2}, \ldots, r_{k}\right\}, k \geqslant 1$, be the set of roots of G. Let $\mathscr{C}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, m \geqslant 0$, be the set consisting of those circuits in G which contain a root. If $m=0$ the argument skips ahead and continues with Lemma 3 below.

Otherwise, $m \geqslant 1$ and we can choose a circuit C from \mathscr{C}. Let (G^{\prime}, r^{\prime}) be that rooted component of G which contains C. Define $L_{C}\left(G^{\prime}, r^{\prime}\right)$ to be the graph spanned in G^{\prime} by r^{\prime} together with that component of $G^{\prime}-r^{\prime}$ which contains $C-r^{\prime}$.

For each edge e of C not incident with r^{\prime} define $\alpha(e), \beta(e), \alpha(e) \leqslant \beta(e)$, to be the orders of the two components of $\left(L_{C}\left(G^{\prime}, r^{\prime}\right)-r^{\prime}\right)-e$. If e is incident with r^{\prime}, then define $\alpha(e)$ to be zero and $\beta(e)$ to be the order of $L_{C}\left(G^{\prime}, r^{\prime}\right)-r^{\prime}$.

For each C in \mathscr{C} there exist at least q distinct multisets $\{\alpha(e), \beta(e)\}$ as e ranges over $E(C)$, because C has length at least g.

In Lemma 1 below we shall use the fact that any spanning forest of G with root set R, i.e. a set of k rooted trees $\left(T_{i}, r_{i}\right), 1 \leqslant i \leqslant k$, can be obtained from G by deletion of exactly one edge from each circuit in \mathscr{C} followed by deletion of exactly one edge from each remaining circuit.

For each $i, i=1,2, \ldots, m$, let e_{i} be an edge in C_{i} and define the multiset

$$
\Gamma\left(e_{1}, e_{2}, \ldots, e_{m}\right)=\left\{\alpha\left(e_{1}\right), \beta\left(e_{1}\right), \alpha\left(e_{2}\right), \beta\left(e_{2}\right), \ldots, \alpha\left(e_{m}\right), \beta\left(e_{m}\right)\right\}
$$

We let $\Gamma^{*}\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ denote the sub-multiset of $\Gamma\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ obtained by deleting all entries that are equal to zero. Further, let Δ denote the multiset consisting of the orders of those components of $G-R$, which have no vertex in common with any circuit from \mathscr{C}.

Lemma 1. Let notation be as above and let $e_{i} \in E\left(C_{i}\right), f_{i} \in E\left(C_{i}\right)$ for each i, $1 \leqslant i \leqslant m$. If the multisets $\Gamma\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ and $\Gamma\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ are distinct, then for any pair of rooted spanning forests T and S for $G-\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ and $G-\left\{f_{1}, f_{2}, \ldots, f_{m}\right\}$, respectively, we have $(T, R) \neq(S, R)$.

Proof of Lemma 1. First note that from the assumption that $\Gamma\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ and $\Gamma\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ are distinct, it immediately follows that $\Gamma^{*}\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ and $\Gamma^{*}\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ are also distinct.

Suppose that $(T, R) \dot{\leftrightharpoons}(S, R)$. Then the multisets of orders of all components of $T-R$ and $S-R$, respectively, must be identical, but we see from above that these multisets are exactly $\Gamma^{*}\left(e_{1}, e_{2}, \ldots, e_{m}\right) \cup \Delta$ and $\Gamma^{*}\left(f_{1}, f_{2}, \ldots, f_{m}\right) \cup \Delta$, which by assumption are distinct. This contradiction proves Lemma 1.

With the help of Lemma 1 we shall demonstrate that there exist sufficiently many distinct graphs $G-\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}, e_{i} \in E\left(C_{i}\right)$, (Lemma 2) and combining this with an induction hypothesis that each $G-\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ has sufficiently many spanning forests (Lemma 3) we shall obtain a proof of Theorem 1.

Lemma 2. Let $q \geqslant 1, m \geqslant 1$. For each $i, 1 \leqslant i \leqslant m$, let there be given q distinct pairs ($\alpha_{i j}, \beta_{i j}$) which satisfy

$$
\begin{aligned}
& 0 \leqslant \alpha_{i j} \leqslant \beta_{i j} \quad \text { for all } j, \quad 1 \leqslant j \leqslant q \\
& \alpha_{i 1}<\alpha_{i 2}<\cdots<\alpha_{i q} .
\end{aligned}
$$

Then there exist at least $\binom{m+q-1}{q-1}$ pairwise distinct multisets of the form

$$
\left\{\alpha_{1_{j}}, \beta_{1_{1}}, \alpha_{2 j_{2}}, \beta_{2 i_{2}}, \ldots, \alpha_{m j_{\mu},}, \beta_{m j_{j, m}}\right\}
$$

Proof of Lemma 2. We shall use induction on q. Lemma 2 is trivially true for $q=1$. Let $q \geqslant 2$ and assume that Lemma 2 is true for $q-1$, we shall then prove that it is also true for q.

We may choose notation such that $\alpha_{11} \leqslant \alpha_{21} \leqslant \cdots \leqslant \alpha_{m 1}$.
for each $i, 0 \leqslant i \leqslant m$, define a set S_{i} of multisets:

$$
S_{i}=\left\{\begin{array}{l}
\left\{\alpha_{11}, \beta_{11}, \alpha_{21}, \beta_{21}, \ldots, \alpha_{i 1}, \beta_{i 1}, \alpha_{i+1, j_{i+1}}, \beta_{i+1, j_{i+1}}, \ldots, \alpha_{m j_{m}}, \beta_{m j_{m}}\right\} \mid \\
j_{k} \geqslant 2, \text { for each } k \text { with } i+1 \leqslant k \leqslant m
\end{array}\right\} .
$$

S_{0} has $j_{k} \geqslant 2$, for all k, and S_{m} has $j_{k}=1$, for all k.
The proof of Lemma 2 follows from (i)-(iii) below:
(i) $S_{i} \cap S_{j}=\emptyset$, for all i, j with $0 \leqslant i<j \leqslant m$,
(ii) $\left|S_{i}\right| \geqslant\binom{ m+i+q-2}{q-2}$, for all i with $0 \leqslant i \leqslant m$,
(iii) $\sum_{i=0}^{m}\binom{m-i+q-2}{q-2}=\binom{m+q-1}{q-1}$.

Proof of (i). Let $\sigma \in S_{i}, \tau \in S_{j}$. We shall see that $\sigma \neq \tau$ by demonstrating that the multiscts σ and τ do not contain the same number of numbers less than or equal to $\alpha_{i+1,1}$.

The numbers from σ which do not exceed $\alpha_{i+1,1}$ lie in $\left\{\alpha_{11}, \beta_{11}, \alpha_{21}, \beta_{21}, \ldots, \alpha_{i 1}, \beta_{i 1}\right\}$ because for all $s \geqslant i+1$ and for all $t \geqslant 2$ we have that $\alpha_{i+1,1} \leqslant \alpha_{s 1}<\alpha_{s t} \leqslant \beta_{s t}$.

The numbers from τ which do not exceed $\alpha_{i+1,1}$ include $\alpha_{i+1,1}$ in addition to the numbers from σ not exceeding $\alpha_{i+1,1}$. This proves that $\sigma \neq \tau$ and hence that $S_{i} \cap S_{j}=\emptyset$.

Proof of (ii). For each $i, i=0,1,2, \ldots, m$, the following holds: Each multiset from S_{i} has i pairs fixed, namely $\left(\alpha_{11}, \beta_{11}\right),\left(\alpha_{21}, \beta_{21}\right), \ldots,\left(\alpha_{i 1}, \beta_{i 1}\right)$ (with $j_{k}=1$), while there are $q-1$ choices for each of the other $m-i$ pairs $\left(\alpha_{i+1, j_{i+1}}, \beta_{i+1, j_{i+1}}\right), \ldots,\left(\alpha_{m j_{m}}, \beta_{m j_{m}}\right),\left(2 \leqslant j_{k} \leqslant m\right)$. By the induction hypothesis of Lemma 2 with m replaced by $m-i$ and q replaced by $q-1$ we obtain $\left|S_{l}\right| \geqslant\binom{ m-i+q-2}{q-q^{-2}}$ as desired.

Proof of (iii). Use the identity

$$
\binom{m+q-1-i}{q-1}=\binom{m+q-1-i-1}{q-2}+\binom{m+q-1-i-1}{q-1}
$$

successively for $i=0,1,2, \ldots, m$. This concludes the proof of Lemma 2 .
From Lemmas 1 and 2 follow that at least $\binom{m+q-1}{q-1}$ distinct sets $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ exist such that all the corresponding graphs $G-\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ have pairwise disjoint families of root isomorphism classes of spanning forests with root set R.
We shall prove that each family is large enough to make Theorem 1 true. For the case $m=0$ the argument is resumed here.

Lemma 3. Let notation be as above. For any set of edges $e_{1}, e_{2}, \ldots, e_{m}$ with $e_{i} \in E\left(C_{i}\right)$, the graph $G-\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ has at least $\binom{n-m+q-1}{q-1}$ spanning forests with root set R, no two of which are root isomorphic to each other.

Proof of Lemma 3. In each component of ($G-\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$) $-R$ let the unique vertex which is adjacent to a vertex of R be designated as a new root r_{j}^{*}, $j=1,2, \ldots$.

Then $G^{*}=\left(G-\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}\right)-R$ is a graph, whose components are rooted cacti $\left(G_{j}^{*}, r_{j}^{*}\right), j=1,2, \ldots G^{*}$ contains $n-m$ circuits, each of length at least g. Since $\left|V\left(G^{*}\right)\right|<|V(G)|$, we may apply the induction hypothesis of Theorem 1, and we see that G^{*} has at least $\binom{n-m+q-1}{q}$ distinct root isomorphism classes of spanning forests with root set $R^{*}=\left\{r_{1}^{*}, r_{2}^{*}, \ldots\right\}$.
From the construction of G^{*} it follows that $G-\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ also must have at least $\binom{n-m+q-1}{q-1}$ root isomorphism classes of spanning forests with root set R. This is because there exist a surjection from the set of root isomorphism classes of $\left(G-\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}, R\right)$ onto the set of root isomorphism classes of $\left(G^{*}, R^{*}\right)$, and this implies that the first set is at least as large as the second set. This proves Lemma 3.

The lower bounds of Lemmas 2 and 3 together with the inequality

$$
\begin{equation*}
\binom{m+q-1}{q-1}\binom{n-m+q-1}{q-1} \geqslant\binom{ n+q-1}{q-1} \tag{*}
\end{equation*}
$$

finally prove Theorem 1.
We can verify the truth of inequality (*) by observing that (*) is equivalent to

$$
\binom{a+c}{c}\binom{b+c}{e} \geqslant\binom{ a+b+c}{c}
$$

(set $a=m, b=n-m, c=q-1$), which in turn is equivalent to

$$
\begin{aligned}
& \{(a+1)(a+2) \cdots(a+c)\}\{(b+1)(b+2) \cdots(b+c)\} \\
& \quad \geqslant\{(a+b+1)(a+b+2) \cdots(a+b+c)\}\{1 \cdot 2 \cdots c\} .
\end{aligned}
$$

Taking the i th factor from each of the four products we see that $(a+i)(b+i) \geqslant$ $(a+b+i) i$ hold for $i=1,2, \ldots, c$.

The bound of Theorem 1 is best possible. Let the rooted n-cactus (G, r) be obtained as disjoint union of n rooted circuits, each of length g, with all n roots identified into one vertex r. Then (G, r) has exactly $\binom{n+q-1}{\underset{1}{1})}$ root isomorphism classes of spanning trees.
In fact it follows from our proof that if G attains the lower bound in Theorem 1 , then either $n=n_{i}$ for some i or $n_{i} \leqslant 1$ for all i. We shall say no more about the structure of a graph which attains the lower bound.

3. Spanning trees

For large q we can prove Theorem 2 below. We conjecture that Theorem 2 holds without this restriction. The details will hopefully be discussed in a subsequent paper.

Theorem 2. Let $n \geqslant 2, g \geqslant 3, g=\lceil g / 2\rceil$. The spanning trees of a cactus wilh n circuits, each of length at least g, partition into at least

$$
\binom{n+q-1}{q-1} \text { isomorphism classes. }
$$

References

[1] P.D. Vestergaard, The number of isomorphism classes of spanning unicyclic subgraphs of a graph, in: Y. Alavi, G. Chartrand, O. Oellermann and A.J. Schwenk, eds., Graph Theory, Combinatorics and Applications, Proceedings of the Sixth Quadrennial International Conference on the 'Theory and Applications of Graphs, Vol. 2 (Wiley, New York, 1991) 1121-1127.
[2] P.D. Vestergaard, The least number of spanning trees in a cactus, manuscript.
[3] B. Zelinka, The number of isomorphism classes of spanning trees of a graph, Math. Slovaca 28 (1978) 385-388.

