11. S MART database: http://coot.emblheidelberg.de/S MART/
12. Sugita S, Ichchenko K, Khvotchev M, Südhof TC : $\boldsymbol{\alpha}$-Latrotoxin receptor CIRL/ latrophilin 1 (CL1) defines an unusual family of ubiquitous G-proteinlinked receptors.」 B iol C hem 1998, 273:32715-32724.
13. Krasnoperov V, B ittner MA, Holz RW, C hepurny 0, Petrenko AG: Structural requirements for α-latrotoxin binding and α-latrotoxin-stimulated secretion.J Biol C hem 1999, 274:3590-3596.
14. Krasnoperov V, B ittner MA, B eavis R, Kuang Y, S alnikow KV, C hepurny O G , Little AR, Plotnikov AN, Wu D, Holz RW, et al.: α-Latrotoxin stimulates exocytosis by the interaction with a neuronal G-protein-coupled receptor. N euron 1997, 18:925-937.
15. Ichtchenko K, B ittner MA, Krasnoperov V, Little AR, C hepurny O, Holz RW, Petrenko AG : A novel ubiquitously expressed α latrotoxin receptor is a member of the CIRL family of G -protein-coupled receptors. J Biol C hem 1999, 274:5491-5498
16. Gray JX, Haino M, Roth MJ, Maguire JE, Jensen PN, Yarme A, S tetler-S tevenson MA S iebenlist U, Kelly K: CD97 is a processed, seven-transmembrane, heterodimeric receptor associated with inflammation. J Immunol 1996, 157:5438-5447.
17. W atnick TJ, Piontek KB , C ordal TM, W eber H, G andolph MA, Q ian F, Lens XM, Neumann HPH, G ermino G G: An unusual pattern of mutation in the duplicated portion of PKD1 is revealed by use of a novel strategy for mutation detection. Hum Mol G enet 1997, 6:1473-1481.
18. S andford R, Sgotto B, Aparicio S, B renner S, Vaudin M, W ilson R K, C hissoe S, Pepin K, B ateman A, C hothia C, et al.:
Comparative analysis of the polycystic kidney disease 1 (PKD1) gene reveals an integral membrane glycoprotein with multiple evolutionary conserved domains. Hum M ol Genet 1997, 6:1483-1489.
19. Moy G W, Mendoza LM, S chultz JR Swanson WJ, G labe C G, Vacquier VD: The sea urchin sperm receptor for egg jelly is a modular protein with extensive homology to the human polycystic kidney disease protein, PKD1.J C ell B iol 1996, 133:809-817.
20. Trimmer IS, Schackmann RW, Vacquier VD Monoclonal antibodies increase intracellular Ca^{2+} in sea urchin spermatozoa. Proc Natl Acad Sci USA 1986, 83:9055-9059.
21 Lu W, Peissel B, B abakhanlou H, Pavlova A Geng, L, Fan X, Larson C, B rent G , Zhou J: Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. N at G enet 1997 17:179-181
21. Hughes J, W ard CJ, Aspinwall R, Butler R, Harris PC: Identification of a human homologue of the sea urchin receptor for egg jelly: a polycystic kidney disease-like protein. Hum Mol G enet 1999, 8:543-549
22. Mochizuki T, Wu G, Hayashi T,

Xenophontos SL, Veldhuisen B, S aris JJ,
Reynolds DM, C ai Y, G avow PA, Pierides A et al.: PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 1996 272:1339-1342
24. Tsiokas L, Kim E, Arnould T, Sukhatme VP W alz G: Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc Natl Acad Sci USA 1997, 94:6965-6970.
25. Brown N, Lai J: Consensus. http://www.bork.emblheidelberg.de/Alignment/consensus.html
26. Rost B, S ander C: Prediction of protein structure at better than 70\% accuracy. J Mol Biol 1993, 232:584-599.

Addresses: *National C enter for
B iotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda Maryland 20894, USA.
†MEMOREC S toffel G mbH, S töckheimer Weg 1, D-50829 Köln, Germany. 据uropean M olecular B iology Laboratory, Meyerhofstrasse 1, D-69012 Heidelberg, G ermany. ${ }^{\S}$ Max-Delbrück-C enter for M olecular Medicine, D-13125 Berlin-Buch, G ermany. E-mail: ponting@ncbi.nlm.nih.gov

The PLAT domain: a new piece in the PKD1 puzzle
 Alex B ateman* and Richard S andford ${ }^{\dagger}$

Autosomal dominant polycystic kidney disease (ADPKD) has a prevalence of 1 in 800 of the world's population and accounts for 10% of individuals who require renal replacement therapy, either dialysis or transplantation. Renal cyst
formation occurs as part of a 'twohit' process in which inactivation of both alleles of ADPKD genes leads to abnormalities of cell proliferation, apoptosis and differentiation [1]. Of ADPKD cases, 85% are due to mutations in the PKD1 gene, which encodes a 4,302 amino acid protein, polycystin-1 (PKD1), of unknown function. Comparison of the PKD1 sequence with homologous sequences from mouse and Fugu predicts polycystin-1 to have a large extracellular region of 3,000 amino acid residues, a region containing 11 putative transmembrane segments and a short intracellular tail [2]. A well-defined extracellular domain structure is apparent; the presence of amino-terminal leucinerich repeats, a C-type-lectin domain and multiple PKD repeats suggests a role in cell-cell or cell-matrix interactions (Figure 1) [3]. So far, no extracellular ligands of polycystin-1 have been identified. Of the intracellular regions of PKD1, functional properties have been defined only for the short 198 amino acid carboxy-terminal region, which contains a predicted coiled-coil domain. These include a direct interaction with the carboxyl terminus of the protein encoded by PKD2, polycystin-2 [4], activation of

Figure 1

C urrent Biology

Schematic diagram of the domain organisation of PLAT domain proteins. Information and alignments for each of the domains can be found in the Pfam database [14,15] using the following identifiers or accession numbers: leucine-rich repeats,

PF00560; C-type lectin, PF00059; LDL-A, PF00057: PKD domains, PF00801; PLAT domain, PF01477; lipoxygenase, PF00305; Zn^{2+}-dependent phospholipase C, PF00882; lipase, PF00151. Abbreviation: aa, amino acids.
transcription factor AP-1 [5] and activation of heterotrimeric G proteins [6]. The last of these occurs via a motif present in one of polycystin-1's most highly conserved regions. Polycystin-1 may therefore act as a cell-surface receptor or form part of a large membrane-associated complex that is capable of signaling by several different pathways to control cell proliferation and differentiation. To further aid the understanding of this enigmatic protein, we have surveyed all the intracellular regions for potential domains that may suggest novel functions and identify further avenues for experiment.

The current model of polycystin-1 topology suggests that there are four intracellular regions that are large enough to contain a discrete protein domain. These regions are between transmembrane (TM) helices TM1 and TM2 (residues 3,096-3,280), TM3 and TM4 (residues $3,344-3,558$), TM5 and TM6 (residues $3,603-3,668$) and the carboxy-terminal region after TM11 (residues 4,105-4,302). The high sequence conservation seen in these regions between the human and Fugu polycystin-1 suggest that they are functionally important. We have used each of these regions as a query for the sequence comparison program PSI-BLAST, using an
expectation-value (E-value) threshold of 0.001 [7]. For each of the four intracellular regions, PSI-BLAST returned the known PKD1 orthologues from human, mouse and Fugu. Only one region returned significant matches with PSI-BLAST. The first intracellular region between TM1 and TM2, which represents the most strongly conserved sequence region of PKD1 between human and Fugu [2], was found to match to 67 other sequences in SWISS-PROT version 37 and TrEMBL version 9 [8]. These sequences include mammalian lipoxygenases, triacylglycerol lipase and lipoprotein lipase. The common feature found in

Figure 2

A multiple sequence alignment of PLAT domains. The colouring scheme is that used in ClustalX. The secondary structures for the known structures are shown below the sequences; E denotes β-strand.
all these alignments was topological and sequence similarity to a β-sandwich domain. We call this new protein domain the PLAT domain (after polycystin-1, lipoxygenase and alpha toxin). The copy of the PLAT domain found in polycystin-1 therefore identifies an important new region of the protein.

The three-dimensional structure of the PLAT domain is known for human pancreatic lipase [9], rabbit 15-lipoxygenase [10] and alpha toxin from Clostridium perfringens [11]. The domain is a β-sandwich composed of two sheets of four strands each. The sequence relationship of the alpha toxin to polycystin-1 can be demonstrated by using the sequence of the PLAT domain from the known structure as a query for PSIBLAST. The search essentially converges to the same family, including the polycystin-1 PLAT domain. Soybean lipoxygenase L-1 [12] contains a domain structurally related to the PLAT domains. It is more distant in sequence to the rest of the family; PSI-BLAST is able to find relationships to the rest of the family for only a few sequences. Although structural similarities were noticed between these structures, it was not suggested that they share a common ancestor [11].

The most highly conserved regions in the alignment of known PLAT domains (Figure 2) coincide with the β-strands. Most of the highly conserved residues are buried residues. An exception to this is a surface lysine or arginine that occurs on the surface of the fifth β-strand of all the eukaryotic PLAT domains. In pancreatic lipase, the lysine in this position forms a salt bridge with the procolipase protein. The conservation of a charged surface residue may indicate the location of a conserved ligand-binding site within the PLAT domain.

The importance of PLAT domains is underlined by mutations that lead to human disease.
Mutations in lipoprotein lipase lead to chylomicronaemia and mutations
in triacylglycerol lipase lead to hepatic lipase deficiency [13]. In pancreatic lipase the PLAT domain is involved in binding to the procolipase protein. This interaction is required to bring the enzymatic active site of the lipase into close contact with its lipid substrate. In 15-lipoxygenase, a protein composed of an aminoterminal β-sandwich (PLAT) and a carboxy-terminal catalytic domain, the PLAT domain may function to localise the enzyme near its membrane or lipoprotein sequestered substrates, by analogy to the lipase-procolipase protein-protein interaction. It is also possible that the PLAT domain of 5-lipoxygenase, another member of the mammalian lipoxygenase family, mediates an interaction with the 5-lipoxygenase activating protein (FLAP), an integral membrane protein. For alpha toxin and plant lipoxygenases, it has been suggested that the PLAT domain interacts directly with the membrane in a Ca^{2+} dependent manner. Although a Ca^{2+}-binding region has been predicted for alpha toxin from crystallographic data and similarity to eukaryotic calcium-binding C2 domains [11], the conserved residues that form this region are not present in the PLAT domains identified in polycystin-1 or pancreatic lipase. PLAT domains may therefore be involved in protein-protein and protein-lipid interactions. The presence of the PLAT domain in the first cytoplasmic loop of polycystin-1 suggests that this region is important in mediating interactions with other membrane protein(s) involved in polycystin-1 function.

References

1. Q ian F, W atnick T, O nuchic L, G ermino G : The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type I. C ell 1996, 87:979-987.
2. S andford R, Sgotto B, Aparicio S, B renner S, Vaudin M, W ilson RK, C hissoe S, B ateman A, C hothia C , Hughes J, et al.: Comparative analysis of the polycystic kidney disease 1 (PKD1) gene reveals an integral membrane glycoprotein with multiple evolutionary conserved domains. Proc Natl Acad Sci USA 1997, 6:1483-1489.
3. Hughes J, W ard CJ, Peral B, Aspinwall R, C lark K, S an Millan JL, G amble V, H arris PC : The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nat Genet 1995, 10:151-160.
4. Q ian F, G ermino F, C ai Y, Zhang X, S omlo S, G ermino G: PKD1 interacts with PKD2 through a probable coiled-coil domain. Nat G enet 1997, 16:179-183.
5. Arnould T, Kim E, Tsiokas L, Jochimsen F, G runing W, C hang J, W alz G : The polycystic kidney disease 1 gene product mediates protein kinase C alphadependent and $\mathrm{C}-\mathrm{J}$ un N -terminal kinasedependent activation of the transcription factor AP-1.J B iol C hem 1998, 273:6013-6018.
6. Parnell S, Magenheimer B , Maser R, Rankin C , S mine A, 0 kamoto T, C alvet J: The polycystic kidney disease-1 protein, polycystin-1, binds and activates heterotrimeric G -proteins in vitro. Biochem Biophys Res Commun 1998, 251:625-631.
7. Altschul S F, Madden TL, S chaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-B LAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
8. B airoch A, Apweiler R: The SWISS-PROT protein sequence data bank and its supplement TrE MBL in 1999. Nucleic Acids Res 1999, 27:49-54.
9. van Tilbeurgh H, Egloff M P, Martinez C , Rugani N, Verger R, C ambillau C: Interfacial activation of the lipaseprocolipase complex by mixed micelles revealed by X-ray crystallography. Nature 1993, 362:814-820.
10. G illmor SA, Villasenor A, Fletterick R, Sigal E, B rowner M F: The structure of mammalian 15-lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. N at Struct B iol 1998, 4:1003-1009.
11. Naylor C E, Eaton JT, Howells A, Justin N, Moss DS, Titball RW, B asak AK: Structure of the key toxin in gas gangrene. N at Struct Biol 1998, 5:738-746.
12. Minor W, Steczko J, Stec B, Otwinowski Z, B olin JT, W alter R, A xelrod B: Crystal structure of soybean lipoxygenase L-1 at 1.4 Å resolution. B iochem 1996, 35:10687-10701.
13. Hegele R, Tu L, C onnelly P: Human hepatic lipase mutations and polymorphisms. Hum Mutat 1992, 1:320-324.
14. B ateman A, B irney E, Durbin R, Eddy SR, Finn RD, Sonnhammer ELL: Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res 1999, 27:260-262.
15. Pfam: Protein families database of alignments and HMMs. http://www.sanger.ac.uk/S oftware/Pfam/

Addresses: *The S anger C entre, W ellcome Trust G enome C ampus, Hinxton, C ambridge C B 10 1SA, UK. ${ }^{\dagger}$ C ambridge Institute for Medical Research, Addenbrooke's Hospital, C ambridge CB2 2XY, UK.
E-mail: agb@sanger.ac.uk

A latrophilin/ CL-1-like G PS domain in polycystin-1

C.P. Ponting, K. Hofmann and P. B ork

Current Biology 26 August 1999, 9:R585-R588

The WSC domain

A PSI-BLAST [S1,S2] search of the region of PKD1 lying between the leucine-rich repeat flanking regions and the first PKD domain of PKD1 (amino acid residues 181-272) using an expect value (E-value) inclusion threshold of $E<0.01$ revealed significant similarity to two regions of Trichoderma harzianum β-1,3-exoglucanase [S3] ($E=1 \times 10^{-5}$ and 6×10^{-3}) by iteration 1 , and nine additional proteins (Figure S1) by convergence after five iterations. Independent evidence for these domain homologues and those discussed below was provided by generalised profile analysis [S4], in which the significance was better than $p<0.01$ in all cases.

We term these homologues WSC domains, after S. cerevisiae WSC1 (cell-wall integrity and stress-response component 1; also called Slg1 and Hcs77), WSC2, WSC3 and WSC4 proteins, which each contain a single such domain [S5]. S. cerevisiae WSC1-3 proteins are localised to the plasma membrane and function upstream of the PKC1-MPK1 pathway [S5-S7]. The WSC domains in these proteins are predicted to be extracellular and are
amino-terminal to serine- and threonine-rich regions, a single predicted transmembrane sequence and divergent carboxy-terminal cytoplasmic sequences. The functions of these WSC domains are unknown but the WSC1-3 proteins are suggested to act as sensors of environmental stress [S5-S7], and WSC4 (also called Yhc8p) is implicated in protein translocation to the endoplasmic reticulum [S8].

Tandem WSC domains are also found in a hypothetical human protein (KIAA0523) that appears to be a member of a novel sulphotransferase subfamily, and in the T. harwianum $\beta-1,3$-exoglucanase [S3]. The latter occurrences indicate that the PKD1 WSC domain, and its homologues in general, might possess a carbohydrate-binding role. This would complement the predicted protein-, lipoprotein- and carbohydrate-binding functions conferred by the PKD, LDL α and C-type lectin domains of PKD1.

The LH2 domain

The cytoplasmic region between the first and second transmembrane regions of PKD1 was found to contain a β-barrel domain, homologous to a non-catalytic domain of

Figure $\mathbf{S 1}$

Multiple sequence alignments of W SC domains. Amino acid residues are coloured according to a 80% consensus (calculated using the program C onsensus [S 13]: + indicates positively charged residues (H, K and R, green); - indicates negatively charged residues (D and E, green); a indicates aromatic residues (F, H, W and Y, highlighted in yellow); b indicates big residues (E, F, I, K, L, M, Q, R, W and Y, grey or yellow); C indicates charged residues (D, E, H, K and R, green); h indicates hydrophobic residues ($A, C, F, H, I, L, M, V, W$ and Y, highlighted in yellow); I indicates aliphatic residues (I, L and V, highlighted in yellow); 0 indicates alcohol residues (S and T , pink), p indicates polar residues (D, E, H, K, N, Q, R, S and T, dark blue); s indicates small residues (A, C, S, T, D, N, V, G and P, light blue); u indicates tiny residues (A, G and S , light blue). Residues that are predicted to form disulphide bridges are shown as white-onblack. Predicted [S 14] secondary structures are indicated below the alignment (e/E, extended or β-strand structure; h / H, helix); lowercase letters represent predictions that have expected accuracies of $>72 \%$ and uppercase letters represent predictions that have expected accuracies of $>82 \%$. Residue numbers and G enB ank identifiers are shown

following the alignment. Abbreviations: Fr, Fugu rubripes; Hp , Hansenula polymorpha; Hs, Homo sapiens; Sc, Saccharomyces
cerevisiae; $S p, S$ chizosaccharomyces pombe; Th, Trichoderma harzianum; β-1,3exoG luc, $\beta-1,3$ exoglucanase.

Figure S2

Multiple alignment of LH2 domains, coloured according to the consensus scheme of Figure S1. Predicted [S 14] secondary structures are indicated below the alignment (e/E, extended or β-strand structure; h / H, helix); lowercase letters represent predictions that have expected accuracies of $>72 \%$ and uppercase letters represent predictions that have expected accuracies of $>82 \%$. Residue numbers and G enB ank identifiers are shown following the alignment. Abbreviations: Ce , C aenorhabditis elegans; Fr, Fugu rubripes; G m, Glycine max (soybean); Hs, Homo sapiens; Mm, Mus musculus; Oc, Oryctolagus cuniculus (rabbit); Rn, Rattus norvegicus; LOX1, arachidonate 15-lipoxygenase; LIP 2, pancreatic lipase-related protein 2.
lipoxygenases [S9]. A PSI-BLAST search [S1,S2] using PKD1 residues 3,096-3,280 as query revealed significant similarity $\left(E<10^{-6}\right)$ by iteration 1 to the amino-terminal domain of mammalian arachidonate 5-lipoxygenases (Figure S2). This domain has an eight-stranded β-barrel fold [S9] and is highly similar in structure to the carboxyterminal domains of mammalian lipases $[\mathrm{S} 10, \mathrm{~S} 11]$ and the amino-terminal domains of plant 15-lipoxygenases [S12] (Figure S2). We term these domains lipoxygenase homology 2 (LH2) domains. The current model for the function of LH2 domains is that they facilitate binding of lipase and lipoxygenase substrates to the enzymes' active sites [S9]. Thus the presence of this domain in the first cytoplasmic loop of PKD1 suggests a role in lipid-mediated modulation of PKD1 function.

Supplementary references

S 1.Altschul SF, M adden TL, S haffer AA, Zhang J, Zhang Z, M iller W , Lipman DJ: Gapped BLAST and PSI-B LAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.
S 2. Altschul S F, Koonin EV: Iterated profile searches with PSIB LAST - a tool for discovery in protein databases. Trends B iochem Sci 1998, 23:444-447.
S 3. C ohen-Kupiec R, B roglie KE, Friesem D, B roglie RM, C het I: Molecular characterization of a novel β-1,3-exoglucanase related to mycoparasitism of Trichoderma harzianum. G ene 1999, 226:147154.

S4. Bucher P, Karplus K, Moeri N, Hofmann, K: A flexible search technique based on generalized profiles. C omput C hem 1996, 20:3-24.
S5. Verna J, Lodder A, Lee K, Vagts A, B allester R: A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1997, 94:13804-13809.
S6. Gray JV, O gas JP, Kamada Y, S tone M, Levin DE, Herskowitz I: A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBOJ 1997, 16:4924-4937.
S 7. Jacoby JJ, Nilius SM, Heinisch JJ: A screen for upstream components of the yeast protein kinase \mathbf{C} signal transduction pathway identifies the product of the SLG 1 gene. Mol Gen G enet 1998, 258:148-155.
S 8. Mamoun C B , B eckerich J-M, G aillardin C , Kepes F: Disruption of YHC8, a member of the TSR1 gene family, reveals its direct involvement in yeast protein translocation. J B iol C hem 1999, 274:11296-11302.

S9. G illmor SA, Villasenor A, Fletterick R, Sigal E, B rowner MF: The structure of mammalian 15 -lipoxygenase reveals similarity to the lipases and the determinants of substrate specificity. Nat Struct Biol 1997, 4:1003-1009.
S10. Roussel A, Yang Y, Ferrato F, Verger R, C ambillau C, Lowe M: Structure and activity of rat pancreatic lipase-related protein 2. J Biol Chem 1998, 273:32121-32128.
S11. W inkler FW, D'Arcy A, Hunziker W: Structure of human pancreatic lipase. Nature 1990, 343:771-774.
S12. Boyington JC, G affney BJ, Amzel LM: The three-dimensional structure of an arachidonic acid 15-lipoxygenase. S cience 1993, 260:1482-1486.
S13. Brown N, Lai J: Consensus. http://www.bork.emblheidelberg.de/Alignment/consensus.html
S14. Rost B, S ander C: Prediction of protein structure at better than 70\% accuracy.J Mol Biol 1993, 232:584-599.

